Mammal: Difference between revisions
imported>OAbot m Open access bot: url-access updated in citation with #oabot. |
imported>Citation bot Added bibcode. | Use this bot. Report bugs. | Suggested by Jay8g | #UCB_toolbar |
||
| (One intermediate revision by the same user not shown) | |||
| Line 41: | Line 41: | ||
}} | }} | ||
A '''mammal''' ({{Etymology|la|{{Wikt-lang|la|mamma}}|breast}})<ref>{{Cite encyclopedia|url= https://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0059%3Aentry%3Dmamma|title=mamma|last1=Lewis|first1=Charlton T.|last2=Short|first2=Charles|dictionary=A Latin Dictionary|publisher=Perseus Digital Library|date=1879|access-date=29 September 2022|archive-date=29 September 2022|archive-url=https://web.archive.org/web/ | A '''mammal''' ({{Etymology|la|{{Wikt-lang|la|mamma}}|breast}})<ref>{{Cite encyclopedia|url=https://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0059%3Aentry%3Dmamma|title=mamma|last1=Lewis|first1=Charlton T.|last2=Short|first2=Charles|dictionary=A Latin Dictionary|publisher=Perseus Digital Library|date=1879|access-date=29 September 2022|archive-date=29 September 2022|archive-url=https://web.archive.org/web/20220929134522/https://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.04.0059:entry=mamma|url-status=dead}}</ref> is a [[vertebrate]] animal of the [[Class (biology)|class]] '''Mammalia''' ({{IPAc-en|m|ə|ˈ|m|eɪ|l|i|.|ə}}). Mammals are characterised by the presence of [[milk]]-producing [[mammary gland]]s for feeding their young, a broad [[neocortex]] region of the brain, [[fur]] or [[hair]], and three [[Evolution of mammalian auditory ossicles|middle ear bones]]. These characteristics distinguish them from [[reptile]]s and [[bird]]s, from which their ancestors [[Genetic divergence|diverged]] in the [[Carboniferous]] Period over 300 million years ago. Around 6,640 [[Neontology#Extant taxon|extant]] species of mammals have been described and divided into 27 [[Order (biology)|orders]].<ref>{{cite web|url= https://www.mammaldiversity.org |title=ASM Mammal Diversity Database |publisher=mammaldiversity.org |access-date=9 February 2025}}</ref> The study of mammals is called [[mammalogy]]. | ||
The largest orders of mammals, by number of [[species]], are the [[rodent]]s, [[bat]]s, and [[eulipotyphla]]ns (including [[hedgehog]]s, [[Mole (animal)|mole]]s and [[shrew]]s). The next three are the [[primate]]s (including [[human]]s, [[monkey]]s and [[lemur]]s), the [[Artiodactyl|even-toed ungulate]]s (including [[pig]]s, [[ | The largest orders of mammals, by number of [[species]], are the [[rodent]]s, [[bat]]s, and [[eulipotyphla]]ns (including [[hedgehog]]s, [[Mole (animal)|mole]]s and [[shrew]]s). The next three are the [[primate]]s (including [[human]]s, [[monkey]]s and [[lemur]]s), the [[Artiodactyl|even-toed ungulate]]s (including [[Suidae|pig]]s, [[bovid]]s and [[Cetacean|whale]]s), and the [[Carnivora]] (including [[Felidae|cats]], [[Canidae|dogs]], and [[Pinniped|seals]]). | ||
Mammals are the only living members of [[Synapsida]]; this [[clade]], together with [[Sauropsida]] (reptiles and birds), constitutes the larger [[amniote|Amniota]] clade. Early synapsids are referred to as "[[pelycosaur]]s." The more advanced [[Therapsida|therapsids]] became dominant during the [[Guadalupian]]. Mammals originated from [[Cynodontia|cynodonts]], an advanced group of therapsids, during the Late [[Triassic]] to Early [[Jurassic]]. Mammals achieved their modern diversity in the [[Paleogene]] and [[Neogene]] periods of the [[Cenozoic]] era, after the [[Cretaceous–Paleogene extinction event|extinction of non-avian dinosaurs]], and have been the [[dominance (ecology)|dominant]] terrestrial animal group from 66 million years ago to the present. | Mammals are the only living members of [[Synapsida]]; this [[clade]], together with [[Sauropsida]] (reptiles and birds), constitutes the larger [[amniote|Amniota]] clade. Early synapsids are referred to as "[[pelycosaur]]s." The more advanced [[Therapsida|therapsids]] became dominant during the [[Guadalupian]]. Mammals originated from [[Cynodontia|cynodonts]], an advanced group of therapsids, during the Late [[Triassic]] to Early [[Jurassic]]. Mammals achieved their modern diversity in the [[Paleogene]] and [[Neogene]] periods of the [[Cenozoic]] era, after the [[Cretaceous–Paleogene extinction event|extinction of non-avian dinosaurs]], and have been the [[dominance (ecology)|dominant]] terrestrial animal group from 66 million years ago to the present. | ||
| Line 49: | Line 49: | ||
The basic mammalian body type is [[Quadrupedalism|quadrupedal]], with most mammals using four [[Limb (anatomy)|limbs]] for [[terrestrial locomotion]]; but in some, the limbs are adapted for life [[Marine mammal|at sea]], [[Flying and gliding animals|in the air]], [[Arboreal locomotion|in trees]] or [[Fossorial|underground]]. The [[Bipedalism|bipeds]] have adapted to move using only the two lower limbs, while the rear limbs of [[Cetacea|cetaceans]] and the [[Sirenia|sea cows]] are mere internal [[Vestigiality|vestiges]]. Mammals range in size from the {{Convert|30|–|40|mm}} [[bumblebee bat]] to the {{Convert|30|m}} [[blue whale]]—possibly the largest animal to have ever lived. Maximum lifespan varies from two years for the shrew to 211 years for the [[bowhead whale]]. All modern mammals give birth to live young, except the five species of [[monotreme]]s, which lay eggs. The most species-rich group is the [[Viviparity|viviparous]] [[Placentalia|placental mammals]], so named for the temporary organ ([[placenta]]) used by offspring to draw nutrition from the mother during [[gestation]]. | The basic mammalian body type is [[Quadrupedalism|quadrupedal]], with most mammals using four [[Limb (anatomy)|limbs]] for [[terrestrial locomotion]]; but in some, the limbs are adapted for life [[Marine mammal|at sea]], [[Flying and gliding animals|in the air]], [[Arboreal locomotion|in trees]] or [[Fossorial|underground]]. The [[Bipedalism|bipeds]] have adapted to move using only the two lower limbs, while the rear limbs of [[Cetacea|cetaceans]] and the [[Sirenia|sea cows]] are mere internal [[Vestigiality|vestiges]]. Mammals range in size from the {{Convert|30|–|40|mm}} [[bumblebee bat]] to the {{Convert|30|m}} [[blue whale]]—possibly the largest animal to have ever lived. Maximum lifespan varies from two years for the shrew to 211 years for the [[bowhead whale]]. All modern mammals give birth to live young, except the five species of [[monotreme]]s, which lay eggs. The most species-rich group is the [[Viviparity|viviparous]] [[Placentalia|placental mammals]], so named for the temporary organ ([[placenta]]) used by offspring to draw nutrition from the mother during [[gestation]]. | ||
