Clifford Taubes

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Template:Short description Template:CS1 config Template:BLP sources Script error: No such module "Template wrapper".Template:Main otherScript error: No such module "Check for clobbered parameters". Clifford Henry Taubes (born February 21, 1954)[1] is the William Petschek Professor of Mathematics at Harvard University and works in gauge field theory, differential geometry, and low-dimensional topology. His brother is the journalist Gary Taubes.

Early career

Taubes received his B.A. from Cornell University in 1975 and his Ph.D. in physics in 1980 from Harvard University under the direction of Arthur Jaffe,[1] having proven results collected in Template:Harvs about the existence of solutions to the Landau–Ginzburg vortex equations and the Bogomol'nyi monopole equations.

Soon, he began applying his gauge-theoretic expertise to pure mathematics. His work on the boundary of the moduli space of solutions to the Yang-Mills equations was used by Simon Donaldson in his proof of Donaldson's theorem on diagonizability of intersection forms. He proved in Script error: No such module "Footnotes". that R4 has an uncountable number of smooth structures (see also exotic R4), and (with Raoul Bott in Script error: No such module "Footnotes".) proved Witten's rigidity theorem on the elliptic genus.

Work based on Seiberg–Witten theory

In a series of four long papers in the 1990s (collected in Script error: No such module "Footnotes".), Taubes proved that, on a closed symplectic four-manifold, the (gauge-theoretic) Seiberg–Witten invariant is equal to an invariant which enumerates certain pseudoholomorphic curves and is now known as Taubes's Gromov invariant. This fact improved mathematicians' understanding of the topology of symplectic four-manifolds.

More recently (in Script error: No such module "Footnotes".), by using Seiberg–Witten Floer homology as developed by Peter Kronheimer and Tomasz Mrowka together with some new estimates on the spectral flow of Dirac operators and some methods from Script error: No such module "Footnotes"., Taubes proved the longstanding Weinstein conjecture for all three-dimensional contact manifolds, thus establishing that the Reeb vector field on such a manifold always has a closed orbit. Expanding both on this and on the equivalence of the Seiberg–Witten and Gromov invariants, Taubes has also proven (in a long series of preprints, beginning with Script error: No such module "Footnotes".) that a contact 3-manifold's embedded contact homology is isomorphic to a version of its Seiberg–Witten Floer cohomology. More recently, Taubes, C. Kutluhan and Y-J. Lee proved that Seiberg–Witten Floer homology is isomorphic to Heegaard Floer homology.

Honors and awards

Selected publications

Books

Template:Sfn whitelist

Articles

  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".

References

Template:Reflist

External links

Template:Shaw Prize Template:Veblen Prize recipients

Template:Authority control

  1. a b Script error: No such module "citation/CS1".
  2. Script error: No such module "citation/CS1".
  3. Script error: No such module "citation/CS1".