List of uniform polyhedra

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Template:Short description In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.

Uniform polyhedra can be divided between convex forms with convex regular polygon faces and star forms. Star forms have either regular star polygon faces or vertex figures or both.

This list includes these:

It was proven in Template:Harvard citation text that there are only 75 uniform polyhedra other than the infinite families of prisms and antiprisms. John Skilling discovered an overlooked degenerate example, by relaxing the condition that only two faces may meet at an edge. This is a degenerate uniform polyhedron rather than a uniform polyhedron, because some pairs of edges coincide.

Not included are:

Indexing

Four numbering schemes for the uniform polyhedra are in common use, distinguished by letters:

  • [C] Coxeter et al., 1954, showed the convex forms as figures 15 through 32; three prismatic forms, figures 33–35; and the nonconvex forms, figures 36–92.
  • [W] Wenninger, 1974, has 119 figures: 1–5 for the Platonic solids, 6–18 for the Archimedean solids, 19–66 for stellated forms including the 4 regular nonconvex polyhedra, and ended with 67–119 for the nonconvex uniform polyhedra.
  • [K] Kaleido, 1993: The 80 figures were grouped by symmetry: 1–5 as representatives of the infinite families of prismatic forms with dihedral symmetry, 6–9 with tetrahedral symmetry, 10–26 with octahedral symmetry, 27–80 with icosahedral symmetry.
  • [U] Mathematica, 1993, follows the Kaleido series with the 5 prismatic forms moved to last, so that the nonprismatic forms become 1–75.

Names of polyhedra by number of sides

There are generic geometric names for the most common polyhedra. The 5 Platonic solids are called a tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron with 4, 6, 8, 12, and 20 sides respectively. The regular hexahedron is a cube.

Table of polyhedra

The convex forms are listed in order of degree of vertex configurations from 3 faces/vertex and up, and in increasing sides per face. This ordering allows topological similarities to be shown.

There are infinitely many prisms and antiprisms, one for each regular polygon; the ones up to the 12-gonal cases are listed.