Most mammals are [[ | Most mammals are [[animal cognition|intelligent]], with some possessing large brains, [[self-awareness]], and [[tool use by non-humans|tool use]]. Mammals can communicate and vocalise in several ways, including the production of [[ultrasound]], [[Territory (animal)#Scent marking|scent marking]], [[alarm signal]]s, [[Animal song|singing]], [[Animal echolocation|echolocation]]; and, in the case of humans, complex [[language]]. Mammals can organise themselves into [[Fission–fusion society|fission–fusion societies]], [[Harem (zoology)|harems]], and [[Hierarchy|hierarchies]]—but can also be solitary and [[Territory (animal)|territorial]]. Most mammals are [[Polygyny in animals|polygynous]], but some can be [[Monogamy in animals|monogamous]] or [[Polyandry in animals|polyandrous]]. | ||
[[Domestication]] of many types of mammals by humans played a major role in the [[Neolithic Revolution]], and resulted in [[Agriculture|farming]] replacing [[Hunter-gatherer|hunting and gathering]] as the primary source of food for humans. This led to a major restructuring of human societies from nomadic to sedentary, with more co-operation among larger and larger groups, and ultimately the development of the first [[civilisation]]s. Domesticated mammals provided, and continue to provide, power for transport and agriculture, as well as food ([[meat]] and [[dairy product]]s), [[fur]], and [[leather]]. Mammals are also [[Hunting|hunted]] and raced for sport, kept as [[pet]]s and [[working animal]]s of various types, and are used as [[model organism]]s in science. Mammals have been depicted in [[art]] since [[Paleolithic]] times, and appear in literature, film, mythology, and religion. Decline in numbers and [[extinction]] of many mammals is primarily driven by human [[poaching]] and [[habitat destruction]], primarily [[deforestation]]. | [[Domestication]] of many types of mammals by humans played a major role in the [[Neolithic Revolution]], and resulted in [[Agriculture|farming]] replacing [[Hunter-gatherer|hunting and gathering]] as the primary source of food for humans. This led to a major restructuring of human societies from nomadic to sedentary, with more co-operation among larger and larger groups, and ultimately the development of the first [[civilisation]]s. Domesticated mammals provided, and continue to provide, power for transport and agriculture, as well as food ([[meat]] and [[dairy product]]s), [[fur]], and [[leather]]. Mammals are also [[Hunting|hunted]] and raced for sport, kept as [[pet]]s and [[working animal]]s of various types, and are used as [[model organism]]s in science. Mammals have been depicted in [[art]] since [[Paleolithic]] times, and appear in literature, film, mythology, and religion. Decline in numbers and [[extinction]] of many mammals is primarily driven by human [[poaching]] and [[habitat destruction]], primarily [[deforestation]]. | ||
| Line 95: | Line 95: | ||
===Definitions {{Anchor|variations}}=== | ===Definitions {{Anchor|variations}}=== | ||
<!-- This section is linked from the fossil_range parameter in the taxobox --> | <!-- This section is linked from the fossil_range parameter in the taxobox --> | ||
The word "[[:wikt:mammal|mammal]]" is modern, from the scientific name ''Mammalia'' coined by [[Carl Linnaeus]] in 1758, derived from the [[Latin language|Latin]] ''[[wikt:mamma#Latin|mamma]]'' ("teat, pap"). In an influential 1988 paper, Timothy Rowe defined Mammalia [[phylogenetically]] as the [[crown group]] of mammals, the [[clade]] consisting of the [[most recent common ancestor]] of living [[monotreme]]s ([[echidna]]s and [[platypus]]es) and [[theria]]ns ([[marsupial]]s and [[placental]]s) and all descendants of that ancestor.<ref>{{cite journal |vauthors=Rowe T |year=1988 |title=Definition, diagnosis, and origin of Mammalia |journal=Journal of Vertebrate Paleontology |volume=8 |issue=3 |pages=241–264 |url=https://www.geo.utexas.edu/faculty/rowe/Publications/pdf/010%20Rowe%201988.pdf |doi=10.1080/02724634.1988.10011708 |bibcode=1988JVPal...8..241R |access-date=25 January 2024 |archive-date=18 January 2024 |archive-url=https://web.archive.org/web/20240118163712/http://www.geo.utexas.edu/faculty/rowe/Publications/pdf/010%20Rowe%201988.pdf |url-status=live }}</ref> Since this ancestor lived in the [[Jurassic]] | The word "[[:wikt:mammal|mammal]]" is modern, from the scientific name ''Mammalia'' coined by [[Carl Linnaeus]] in 1758, derived from the [[Latin language|Latin]] ''[[wikt:mamma#Latin|mamma]]'' ("teat, pap"). In an influential 1988 paper, Timothy Rowe defined Mammalia [[phylogenetically]] as the [[crown group]] of mammals, the [[clade]] consisting of the [[most recent common ancestor]] of living [[monotreme]]s ([[echidna]]s and [[platypus]]es) and [[theria]]ns ([[marsupial]]s and [[placental]]s) and all descendants of that ancestor.<ref>{{cite journal |vauthors=Rowe T |year=1988 |title=Definition, diagnosis, and origin of Mammalia |journal=Journal of Vertebrate Paleontology |volume=8 |issue=3 |pages=241–264 |url=https://www.geo.utexas.edu/faculty/rowe/Publications/pdf/010%20Rowe%201988.pdf |doi=10.1080/02724634.1988.10011708 |bibcode=1988JVPal...8..241R |access-date=25 January 2024 |archive-date=18 January 2024 |archive-url=https://web.archive.org/web/20240118163712/http://www.geo.utexas.edu/faculty/rowe/Publications/pdf/010%20Rowe%201988.pdf |url-status=live }}</ref> Since this ancestor lived in the [[Jurassic]] Period, Rowe's definition excludes all animals from the earlier [[Triassic]], despite the fact that Triassic fossils in the [[Haramiyida]] have been referred to the Mammalia since the mid-19th century.<ref>{{cite book |title=The Student's Elements of Geology | vauthors = Lyell C |author-link=Charles Lyell |year=1871 |publisher=John Murray |location=London |page=347 |url={{Google books|plainurl=yes|id=634gAQAAIAAJ|page=347}}}} Reprint: {{ISBN|978-1-345-18248-4}}.</ref> If Mammalia is considered as the crown group, its origin can be roughly dated as the first known appearance of animals more closely related to some extant mammals than to others. ''[[Ambondro mahabo|Ambondro]]'' is more closely related to monotremes than to therian mammals while ''[[Amphilestes]]'' and ''[[Amphitherium]]'' are more closely related to the therians; as fossils of all three genera are dated about {{ma|167|million years ago}} in the [[Middle Jurassic]], this is a reasonable estimate for the appearance of the crown group.{{CN|date=October 2025}} | ||
[[T. S. Kemp]] has provided a more traditional definition: "[[Synapsid]]s that possess a [[dentary]]–[[squamosal bone|squamosal]] jaw articulation and [[occlusion (dentistry)|occlusion]] between upper and lower molars with a transverse component to the movement" or, equivalently in Kemp's view, the clade originating with the last common ancestor of ''[[Sinoconodon]]'' and living mammals.<ref>{{cite book |url=https://doc.rero.ch/record/200125/files/PAL_E3904.pdf |location=United Kingdom |title=The Origin and Evolution of Mammals |vauthors=Kemp TS |year=2005 |publisher=Oxford University Press |isbn=978-0-19-850760-4 |page=3 |oclc=232311794 |access-date=25 January 2024 |archive-date=26 September 2023 |archive-url=https://web.archive.org/web/20230926060152/https://doc.rero.ch/record/200125/files/PAL_E3904.pdf |url-status=live }}</ref> The earliest-known synapsid satisfying Kemp's definitions is ''[[Tikitherium]]'', dated {{ma|225|Ma}}, so the appearance of mammals in this broader sense can be given this [[Late Triassic]] date.<ref>{{cite journal |vauthors=Datta PM |year=2005 |title=Earliest mammal with transversely expanded upper molar from the Late Triassic (Carnian) Tiki Formation, South Rewa Gondwana Basin, India |journal=Journal of Vertebrate Paleontology |volume=25 |issue=1 |pages=200–207 |doi=10.1671/0272-4634(2005)025[0200:EMWTEU]2.0.CO;2|s2cid=131236175 }}</ref><ref>{{cite journal | vauthors = Luo ZX, Martin T |year=2007 |title=Analysis of Molar Structure and Phylogeny of Docodont Genera |journal=Bulletin of Carnegie Museum of Natural History |volume=39 |pages=27–47 |doi=10.2992/0145-9058(2007)39[27:AOMSAP]2.0.CO;2 |s2cid=29846648 |url=https://xa.yimg.com/kq/groups/13543816/1018125207/name/Luo+y+Martin+2007-+molar+structure+and+phylogeny+of+docodonts.pdf |access-date=8 April 2013 |archive-url=https://web.archive.org/web/20160303225517/http://xa.yimg.com/kq/groups/13543816/1018125207/name/Luo+y+Martin+2007-+molar+structure+and+phylogeny+of+docodonts.pdf |archive-date=3 March 2016 | [[T. S. Kemp]] has provided a more traditional definition: "[[Synapsid]]s that possess a [[dentary]]–[[squamosal bone|squamosal]] jaw articulation and [[occlusion (dentistry)|occlusion]] between upper and lower molars with a transverse component to the movement" or, equivalently in Kemp's view, the clade originating with the last common ancestor of ''[[Sinoconodon]]'' and living mammals.<ref>{{cite book |url=https://doc.rero.ch/record/200125/files/PAL_E3904.pdf |location=United Kingdom |title=The Origin and Evolution of Mammals |vauthors=Kemp TS |year=2005 |publisher=Oxford University Press |isbn=978-0-19-850760-4 |page=3 |oclc=232311794 |access-date=25 January 2024 |archive-date=26 September 2023 |archive-url=https://web.archive.org/web/20230926060152/https://doc.rero.ch/record/200125/files/PAL_E3904.pdf |url-status=live }}</ref> The earliest-known synapsid satisfying Kemp's definitions is ''[[Tikitherium]]'', dated {{ma|225|Ma}}, so the appearance of mammals in this broader sense can be given this [[Late Triassic]] date.<ref>{{cite journal |vauthors=Datta PM |year=2005 |title=Earliest mammal with transversely expanded upper molar from the Late Triassic (Carnian) Tiki Formation, South Rewa Gondwana Basin, India |journal=Journal of Vertebrate Paleontology |volume=25 |issue=1 |pages=200–207 |doi=10.1671/0272-4634(2005)025[0200:EMWTEU]2.0.CO;2|s2cid=131236175 }}</ref><ref>{{cite journal | vauthors = Luo ZX, Martin T |year=2007 |title=Analysis of Molar Structure and Phylogeny of Docodont Genera |journal=Bulletin of Carnegie Museum of Natural History |volume=39 |pages=27–47 |doi=10.2992/0145-9058(2007)39[27:AOMSAP]2.0.CO;2 |s2cid=29846648 |url=https://xa.yimg.com/kq/groups/13543816/1018125207/name/Luo+y+Martin+2007-+molar+structure+and+phylogeny+of+docodonts.pdf |access-date=8 April 2013 |archive-url=https://web.archive.org/web/20160303225517/http://xa.yimg.com/kq/groups/13543816/1018125207/name/Luo+y+Martin+2007-+molar+structure+and+phylogeny+of+docodonts.pdf |archive-date=3 March 2016 }}</ref> However, this animal may have actually evolved during the Neogene.<ref name=":3">{{Cite journal |last1=Averianov |first1=Alexander O. |last2=Voyta |first2=Leonid L. |date=March 2024 |title=Putative Triassic stem mammal Tikitherium copei is a Neogene shrew |url=https://link.springer.com/10.1007/s10914-024-09703-w |journal=Journal of Mammalian Evolution |language=en |volume=31 |issue=1 |article-number=10 |doi=10.1007/s10914-024-09703-w |issn=1064-7554|url-access=subscription }}</ref> | ||
===Molecular classification of placentals=== | ===Molecular classification of placentals=== | ||