Convex uniform polyhedra

Name Picture Vertex
type
Wythoff
symbol
Sym. C# W# U# K# Vert. Edges Faces Faces by type
Tetrahedron File:Tetrahedron.png File:Tetrahedron vertfig.svg
3.3.3
2 3 Td C15 W001 U01 K06 4 6 4 4{3}
Triangular prism File:Triangular prism.png File:Triangular prism vertfig.png
3.4.4
2 D3h C33a U76a K01a 6 9 5 2{3}
+3{4}
Truncated tetrahedron File:Truncated tetrahedron.png File:Truncated tetrahedron vertfig.png
3.6.6
3 Td C16 W006 U02 K07 12 18 8 4{3}
+4{6}
Truncated cube File:Truncated hexahedron.png File:Truncated cube vertfig.svg
3.8.8
4 Oh C21 W008 U09 K14 24 36 14 8{3}
+6{8}
Truncated dodecahedron File:Truncated dodecahedron.png File:Truncated dodecahedron vertfig.png
3.10.10
5 Ih C29 W010 U26 K31 60 90 32 20{3}
+12{10}
Cube File:Hexahedron.png File:Cube vertfig.png
4.4.4
2 4 Oh C18 W003 U06 K11 8 12 6 6{4}
Pentagonal prism File:Pentagonal prism.png File:Pentagonal prism vertfig.png
4.4.5
2 D5h C33b U76b K01b 10 15 7 5{4}
+2{5}
Hexagonal prism File:Hexagonal prism.png File:Hexagonal prism vertfig.png
4.4.6
2 D6h C33c U76c K01c 12 18 8 6{4}
+2{6}
Heptagonal prism File:Prism 7.png File:Heptagonal prism vertfig.png
4.4.7
2 D7h C33d U76d K01d 14 21 9 7{4}
+2{7}
Octagonal prism File:Octagonal prism.png File:Octagonal prism vertfig.png
4.4.8
2 D8h C33e U76e K01e 16 24 10 8{4}
+2{8}
Enneagonal prism File:Prism 9.png File:Enneagonal prism vertfig.png
4.4.9
2 D9h C33f U76f K01f 18 27 11 9{4}
+2{9}
Decagonal prism File:Decagonal prism.png File:Decagonal prism vf.png
4.4.10
2 D10h C33g U76g K01g 20 30 12 10{4}
+2{10}
Hendecagonal prism File:Hendecagonal prism.png File:Hendecagonal prism vf.png
4.4.11
2 D11h C33h U76h K01h 22 33 13 11{4}
+2{11}
Dodecagonal prism File:Dodecagonal prism.png File:Dodecagonal prism vf.png
4.4.12
2 D12h C33i U76i K01i 24 36 14 12{4}
+2{12}
Truncated octahedron File:Truncated octahedron.png File:Truncated octahedron vertfig.png
4.6.6
3 Oh C20 W007 U08 K13 24 36 14 6{4}
+8{6}
Truncated cuboctahedron File:Great rhombicuboctahedron.png File:Great rhombicuboctahedron vertfig.svg
4.6.8
Oh C23 W015 U11 K16 48 72 26 12{4}
+8{6}
+6{8}
Truncated icosidodecahedron File:Great rhombicosidodecahedron.png File:Great rhombicosidodecahedron vertfig.png
4.6.10
Ih C31 W016 U28 K33 120 180 62 30{4}
+20{6}
+12{10}
Dodecahedron File:Dodecahedron.png File:Dodecahedron vertfig.png
5.5.5
2 5 Ih C26 W005 U23 K28 20 30 12 12{5}
Truncated icosahedron File:Truncated icosahedron.png File:Truncated icosahedron vertfig.png
5.6.6
3 Ih C27 W009 U25 K30 60 90 32 12{5}
+20{6}
Octahedron File:Octahedron.png File:Octahedron vertfig.svg
3.3.3.3
2 3 Oh C17 W002 U05 K10 6 12 8 8{3}
Square antiprism File:Square antiprism.png File:Square antiprism vertfig.png
3.3.3.4
2 2 4 D4d C34a U77a K02a 8 16 10 8{3}
+2{4}
Pentagonal antiprism File:Pentagonal antiprism.png File:Pentagonal antiprism vertfig.png
3.3.3.5
2 2 5 D5d C34b U77b K02b 10 20 12 10{3}
+2{5}
Hexagonal antiprism File:Hexagonal antiprism.png File:Hexagonal antiprism vertfig.png
3.3.3.6
2 2 6 D6d C34c U77c K02c 12 24 14 12{3}
+2{6}
Heptagonal antiprism File:Antiprism 7.png File:Heptagonal antiprism vertfig.png
3.3.3.7
2 2 7 D7d C34d U77d K02d 14 28 16 14{3}
+2{7}
Octagonal antiprism File:Octagonal antiprism.png File:Octagonal antiprism vertfig.png
3.3.3.8
2 2 8 D8d C34e U77e K02e 16 32 18 16{3}
+2{8}
Enneagonal antiprism File:Enneagonal antiprism.png File:Enneagonal antiprism vertfig.png
3.3.3.9
2 2 9 D9d C34f U77f K02f 18 36 20 18{3}
+2{9}
Decagonal antiprism File:Decagonal antiprism.png File:Decagonal antiprism vf.png
3.3.3.10
2 2 10 D10d C34g U77g K02g 20 40 22 20{3}
+2{10}
Hendecagonal antiprism File:Hendecagonal antiprism.png File:Hendecagonal antiprism vf.png
3.3.3.11
2 2 11 D11d C34h U77h K02h 22 44 24 22{3}
+2{11}
Dodecagonal antiprism File:Dodecagonal antiprism.png File:Dodecagonal antiprism vf.png
3.3.3.12
2 2 12 D12d C34i U77i K02i 24 48 26 24{3}
+2{12}
Cuboctahedron File:Cuboctahedron.png File:Cuboctahedron vertfig.png
3.4.3.4
3 4 Oh C19 W011 U07 K12 12 24 14 8{3}
+6{4}
Rhombicuboctahedron File:Small rhombicuboctahedron.png File:Small rhombicuboctahedron vertfig.png
3.4.4.4
2 Oh C22 W013 U10 K15 24 48 26 8{3}
+(6+12){4}
Rhombicosidodecahedron File:Small rhombicosidodecahedron.png File:Small rhombicosidodecahedron vertfig.png
3.4.5.4
2 Ih C30 W014 U27 K32 60 120 62 20{3}
+30{4}
+12{5}
Icosidodecahedron File:Icosidodecahedron.png File:Icosidodecahedron vertfig.png
3.5.3.5
3 5 Ih C28 W012 U24 K29 30 60 32 20{3}
+12{5}
Icosahedron File:Icosahedron.png File:Icosahedron vertfig.png
3.3.3.3.3
2 3 Ih C25 W004 U22 K27 12 30 20 20{3}
Snub cube File:Snub hexahedron.png File:Snub cube vertfig.png
3.3.3.3.4
2 3 4 O C24 W017 U12 K17 24 60 38 (8+24){3}
+6{4}
Snub dodecahedron File:Snub dodecahedron ccw.png File:Snub dodecahedron vertfig.png
3.3.3.3.5
2 3 5 I C32 W018 U29 K34 60 150 92 (20+60){3}
+12{5}