[[File:OrthoMaM v10b 2019 116genera circular tree.svg|thumb|upright=1.35|Genus-level molecular phylogeny of 116 extant mammals inferred from the gene tree information of 14,509 [[coding region|coding DNA sequences]].<ref name=Scornavacca2019>{{cite journal | vauthors = Scornavacca C, Belkhir K, Lopez J, Dernat R, Delsuc F, Douzery EJ, Ranwez V | title = OrthoMaM v10: Scaling-up orthologous coding sequence and exon alignments with more than one hundred mammalian genomes | journal = Molecular Biology and Evolution | volume = 36 | issue = 4 | pages = 861–862 | date = April 2019 | pmid = 30698751 | pmc = 6445298 | doi = 10.1093/molbev/msz015 }}</ref> The major clades are coloured: marsupials (magenta), xenarthrans (orange), afrotherians (red), laurasiatherians (green), and euarchontoglirans (blue).]] | [[File:OrthoMaM v10b 2019 116genera circular tree.svg|thumb|upright=1.35|Genus-level molecular phylogeny of 116 extant mammals inferred from the gene tree information of 14,509 [[coding region|coding DNA sequences]].<ref name=Scornavacca2019>{{cite journal | vauthors = Scornavacca C, Belkhir K, Lopez J, Dernat R, Delsuc F, Douzery EJ, Ranwez V | title = OrthoMaM v10: Scaling-up orthologous coding sequence and exon alignments with more than one hundred mammalian genomes | journal = Molecular Biology and Evolution | volume = 36 | issue = 4 | pages = 861–862 | date = April 2019 | pmid = 30698751 | pmc = 6445298 | doi = 10.1093/molbev/msz015 }}</ref> The major clades are coloured: marsupials (magenta), xenarthrans (orange), afrotherians (red), laurasiatherians (green), and euarchontoglirans (blue).]] | ||
As of the early 21st century, molecular studies based on [[DNA]] analysis have suggested new relationships among mammal families. Most of these findings have been independently validated by [[retrotransposon]] [[retrotransposon marker|presence/absence data]].<ref name=Kriegs2006>{{cite journal | vauthors = Kriegs JO, Churakov G, Kiefmann M, Jordan U, Brosius J, Schmitz J | title = Retroposed elements as archives for the evolutionary history of placental mammals | journal = PLOS Biology | volume = 4 | issue = 4 | | As of the early 21st century, molecular studies based on [[DNA]] analysis have suggested new relationships among mammal families. Most of these findings have been independently validated by [[retrotransposon]] [[retrotransposon marker|presence/absence data]].<ref name=Kriegs2006>{{cite journal | vauthors = Kriegs JO, Churakov G, Kiefmann M, Jordan U, Brosius J, Schmitz J | title = Retroposed elements as archives for the evolutionary history of placental mammals | journal = PLOS Biology | volume = 4 | issue = 4 | article-number = e91 | date = April 2006 | pmid = 16515367 | pmc = 1395351 | doi = 10.1371/journal.pbio.0040091 | doi-access = free }}</ref> Classification systems based on molecular studies reveal three major groups or lineages of placentals—[[Afrotheria]], [[Xenarthra]] and [[Boreoeutheria]]—which [[speciation|diverged]] in the [[Cretaceous]]. The relationships between these three lineages is contentious, and all three possible hypotheses have been proposed with respect to which group is [[Basal (phylogenetics)|basal]]. These hypotheses are [[Atlantogenata]] (basal Boreoeutheria), [[Epitheria]] (basal Xenarthra) and [[Exafroplacentalia]] (basal Afrotheria).<ref name=Nishiharaetal2009>{{cite journal | vauthors = Nishihara H, Maruyama S, Okada N | title = Retroposon analysis and recent geological data suggest near-simultaneous divergence of the three superorders of mammals | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 106 | issue = 13 | pages = 5235–5240 | date = March 2009 | pmid = 19286970 | pmc = 2655268 | doi = 10.1073/pnas.0809297106 | bibcode = 2009PNAS..106.5235N | doi-access = free }}</ref> Boreoeutheria in turn contains two major lineages—[[Euarchontoglires]] and [[Laurasiatheria]]. | ||
Estimates for the divergence times between these three placental groups range from 105 to 120 million years ago, depending on the type of DNA used (such as [[nuclear DNA|nuclear]] or [[mitochondrial DNA|mitochondrial]])<ref>{{cite journal | vauthors = Springer MS, Murphy WJ, Eizirik E, O'Brien SJ | title = Placental mammal diversification and the Cretaceous–Tertiary boundary | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 100 | issue = 3 | pages = 1056–1061 | date = February 2003 | pmid = 12552136 | pmc = 298725 | doi = 10.1073/pnas.0334222100 | bibcode = 2003PNAS..100.1056S | doi-access = free }}</ref> and varying interpretations of [[paleogeographic]] data.<ref name=Nishiharaetal2009/> | Estimates for the divergence times between these three placental groups range from 105 to 120 million years ago, depending on the type of DNA used (such as [[nuclear DNA|nuclear]] or [[mitochondrial DNA|mitochondrial]])<ref>{{cite journal | vauthors = Springer MS, Murphy WJ, Eizirik E, O'Brien SJ | title = Placental mammal diversification and the Cretaceous–Tertiary boundary | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 100 | issue = 3 | pages = 1056–1061 | date = February 2003 | pmid = 12552136 | pmc = 298725 | doi = 10.1073/pnas.0334222100 | bibcode = 2003PNAS..100.1056S | doi-access = free }}</ref> and varying interpretations of [[paleogeographic]] data.<ref name=Nishiharaetal2009/> | ||
Mammal phylogeny according to Álvarez-Carretero ''et al.'', 2022:<ref>{{cite journal |vauthors=Álvarez-Carretero S, Tamuri AU, Battini M, Nascimento FF, Carlisle E, Asher RJ, Yang Z, Donoghue PC, dos Reis M |display-authors=8 |title=A species-level timeline of mammal evolution integrating phylogenomic data |journal=Nature |volume= 602|issue=7896 |pages=263–267 |date=2022 |pmid= 34937052|pmc= |doi=10.1038/s41586-021-04341-1|bibcode=2022Natur.602..263A |hdl=1983/de841853-d57b-40d9-876f-9bfcf7253f12 |s2cid=245438816 |url=https://qmro.qmul.ac.uk/xmlui/handle/123456789/75979 |hdl-access=free }}</ref> | Mammal phylogeny according to Álvarez-Carretero ''et al.'', 2022:<ref>{{cite journal |vauthors=Álvarez-Carretero S, Tamuri AU, Battini M, Nascimento FF, Carlisle E, Asher RJ, Yang Z, Donoghue PC, dos Reis M |display-authors=8 |title=A species-level timeline of mammal evolution integrating phylogenomic data |journal=Nature |volume= 602|issue=7896 |pages=263–267 |date=2022 |pmid= 34937052|pmc= |doi=10.1038/s41586-021-04341-1|bibcode=2022Natur.602..263A |hdl=1983/de841853-d57b-40d9-876f-9bfcf7253f12 |s2cid=245438816 |url=https://qmro.qmul.ac.uk/xmlui/handle/123456789/75979 |hdl-access=free }}</ref> | ||
| Line 259: | Line 258: | ||
The first amniotes apparently arose in the Pennsylvanian subperiod of the [[Carboniferous]]. They descended from earlier [[Reptiliomorpha|reptiliomorph]] amphibious tetrapods,<ref name="AhlbergMilner1994OriginOfTetrapods">{{cite journal| vauthors = Ahlberg PE, Milner AR |date=April 1994| title=The Origin and Early Diversification of Tetrapods | journal= Nature | volume=368 | pages=507–514| doi=10.1038/368507a0| issue=6471|bibcode = 1994Natur.368..507A |s2cid=4369342}}</ref> which lived on land that was already inhabited by [[insect]]s and other invertebrates as well as [[fern]]s, [[moss]]es and other plants. Within a few million years, two important amniote lineages became distinct: the [[synapsid]]s, which would later include the common ancestor of the mammals; and the [[sauropsid]]s, which now include [[turtle]]s, [[lizard]]s, [[snake]]s, [[crocodilian]]s and [[dinosaur]]s (including [[bird]]s).<ref>{{cite web | url = https://palaeos.com/Vertebrates/Units/190Reptilomorpha/190.400.html#Amniota | archive-url = https://web.archive.org/web/20101220194106/http://palaeos.com/Vertebrates/Units/190Reptilomorpha/190.400.html#Amniota | archive-date = 20 December 2010 | title = Amniota – Palaeos}}</ref> Synapsids have a single hole ([[temporal fenestra]]) low on each side of the skull. Primitive synapsids included the largest and fiercest animals of the early [[Permian]] such as ''[[Dimetrodon]]''.<ref>{{cite web | url=https://palaeos.com/Vertebrates/Units/390Synapsida/390.000.html | archive-url=https://web.archive.org/web/20101220193822/http://palaeos.com/Vertebrates/Units/390Synapsida/390.000.html | archive-date=20 December 2010 | title=Synapsida overview – Palaeos}}</ref> Nonmammalian synapsids were traditionally—and incorrectly—called "mammal-like reptiles" or [[pelycosaur]]s; we now know they were neither reptiles nor part of reptile lineage.<ref name=Kemp2006/><ref name=Bennett1986/> | The first amniotes apparently arose in the Pennsylvanian subperiod of the [[Carboniferous]]. They descended from earlier [[Reptiliomorpha|reptiliomorph]] amphibious tetrapods,<ref name="AhlbergMilner1994OriginOfTetrapods">{{cite journal| vauthors = Ahlberg PE, Milner AR |date=April 1994| title=The Origin and Early Diversification of Tetrapods | journal= Nature | volume=368 | pages=507–514| doi=10.1038/368507a0| issue=6471|bibcode = 1994Natur.368..507A |s2cid=4369342}}</ref> which lived on land that was already inhabited by [[insect]]s and other invertebrates as well as [[fern]]s, [[moss]]es and other plants. Within a few million years, two important amniote lineages became distinct: the [[synapsid]]s, which would later include the common ancestor of the mammals; and the [[sauropsid]]s, which now include [[turtle]]s, [[lizard]]s, [[snake]]s, [[crocodilian]]s and [[dinosaur]]s (including [[bird]]s).<ref>{{cite web | url = https://palaeos.com/Vertebrates/Units/190Reptilomorpha/190.400.html#Amniota | archive-url = https://web.archive.org/web/20101220194106/http://palaeos.com/Vertebrates/Units/190Reptilomorpha/190.400.html#Amniota | archive-date = 20 December 2010 | title = Amniota – Palaeos}}</ref> Synapsids have a single hole ([[temporal fenestra]]) low on each side of the skull. Primitive synapsids included the largest and fiercest animals of the early [[Permian]] such as ''[[Dimetrodon]]''.<ref>{{cite web | url=https://palaeos.com/Vertebrates/Units/390Synapsida/390.000.html | archive-url=https://web.archive.org/web/20101220193822/http://palaeos.com/Vertebrates/Units/390Synapsida/390.000.html | archive-date=20 December 2010 | title=Synapsida overview – Palaeos}}</ref> Nonmammalian synapsids were traditionally—and incorrectly—called "mammal-like reptiles" or [[pelycosaur]]s; we now know they were neither reptiles nor part of reptile lineage.<ref name=Kemp2006/><ref name=Bennett1986/> | ||
[[Therapsid]]s, a group of synapsids, evolved in the [[Guadalupian|Middle Permian]], about 265 million years ago, and became the dominant land vertebrates.<ref name=Kemp2006>{{cite journal | vauthors = Kemp TS | title = The origin and early radiation of the therapsid mammal-like reptiles: a palaeobiological hypothesis | journal = Journal of Evolutionary Biology | volume = 19 | issue = 4 | pages = 1231–1247 | date = July 2006 | pmid = 16780524 | doi = 10.1111/j.1420-9101.2005.01076.x | s2cid = 3184629 | url = https://users.ox.ac.uk/~tskemp/pdfs/jeb2006.pdf | access-date = 14 January 2012 | archive-date = 8 March 2021 | archive-url = https://web.archive.org/web/20210308061139/http://users.ox.ac.uk/~tskemp/pdfs/jeb2006.pdf | [[Therapsid]]s, a group of synapsids, evolved in the [[Guadalupian|Middle Permian]], about 265 million years ago, and became the dominant land vertebrates.<ref name=Kemp2006>{{cite journal | vauthors = Kemp TS | title = The origin and early radiation of the therapsid mammal-like reptiles: a palaeobiological hypothesis | journal = Journal of Evolutionary Biology | volume = 19 | issue = 4 | pages = 1231–1247 | date = July 2006 | pmid = 16780524 | doi = 10.1111/j.1420-9101.2005.01076.x | s2cid = 3184629 | url = https://users.ox.ac.uk/~tskemp/pdfs/jeb2006.pdf | access-date = 14 January 2012 | archive-date = 8 March 2021 | archive-url = https://web.archive.org/web/20210308061139/http://users.ox.ac.uk/~tskemp/pdfs/jeb2006.pdf }}</ref> They differ from basal [[Eupelycosauria|eupelycosaurs]] in several features of the skull and jaws, including: larger skulls and [[incisor]]s which are equal in size in therapsids, but not for eupelycosaurs.<ref name=Kemp2006/> The therapsid lineage leading to mammals went through a series of stages, beginning with animals that were very similar to their early synapsid ancestors and ending with [[probainognathia]]n [[cynodont]]s, some of which could easily be mistaken for mammals. Those stages were characterised by:<ref name="Kermack1984">{{cite book | vauthors = Kermack DM, Kermack KA | title=The evolution of mammalian characters|location=Washington, DC | publisher=Croom Helm | year=1984 | isbn=978-0-7099-1534-8 |oclc=10710687}}</ref> | ||