Uniform star polyhedra

The forms containing only convex faces are listed first, followed by the forms with star faces. Again infinitely many prisms and antiprisms exist; they are listed here up to the 8-sided ones.

The uniform polyhedra | Template:Sfrac 3 3, | Template:Sfrac Template:Sfrac Template:Sfrac, | Template:Sfrac Template:Sfrac 3, | Template:Sfrac Template:Sfrac 3 Template:Sfrac, and | (Template:Sfrac) Template:Sfrac (3) Template:Sfrac have some faces occurring as coplanar pairs. (Coxeter et al. 1954, pp. 423, 425, 426; Skilling 1975, p. 123)

Name Image Wyth sym Vert. fig Sym. C# W# U# K# Vert. Edges Faces Chi Orient- able? Dens. Faces by type
Octahemioctahedron File:Octahemioctahedron.png Template:Sfrac 3 | 3 File:Octahemioctahedron vertfig.png 6.Template:Sfrac.6.3 Oh C37 W068 U03 K08 12 24 12 0 Yes   8{3}+4{6}
Tetrahemihexahedron File:Tetrahemihexahedron.png Template:Sfrac 3 | 2 File:Tetrahemihexahedron vertfig.svg 4.Template:Sfrac.4.3 Td C36 W067 U04 K09 6 12 7 1 No   4{3}+3{4}
Cubohemioctahedron File:Cubohemioctahedron.png Template:Sfrac 4 | 3 File:Cubohemioctahedron vertfig.png 6.Template:Sfrac.6.4 Oh C51 W078 U15 K20 12 24 10 −2 No   6{4}+4{6}
Great dodecahedron File:Great dodecahedron.png Template:Sfrac | 2 5 File:Great dodecahedron vertfig.png (5.5.5.5.5)/2 Ih C44 W021 U35 K40 12 30 12 −6 Yes 3 12{5}
Great icosahedron File:Great icosahedron.png Template:Sfrac | 2 3 File:Great icosahedron vertfig.svg (3.3.3.3.3)/2 Ih C69 W041 U53 K58 12 30 20 2 Yes 7 20{3}
Great ditrigonal icosidodecahedron File:Great ditrigonal icosidodecahedron.png Template:Sfrac | 3 5 File:Great ditrigonal icosidodecahedron vertfig.png (5.3.5.3.5.3)/2 Ih C61 W087 U47 K52 20 60 32 −8 Yes 6 20{3}+12{5}
Small rhombihexahedron File:Small rhombihexahedron.png 2 4 (Template:Sfrac Template:Sfrac) | File:Small rhombihexahedron vertfig.png 4.8.Template:Sfrac.Template:Sfrac Oh C60 W086 U18 K23 24 48 18 −6 No   12{4}+6{8}
Small cubicuboctahedron File:Small cubicuboctahedron.png Template:Sfrac 4 | 4 File:Small cubicuboctahedron vertfig.png 8.Template:Sfrac.8.4 Oh C38 W069 U13 K18 24 48 20 −4 Yes 2 8{3}+6{4}+6{8}
Nonconvex great rhombicuboctahedron File:Uniform great rhombicuboctahedron.png Template:Sfrac 4 | 2 File:Uniform great rhombicuboctahedron vertfig.png 4.Template:Sfrac.4.4 Oh C59 W085 U17 K22 24 48 26 2 Yes 5 8{3}+(6+12){4}
Small dodecahemidodecahedron File:Small dodecahemidodecahedron.png Template:Sfrac 5 | 5 File:Small dodecahemidodecahedron vertfig.png 10.Template:Sfrac.10.5 Ih C65 W091 U51 K56 30 60 18 −12 No   12{5}+6{10}
Great dodecahemicosahedron File:Great dodecahemicosahedron.png Template:Sfrac 5 | 3 File:Great dodecahemicosahedron vertfig.png 6.Template:Sfrac.6.5 Ih C81 W102 U65 K70 30 60 22 −8 No   12{5}+10{6}
Small icosihemidodecahedron File:Small icosihemidodecahedron.png Template:Sfrac 3 | 5 File:Small icosihemidodecahedron vertfig.svg 10.Template:Sfrac.10.3 Ih C63 W089 U49 K54 30 60 26 −4 No   20{3}+6{10}
Small dodecicosahedron File:Small dodecicosahedron.png 3 5 (Template:Sfrac Template:Sfrac) | File:Small dodecicosahedron vertfig.png 10.6.Template:Sfrac.Template:Sfrac Ih C64 W090 U50 K55 60 120 32 −28 No   20{6}+12{10}