* The gradual development of a bony secondary [[hard palate|palate]]. | * The gradual development of a bony secondary [[hard palate|palate]]. | ||
* Abrupt acquisition of [[endothermy]] among [[Mammaliamorpha]], thus prior to the origin of mammals by 30–50 millions of years '''''<ref>{{cite journal |last1=Araújo |title=Inner ear biomechanics reveals a Late Triassic origin for mammalian endothermy |journal=Nature |volume=607 |date= 28 July 2022 |issue=7920 |pages=726–731 |doi=10.1038/s41586-022-04963-z |pmid=35859179 |bibcode=2022Natur.607..726A |s2cid=236245230 |display-authors=etal}}</ref>'''''. | * Abrupt acquisition of [[endothermy]] among [[Mammaliamorpha]], thus prior to the origin of mammals by 30–50 millions of years '''''<ref>{{cite journal |last1=Araújo |title=Inner ear biomechanics reveals a Late Triassic origin for mammalian endothermy |journal=Nature |volume=607 |date= 28 July 2022 |issue=7920 |pages=726–731 |doi=10.1038/s41586-022-04963-z |pmid=35859179 |bibcode=2022Natur.607..726A |s2cid=236245230 |url=https://hal.science/hal-03799043 |display-authors=etal}}</ref>'''''. | ||
* Progression towards an erect limb posture, which would increase the animals' stamina by avoiding [[Carrier's constraint]]. But this process was slow and erratic: for example, all herbivorous nonmammaliaform therapsids retained sprawling limbs (some late forms may have had semierect hind limbs); Permian carnivorous therapsids had sprawling forelimbs, and some late Permian ones also had semisprawling hindlimbs. In fact, modern monotremes still have semisprawling limbs. | * Progression towards an erect limb posture, which would increase the animals' stamina by avoiding [[Carrier's constraint]]. But this process was slow and erratic: for example, all herbivorous nonmammaliaform therapsids retained sprawling limbs (some late forms may have had semierect hind limbs); Permian carnivorous therapsids had sprawling forelimbs, and some late Permian ones also had semisprawling hindlimbs. In fact, modern monotremes still have semisprawling limbs. | ||
* The [[Mandible#Other vertebrates|dentary]] gradually became the main bone of the lower jaw which, by the Triassic, progressed towards the fully mammalian jaw (the lower consisting only of the dentary) and middle ear (which is constructed by the bones that were previously used to construct the jaws of reptiles). | * The [[Mandible#Other vertebrates|dentary]] gradually became the main bone of the lower jaw which, by the Triassic, progressed towards the fully mammalian jaw (the lower consisting only of the dentary) and middle ear (which is constructed by the bones that were previously used to construct the jaws of reptiles). | ||
| Line 267: | Line 266: | ||
===First mammals=== | ===First mammals=== | ||
The [[Permian–Triassic extinction event]] about 252 million years ago, which was a prolonged event due to the accumulation of several extinction pulses, ended the dominance of carnivorous therapsids.<ref>{{cite journal| vauthors = Tanner LH, Lucas SG, Chapman MG |title=Assessing the record and causes of Late Triassic extinctions |journal=Earth-Science Reviews |volume=65 |issue=1–2 |pages=103–139 |year=2004 |doi=10.1016/S0012-8252(03)00082-5 |url=https://nmnaturalhistory.org/pdf_files/TJB.pdf |bibcode=2004ESRv...65..103T | The [[Permian–Triassic extinction event]] about 252 million years ago, which was a prolonged event due to the accumulation of several extinction pulses, ended the dominance of carnivorous therapsids.<ref>{{cite journal| vauthors = Tanner LH, Lucas SG, Chapman MG |title=Assessing the record and causes of Late Triassic extinctions |journal=Earth-Science Reviews |volume=65 |issue=1–2 |pages=103–139 |year=2004 |doi=10.1016/S0012-8252(03)00082-5 |url=https://nmnaturalhistory.org/pdf_files/TJB.pdf |bibcode=2004ESRv...65..103T |archive-url=https://web.archive.org/web/20071025225841/http://nmnaturalhistory.org/pdf_files/TJB.pdf |archive-date=25 October 2007 }}</ref> In the early Triassic, most medium to large land carnivore niches were taken over by [[archosaur]]s<ref>{{cite journal | vauthors = Brusatte SL, Benton MJ, Ruta M, Lloyd GT | title = Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs | journal = Science | volume = 321 | issue = 5895 | pages = 1485–1488 | date = September 2008 | pmid = 18787166 | doi = 10.1126/science.1161833 | bibcode = 2008Sci...321.1485B | hdl = 20.500.11820/00556baf-6575-44d9-af39-bdd0b072ad2b | s2cid = 13393888 | url = https://www.pure.ed.ac.uk/ws/files/8232088/PDF_Brusatteetal2008SuperiorityCompetition.pdf | access-date = 12 October 2019 | archive-date = 19 July 2018 | archive-url = https://web.archive.org/web/20180719005836/https://www.pure.ed.ac.uk/ws/files/8232088/PDF_Brusatteetal2008SuperiorityCompetition.pdf | url-status = live }}</ref> which, over an extended period (35 million years), came to include the [[Crocodylomorpha|crocodylomorphs]],<ref>{{cite book | vauthors = Gauthier JA |year=1986 |chapter=Saurischian monophyly and the origin of birds |title=The Origin of Birds and the Evolution of Flight. Memoirs of the California Academy of Sciences | veditors = Padian K |volume=8 |publisher=California Academy of Sciences |location=San Francisco |pages=1–55}}</ref> the [[pterosaur]]s and the dinosaurs;<ref>{{cite journal| vauthors = Sereno PC |year=1991|title=Basal archosaurs: phylogenetic relationships and functional implications|journal=Memoirs of the Society of Vertebrate Paleontology|volume=2|pages=1–53|doi=10.2307/3889336|jstor=3889336}}</ref> however, large cynodonts like ''[[Trucidocynodon]]'' and [[Traversodontidae|traversodontids]] still occupied large sized carnivorous and herbivorous niches respectively. By the Jurassic, the dinosaurs had come to dominate the large terrestrial herbivore niches as well.<ref>{{cite journal| vauthors = MacLeod N, Rawson PF, Forey PL, Banner FT, Boudagher-Fadel MK, Bown PR, Burnett JA, Chambers P, Culver S, Evans SE, Jeffery C | display-authors = 6 |title=The Cretaceous–Tertiary biotic transition|year=1997|journal=Journal of the Geological Society|volume=154|issue=2|pages=265–292|doi=10.1144/gsjgs.154.2.0265|bibcode=1997JGSoc.154..265M | s2cid = 129654916 }}</ref> | ||