Small rhombidodecahedron File:Small rhombidodecahedron.png 2 5 (Template:Sfrac Template:Sfrac) | File:Small rhombidodecahedron vertfig.png 10.4.Template:Sfrac.Template:Sfrac Ih C46 W074 U39 K44 60 120 42 −18 No   30{4}+12{10}
Small dodecicosidodecahedron File:Small dodecicosidodecahedron.png Template:Sfrac 5 | 5 File:Small dodecicosidodecahedron vertfig.png 10.Template:Sfrac.10.5 Ih C42 W072 U33 K38 60 120 44 −16 Yes 2 20{3}+12{5}+12{10}
Rhombicosahedron File:Rhombicosahedron.png 2 3 (Template:Sfrac Template:Sfrac) | File:Rhombicosahedron vertfig.png 6.4.Template:Sfrac.Template:Sfrac Ih C72 W096 U56 K61 60 120 50 −10 No   30{4}+20{6}
Great icosicosidodecahedron File:Great icosicosidodecahedron.png Template:Sfrac 5 | 3 File:Great icosicosidodecahedron vertfig.png 6.Template:Sfrac.6.5 Ih C62 W088 U48 K53 60 120 52 −8 Yes 6 20{3}+12{5}+20{6}
Pentagrammic prism File:Pentagrammic prism.png 2 Template:Sfrac | 2 File:Pentagrammic prism vertfig.png Template:Sfrac.4.4 D5h C33b U78a K03a 10 15 7 2 Yes 2 5{4}+2Template:Mset
Heptagrammic prism (7/2) File:Heptagrammic prism 7-2.png 2 Template:Sfrac | 2 File:Septagrammic prism vertfig.png Template:Sfrac.4.4 D7h C33d U78b K03b 14 21 9 2 Yes 2 7{4}+2Template:Mset
Heptagrammic prism (7/3) File:Heptagrammic prism 7-3.png 2 Template:Sfrac | 2 File:Septagrammic prism-3-7 vertfig.png Template:Sfrac.4.4 D7h C33d U78c K03c 14 21 9 2 Yes 3 7{4}+2Template:Mset
Octagrammic prism File:Prism 8-3.png 2 Template:Sfrac | 2 File:Octagrammic prism vertfig.png Template:Sfrac.4.4 D8h C33e U78d K03d 16 24 10 2 Yes 3 8{4}+2Template:Mset
Pentagrammic antiprism File:Pentagrammic antiprism.png 2 2 Template:Sfrac File:Pentagrammic antiprism vertfig.png Template:Sfrac.3.3.3 D5h C34b U79a K04a 10 20 12 2 Yes 2 10{3}+2Template:Mset
Pentagrammic crossed-antiprism File:Pentagrammic crossed antiprism.png 2 2 Template:Sfrac File:Pentagrammic crossed-antiprism vertfig.png Template:Sfrac.3.3.3 D5d C35a U80a K05a 10 20 12 2 Yes 3 10{3}+2Template:Mset
Heptagrammic antiprism (7/2) File:Antiprism 7-2.png 2 2 Template:Sfrac File:Heptagrammic antiprism-2-7 vertfig.png Template:Sfrac.3.3.3 D7h C34d U79b K04b 14 28 16 2 Yes 3 14{3}+2Template:Mset
Heptagrammic antiprism (7/3) File:Antiprism 7-3.png 2 2 Template:Sfrac File:Heptagrammic antiprism-3-7 vertfig.png Template:Sfrac.3.3.3 D7d C34d U79c K04c 14 28 16 2 Yes 3 14{3}+2Template:Mset
Heptagrammic crossed-antiprism File:Antiprism 7-4.png 2 2 Template:Sfrac File:Heptagrammic antiprism-4-7 vertfig.png Template:Sfrac.3.3.3 D7h C35b U80b K05b 14 28 16 2 Yes 4 14{3}+2Template:Mset
Octagrammic antiprism File:Antiprism 8-3.png 2 2 Template:Sfrac File:Octagrammic antiprism-3-8 vertfig.png Template:Sfrac.3.3.3 D8d C34e U79d K04d 16 32 18 2 Yes 3 16{3}+2Template:Mset
Octagrammic crossed-antiprism File:Antiprism 8-5.png 2 2 Template:Sfrac File:Octagrammic antiprism-5-8 vertfig.png Template:Sfrac.3.3.3 D8d C35c U80c K05c 16 32 18 2 Yes 5 16{3}+2Template:Mset
Small stellated dodecahedron File:Small stellated dodecahedron.png 2 Template:Sfrac File:Small stellated dodecahedron vertfig.png (Template:Sfrac)5 Ih C43 W020 U34 K39 12 30 12 −6 Yes 3 12Template:Mset
Great stellated dodecahedron File:Great stellated dodecahedron.png 2 Template:Sfrac File:Great stellated dodecahedron vertfig.png (Template:Sfrac)3 Ih C68 W022 U52 K57 20 30 12 2 Yes 7 12Template:Mset
Ditrigonal dodecadodecahedron File:Ditrigonal dodecadodecahedron.png Template:Sfrac 5 File:Ditrigonal dodecadodecahedron vertfig.png (Template:Sfrac.5)3 Ih C53 W080 U41 K46 20 60 24 −16 Yes 4 12{5}+12Template:Mset
Small ditrigonal icosidodecahedron File:Small ditrigonal icosidodecahedron.png Template:Sfrac 3 File:Small ditrigonal icosidodecahedron vertfig.png (Template:Sfrac.3)3 Ih C39 W070 U30 K35 20 60 32 −8 Yes 2 20{3}+12Template:Mset
Stellated truncated hexahedron File:Stellated truncated hexahedron.png Template:Sfrac File:Stellated truncated hexahedron vertfig.png Template:Sfrac.Template:Sfrac.3 Oh C66 W092 U19 K24 24 36 14 2 Yes 7 8{3}+6Template:Mset
Great rhombihexahedron File:Great rhombihexahedron.png 2 Template:Sfrac (Template:Sfrac Template:Sfrac) | File:Great rhombihexahedron vertfig.png 4.Template:Sfrac.Template:Sfrac.Template:Sfrac Oh C82 W103 U21 K26 24 48 18 −6 No   12{4}+6Template:Mset
Great cubicuboctahedron File:Great cubicuboctahedron.png Template:Sfrac File:Great cubicuboctahedron vertfig.png Template:Sfrac.3.Template:Sfrac.4 Oh C50 W077 U14 K19 24 48 20 −4 Yes 4 8{3}+6{4}+6Template:Mset
Great dodecahemidodecahedron File:Great dodecahemidodecahedron.png Template:Sfrac Template:Sfrac | Template:Sfrac File:Great dodecahemidodecahedron vertfig.png Template:Sfrac.Template:Sfrac.Template:Sfrac.Template:Sfrac Ih C86 W107 U70 K75 30 60 18 −12 No   12Template:Mset+6Template:Mset
Small dodecahemicosahedron File:Small dodecahemicosahedron.png Template:Sfrac Template:Sfrac | 3 File:Small dodecahemicosahedron vertfig.png 6.Template:Sfrac.6.Template:Sfrac Ih C78 W100 U62 K67 30 60 22 −8 No   12Template:Mset+10{6}
Dodecadodecahedron File:Dodecadodecahedron.png 5 Template:Sfrac File:Dodecadodecahedron vertfig.png (Template:Sfrac.5)2 Ih C45 W073 U36 K41 30 60 24 −6 Yes 3 12{5}+12Template:Mset
Great icosihemidodecahedron File:Great icosihemidodecahedron.png Template:Sfrac 3 | Template:Sfrac File:Great icosihemidodecahedron vertfig.png Template:Sfrac.Template:Sfrac.Template:Sfrac.3 Ih C85 W106 U71 K76 30 60 26 −4 No   20{3}+6Template:Mset
Great icosidodecahedron File:Great icosidodecahedron.png 3 Template:Sfrac File:Great icosidodecahedron vertfig.png (Template:Sfrac.3)2 Ih C70 W094 U54 K59 30 60 32 2 Yes 7 20{3}+12Template:Mset
Cubitruncated cuboctahedron File:Cubitruncated cuboctahedron.png Template:Sfrac 3 4 | File:Cubitruncated cuboctahedron vertfig.png Template:Sfrac.6.8 Oh C52 W079 U16 K21 48 72 20 −4 Yes 4 8{6}+6{8}+6Template:Mset
Great truncated cuboctahedron File:Great truncated cuboctahedron.png Template:Sfrac 2 3 | File:Great truncated cuboctahedron vertfig.png Template:Sfrac.4.Template:Sfrac Oh C67 W093 U20 K25 48 72 26 2 Yes 1 12{4}+8{6}+6Template:Mset