The first mammals (in Kemp's sense) appeared in the Late Triassic epoch (about 225 million years ago), 40 million years after the first therapsids. They expanded out of their nocturnal [[insectivore]] niche from the mid-Jurassic onwards;<ref>{{cite book|url={{Google books|plainurl=yes|id=APWwBAAAQBAJ|page=73}}| vauthors = Hunt DM, Hankins MW, Collin SP, Marshall NJ |title=Evolution of Visual and Non-visual Pigments|year= 2014|location=London|publisher=Springer|page=73|isbn=978-1-4614-4354-4|oclc=892735337}}</ref> the Jurassic ''[[Castorocauda]]'', for example, was a close relative of true mammals that had adaptations for swimming, digging and catching fish.<ref>{{cite web | url=https://news.nationalgeographic.com/news/2006/02/0223_060223_beaver.html| archive-url=https://web.archive.org/web/20060303071809/http://news.nationalgeographic.com/news/2006/02/0223_060223_beaver.html | The first mammals (in Kemp's sense) appeared in the Late Triassic epoch (about 225 million years ago), 40 million years after the first therapsids. They expanded out of their nocturnal [[insectivore]] niche from the mid-Jurassic onwards;<ref>{{cite book|url={{Google books|plainurl=yes|id=APWwBAAAQBAJ|page=73}}| vauthors = Hunt DM, Hankins MW, Collin SP, Marshall NJ |title=Evolution of Visual and Non-visual Pigments|year= 2014|location=London|publisher=Springer|page=73|isbn=978-1-4614-4354-4|oclc=892735337}}</ref> the Jurassic ''[[Castorocauda]]'', for example, was a close relative of true mammals that had adaptations for swimming, digging and catching fish.<ref>{{cite web | url=https://news.nationalgeographic.com/news/2006/02/0223_060223_beaver.html| archive-url=https://web.archive.org/web/20060303071809/http://news.nationalgeographic.com/news/2006/02/0223_060223_beaver.html| archive-date=3 March 2006| vauthors = Bakalar N |year=2006| title=Jurassic "Beaver" Found; Rewrites History of Mammals|access-date=28 May 2016|work=National Geographic News}}</ref> Most, if not all, are thought to have remained nocturnal (the [[nocturnal bottleneck]]), accounting for much of the typical mammalian traits.<ref>{{cite journal | vauthors = Hall MI, Kamilar JM, Kirk EC | title = Eye shape and the nocturnal bottleneck of mammals | journal = Proceedings of the Royal Society B: Biological Sciences| volume = 279 | issue = 1749 | pages = 4962–4968 | date = December 2012 | pmid = 23097513 | pmc = 3497252 | doi = 10.1098/rspb.2012.2258 }}</ref> The majority of the mammal species that existed in the [[Mesozoic|Mesozoic Era]] were multituberculates, eutriconodonts and [[spalacotheriid]]s.<ref name=Luo2007>{{cite journal | vauthors = Luo ZX | title = Transformation and diversification in early mammal evolution | journal = Nature | volume = 450 | issue = 7172 | pages = 1011–1019 | date = December 2007 | pmid = 18075580 | doi = 10.1038/nature06277 | bibcode = 2007Natur.450.1011L | s2cid = 4317817 }}</ref> The earliest-known fossil of the [[Metatheria]] ("changed beasts") is ''[[Sinodelphys]]'', found in 125-million-year-old [[Early Cretaceous]] [[shale]] in China's northeastern [[Liaoning Province]]. The fossil is nearly complete and includes tufts of fur and imprints of soft tissues.<ref>{{cite web | url=https://news.nationalgeographic.com/news/2003/12/1215_031215_oldestmarsupial.html | archive-url=https://web.archive.org/web/20031217024049/http://news.nationalgeographic.com/news/2003/12/1215_031215_oldestmarsupial.html | archive-date=17 December 2003 | vauthors = Pickrell J |year=2003| title=Oldest Marsupial Fossil Found in China| publisher=National Geographic News|access-date=28 May 2016}}</ref> | ||
[[File:Juramaia NT.jpg|thumb|Restoration of ''[[Juramaia|Juramaia sinensis]]'', the oldest-known [[eutheria]]n (160 mya)<ref name=Juramaia/>]] | [[File:Juramaia NT.jpg|thumb|Restoration of ''[[Juramaia|Juramaia sinensis]]'', the oldest-known [[eutheria]]n (160 mya)<ref name=Juramaia/>]] | ||
| Line 281: | Line 280: | ||
[[File:Thrinaxodon Lionhinus.jpg|left|thumb|Fossil of ''[[Thrinaxodon]]'' at the [[National Museum of Natural History]]]] | [[File:Thrinaxodon Lionhinus.jpg|left|thumb|Fossil of ''[[Thrinaxodon]]'' at the [[National Museum of Natural History]]]] | ||
The earliest clear evidence of hair or fur is in fossils of ''[[Castorocauda]]'' and ''[[Megaconus]]'', from 164 million years ago in the mid-Jurassic. In the 1950s, it was suggested that the foramina (passages) in the [[maxilla]]e and [[premaxilla]]e (bones in the front of the upper jaw) of cynodonts were channels which supplied blood vessels and nerves to vibrissae ([[whiskers]]) and so were evidence of hair or fur;<ref name="Brink1955">{{cite journal | vauthors = Brink AS | title=A study on the skeleton of ''Diademodon'' | journal=Palaeontologia Africana | volume=3 | pages=3–39 |year=1955 }}</ref><ref name="Kemp1982">{{cite book | vauthors = Kemp TS | title=Mammal-like reptiles and the origin of mammals | publisher=Academic Press | year=1982 | location=London | page=363 | isbn=978-0-12-404120-2|oclc=8613180}}</ref> it was soon pointed out, however, that foramina do not necessarily show that an animal had vibrissae, as the modern lizard ''[[Tupinambis]]'' has foramina that are almost identical to those found in the nonmammalian cynodont ''[[Thrinaxodon]]''.<ref name=Bennett1986>{{cite book| vauthors = Bennett AF, Ruben JA |year=1986|chapter=The metabolic and thermoregulatory status of therapsids|pages=207–218| veditors = Hotton III N, MacLean JJ, Roth J, Roth EC |title=The ecology and biology of mammal-like reptiles|publisher=Smithsonian Institution Press|location=Washington, DC|isbn=978-0-87474-524-5}}</ref><ref>{{cite journal | vauthors = Estes R | title=Cranial anatomy of the cynodont reptile ''Thrinaxodon liorhinus'' | journal=Bulletin of the Museum of Comparative Zoology | pages=165–180 |year=1961|issue=1253 }}</ref> Popular sources, nevertheless, continue to attribute whiskers to ''Thrinaxodon''.