Truncated great dodecahedron File:Great truncated dodecahedron.png 2 Template:Sfrac | 5 File:Truncated great dodecahedron vertfig.png 10.10.Template:Sfrac Ih C47 W075 U37 K42 60 90 24 −6 Yes 3 12Template:Mset+12{10}
Small stellated truncated dodecahedron File:Small stellated truncated dodecahedron.png Template:Sfrac File:Small stellated truncated dodecahedron vertfig.png Template:Sfrac.Template:Sfrac.5 Ih C74 W097 U58 K63 60 90 24 −6 Yes 9 12{5}+12Template:Mset
Great stellated truncated dodecahedron File:Great stellated truncated dodecahedron.png Template:Sfrac File:Great stellated truncated dodecahedron vertfig.png Template:Sfrac.Template:Sfrac.3 Ih C83 W104 U66 K71 60 90 32 2 Yes 13 20{3}+12Template:Mset
Truncated great icosahedron File:Great truncated icosahedron.png 2 Template:Sfrac | 3 File:Great truncated icosahedron vertfig.png 6.6.Template:Sfrac Ih C71 W095 U55 K60 60 90 32 2 Yes 7 12Template:Mset+20{6}
Great dodecicosahedron File:Great dodecicosahedron.png 3 Template:Sfrac(Template:Sfrac Template:Sfrac) | File:Great dodecicosahedron vertfig.png 6.Template:Sfrac.Template:Sfrac.Template:Sfrac Ih C79 W101 U63 K68 60 120 32 −28 No   20{6}+12Template:Mset
Great rhombidodecahedron File:Great rhombidodecahedron.png 2 Template:Sfrac (Template:Sfrac Template:Sfrac) | File:Great rhombidodecahedron vertfig.png 4.Template:Sfrac.Template:Sfrac.Template:Sfrac Ih C89 W109 U73 K78 60 120 42 −18 No   30{4}+12Template:Mset
Icosidodecadodecahedron File:Icosidodecadodecahedron.png Template:Sfrac 5 | 3 File:Icosidodecadodecahedron vertfig.png 6.Template:Sfrac.6.5 Ih C56 W083 U44 K49 60 120 44 −16 Yes 4 12{5}+12Template:Mset+20{6}
Small ditrigonal dodecicosidodecahedron File:Small ditrigonal dodecicosidodecahedron.png Template:Sfrac 3 | 5 File:Small ditrigonal dodecicosidodecahedron vertfig.png 10.Template:Sfrac.10.3 Ih C55 W082 U43 K48 60 120 44 −16 Yes 4 20{3}+12Template:Mset+12{10}
Great ditrigonal dodecicosidodecahedron File:Great ditrigonal dodecicosidodecahedron.png Template:Sfrac File:Great ditrigonal dodecicosidodecahedron vertfig.png Template:Sfrac.3.Template:Sfrac.5 Ih C54 W081 U42 K47 60 120 44 −16 Yes 4 20{3}+12{5}+12Template:Mset
Great dodecicosidodecahedron File:Great dodecicosidodecahedron.png Template:Sfrac 3 | Template:Sfrac File:Great dodecicosidodecahedron vertfig.png Template:Sfrac.Template:Sfrac.Template:Sfrac.3 Ih C77 W099 U61 K66 60 120 44 −16 Yes 10 20{3}+12Template:Mset+12Template:Mset
Small icosicosidodecahedron File:Small icosicosidodecahedron.png Template:Sfrac 3 | 3 File:Small icosicosidodecahedron vertfig.png 6.Template:Sfrac.6.3 Ih C40 W071 U31 K36 60 120 52 −8 Yes 2 20{3}+12Template:Mset+20{6}
Rhombidodecadodecahedron File:Rhombidodecadodecahedron.png Template:Sfrac 5 | 2 File:Rhombidodecadodecahedron vertfig.png 4.Template:Sfrac.4.5 Ih C48 W076 U38 K43 60 120 54 −6 Yes 3 30{4}+12{5}+12Template:Mset
Nonconvex great rhombicosidodecahedron File:Uniform great rhombicosidodecahedron.png Template:Sfrac 3 | 2 File:Uniform great rhombicosidodecahedron vertfig.png 4.Template:Sfrac.4.3 Ih C84 W105 U67 K72 60 120 62 2 Yes 13 20{3}+30{4}+12Template:Mset
Icositruncated dodecadodecahedron File:Icositruncated dodecadodecahedron.png 3 5 Template:Sfrac | File:Icositruncated dodecadodecahedron vertfig.png Template:Sfrac.6.10 Ih C57 W084 U45 K50 120 180 44 −16 Yes 4 20{6}+12{10}+12Template:Mset
Truncated dodecadodecahedron File:Truncated dodecadodecahedron.png 2 5 Template:Sfrac | File:Truncated dodecadodecahedron vertfig.png Template:Sfrac.4.Template:Sfrac Ih C75 W098 U59 K64 120 180 54 −6 Yes 3 30{4}+12{10}+12Template:Mset
Great truncated icosidodecahedron File:Great truncated icosidodecahedron.png 2 3 Template:Sfrac | File:Great truncated icosidodecahedron vertfig.png Template:Sfrac.4.6 Ih C87 W108 U68 K73 120 180 62 2 Yes 13 30{4}+20{6}+12Template:Mset
Snub dodecadodecahedron File:Snub dodecadodecahedron.png 2 Template:Sfrac 5 File:Snub dodecadodecahedron vertfig.png 3.3.Template:Sfrac.3.5 I C49 W111 U40 K45 60 150 84 −6 Yes 3 60{3}+12{5}+12Template:Mset
Inverted snub dodecadodecahedron File:Inverted snub dodecadodecahedron.png Template:Sfrac 2 5 File:Inverted snub dodecadodecahedron vertfig.png 3.Template:Sfrac.3.3.5 I C76 W114 U60 K65 60 150 84 −6 Yes 9 60{3}+12{5}+12Template:Mset
Great snub icosidodecahedron File:Great snub icosidodecahedron.png 2 Template:Sfrac 3 File:Great snub icosidodecahedron vertfig.png 34.Template:Sfrac I C73 W113 U57 K62 60 150 92 2 Yes 7 (20+60){3}+12Template:Mset
Great inverted snub icosidodecahedron File:Great inverted snub icosidodecahedron.png Template:Sfrac 2 3 File:Great inverted snub icosidodecahedron vertfig.png 34.Template:Sfrac I C88 W116 U69 K74 60 150 92 2 Yes 13 (20+60){3}+12Template:Mset
Great retrosnub icosidodecahedron File:Great retrosnub icosidodecahedron.png 2 Template:Sfrac Template:Sfrac File:Great retrosnub icosidodecahedron vertfig.png (34.Template:Sfrac)/2 I C90 W117 U74 K79 60 150 92 2 Yes 37 (20+60){3}+12Template:Mset
Great snub dodecicosidodecahedron File:Great snub dodecicosidodecahedron.png Template:Sfrac Template:Sfrac 3 File:Great snub dodecicosidodecahedron vertfig.png 33.Template:Sfrac.3.Template:Sfrac I C80 W115 U64 K69 60 180 104 −16 Yes 10 (20+60){3}+(12+12)Template:Mset
Snub icosidodecadodecahedron File:Snub icosidodecadodecahedron.png Template:Sfrac 3 5 File:Snub icosidodecadodecahedron vertfig.png 33.5.3.Template:Sfrac I C58 W112 U46 K51 60 180 104 −16 Yes 4 (20+60){3}+12{5}+12Template:Mset
Small snub icosicosidodecahedron File:Small snub icosicosidodecahedron.png Template:Sfrac 3 3 File:Small snub icosicosidodecahedron vertfig.png 35.Template:Sfrac Ih C41 W110 U32 K37 60 180 112 −8 Yes 2 (40+60){3}+12Template:Mset
Small retrosnub icosicosidodecahedron File:Small retrosnub icosicosidodecahedron.png Template:Sfrac Template:Sfrac Template:Sfrac File:Small retrosnub icosicosidodecahedron vertfig.png (35.Template:Sfrac)/2 Ih C91 W118 U72 K77 60 180 112 −8 Yes 38 (40+60){3}+12Template:Mset
Great dirhombicosidodecahedron File:Great dirhombicosidodecahedron.png nowrap Template:Sfrac Template:Sfrac 3 Template:Sfrac File:Great dirhombicosidodecahedron vertfig.png (4.Template:Sfrac.4.3.4.Template:Sfrac.4.Template:Sfrac)/2 Ih C92 W119 U75 K80 60 240 124 −56 No   40{3}+60{4}+24Template:Mset

Script error: No such module "anchor".Special case

Name Image Wyth
sym
Vert.
fig
Sym. C# W# U# K# Vert. Edges Faces Chi Orient-
able?
Dens. Faces by type
Great disnub
dirhombidodecahedron
File:Great disnub dirhombidodecahedron.png (Template:Sfrac) Template:Sfrac (3) Template:Sfrac File:Great disnub dirhombidodecahedron vertfig.png
(Template:Sfrac.4.3.3.3.4. Template:Sfrac.
4.Template:Sfrac.Template:Sfrac.Template:Sfrac.4)/2
Ih 60 360 (*) 204 −96 No   120{3}+60{4}+24Template:Mset

The great disnub dirhombidodecahedron has 240 of its 360 edges coinciding in space in 120 pairs. Because of this edge-degeneracy, it is not always considered to be a uniform polyhedron.

Column key

  • Uniform indexing: U01–U80 (Tetrahedron first, Prisms at 76+)
  • Kaleido software indexing: K01–K80 (Kn = Un–5 for n = 6 to 80) (prisms 1–5, Tetrahedron etc. 6+)
  • Magnus Wenninger Polyhedron Models: W001-W119
    • 1–18: 5 convex regular and 13 convex semiregular
    • 20–22, 41: 4 non-convex regular
    • 19–66: Special 48 stellations/compounds (Nonregulars not given on this list)
    • 67–109: 43 non-convex non-snub uniform
    • 110–119: 10 non-convex snub uniform
  • Chi: the Euler characteristic, Template:Mvar. Uniform tilings on the plane correspond to a torus topology, with Euler characteristic of zero.
  • Density: the Density (polytope) represents the number of windings of a polyhedron around its center. This is left blank for non-orientable polyhedra and hemipolyhedra (polyhedra with faces passing through their centers), for which the density is not well-defined.
  • Note on Vertex figure images:
    • The white polygon lines represent the "vertex figure" polygon. The colored faces are included on the vertex figure images help see their relations. Some of the intersecting faces are drawn visually incorrectly because they are not properly intersected visually to show which portions are in front.

See also

References

  • Script error: No such module "Citation/CS1".
  • Script error: No such module "Citation/CS1".
  • Script error: No such module "Citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".

External links

Template:Nonconvex polyhedron navigator

ja:一様多面体の一覧