<ref>{{cite web |url=https://news.nationalgeographic.com/news/2009/02/photogalleries/darwin-birthday-evolution/#/thrinaxodon-missing-link_7787_600x450.jpg |archive-url=https://web.archive.org/web/20090214205210/http://news.nationalgeographic.com/news/2009/02/photogalleries/darwin-birthday-evolution/#/thrinaxodon-missing-link_7787_600x450.jpg | The earliest clear evidence of hair or fur is in fossils of ''[[Castorocauda]]'' and ''[[Megaconus]]'', from 164 million years ago in the mid-Jurassic. In the 1950s, it was suggested that the foramina (passages) in the [[maxilla]]e and [[premaxilla]]e (bones in the front of the upper jaw) of cynodonts were channels which supplied blood vessels and nerves to vibrissae ([[whiskers]]) and so were evidence of hair or fur;<ref name="Brink1955">{{cite journal | vauthors = Brink AS | title=A study on the skeleton of ''Diademodon'' | journal=Palaeontologia Africana | volume=3 | pages=3–39 |year=1955 }}</ref><ref name="Kemp1982">{{cite book | vauthors = Kemp TS | title=Mammal-like reptiles and the origin of mammals | publisher=Academic Press | year=1982 | location=London | page=363 | isbn=978-0-12-404120-2|oclc=8613180}}</ref> it was soon pointed out, however, that foramina do not necessarily show that an animal had vibrissae, as the modern lizard ''[[Tupinambis]]'' has foramina that are almost identical to those found in the nonmammalian cynodont ''[[Thrinaxodon]]''.<ref name=Bennett1986>{{cite book| vauthors = Bennett AF, Ruben JA |year=1986|chapter=The metabolic and thermoregulatory status of therapsids|pages=207–218| veditors = Hotton III N, MacLean JJ, Roth J, Roth EC |title=The ecology and biology of mammal-like reptiles|publisher=Smithsonian Institution Press|location=Washington, DC|isbn=978-0-87474-524-5}}</ref><ref>{{cite journal | vauthors = Estes R | title=Cranial anatomy of the cynodont reptile ''Thrinaxodon liorhinus'' | journal=Bulletin of the Museum of Comparative Zoology | pages=165–180 |year=1961|issue=1253 }}</ref> Popular sources, nevertheless, continue to attribute whiskers to ''Thrinaxodon''.<ref>{{cite web |url=https://news.nationalgeographic.com/news/2009/02/photogalleries/darwin-birthday-evolution/#/thrinaxodon-missing-link_7787_600x450.jpg |archive-url=https://web.archive.org/web/20090214205210/http://news.nationalgeographic.com/news/2009/02/photogalleries/darwin-birthday-evolution/#/thrinaxodon-missing-link_7787_600x450.jpg |archive-date=14 February 2009 |title=''Thrinaxodon:'' The Emerging Mammal |date=11 February 2009 |publisher=National Geographic Daily News |access-date=26 August 2012}}</ref> Studies on Permian [[coprolites]] suggest that non-mammalian [[synapsids]] of the epoch already had fur, setting the evolution of hairs possibly as far back as [[dicynodont]]s.<ref name=piotr>{{cite journal |title= Microbiota and food residues including possible evidence of pre-mammalian hair in Upper Permian coprolites from Russia | vauthors = Bajdek P, Qvarnström M, Owocki K, Sulej T, Sennikov AG, Golubev VK, Niedźwiedzki G |year=2015 |journal=Lethaia |volume=49 |issue=4 |pages=455–477 |doi=10.1111/let.12156 }}</ref> | ||
When [[endothermy]] first appeared in the evolution of mammals is uncertain, though it is generally agreed to have first evolved in non-mammalian [[therapsids]].<ref name=piotr/><ref>{{cite journal | vauthors = Botha-Brink J, Angielczyk KD |title=Do extraordinarily high growth rates in Permo–Triassic dicynodonts (Therapsida, Anomodontia) explain their success before and after the end-Permian extinction? |year=2010 |doi= 10.1111/j.1096-3642.2009.00601.x |volume=160 |issue=2 |pages=341–365 |journal=Zoological Journal of the Linnean Society |doi-access=free}}</ref> Modern monotremes have lower body temperatures and more variable metabolic rates than marsupials and placentals,<ref name="Paul1988">{{cite book | vauthors = Paul GS | title=Predatory Dinosaurs of the World | publisher=Simon and Schuster | year=1988 | location=New York | page=[https://archive.org/details/predatorydinosau00paul/page/464 464] | isbn=978-0-671-61946-6 | oclc=18350868 | url=https://archive.org/details/predatorydinosau00paul/page/464 }}</ref> but there is evidence that some of their ancestors, perhaps including ancestors of the therians, may have had body temperatures like those of modern therians.<ref>{{Cite journal|journal=Australian Journal of Zoology|title=Monotreme Cell-Cycles and the Evolution of Homeothermy| vauthors = Watson JM, Graves JA |volume=36|issue=5|pages=573–584|year=1988| doi = 10.1071/ZO9880573}}</ref> Likewise, some modern therians like afrotheres and xenarthrans have secondarily developed lower body temperatures.<ref>{{cite journal| vauthors = McNab BK |year=1980|title=Energetics and the limits to the temperate distribution in armadillos|journal=Journal of Mammalogy|volume=61|issue=4|pages=606–627|doi=10.2307/1380307|jstor=1380307}}</ref> | When [[endothermy]] first appeared in the evolution of mammals is uncertain, though it is generally agreed to have first evolved in non-mammalian [[therapsids]].<ref name=piotr/><ref>{{cite journal | vauthors = Botha-Brink J, Angielczyk KD |title=Do extraordinarily high growth rates in Permo–Triassic dicynodonts (Therapsida, Anomodontia) explain their success before and after the end-Permian extinction? |year=2010 |doi= 10.1111/j.1096-3642.2009.00601.x |volume=160 |issue=2 |pages=341–365 |journal=Zoological Journal of the Linnean Society |doi-access=free}}</ref> Modern monotremes have lower body temperatures and more variable metabolic rates than marsupials and placentals,<ref name="Paul1988">{{cite book | vauthors = Paul GS | title=Predatory Dinosaurs of the World | publisher=Simon and Schuster | year=1988 | location=New York | page=[https://archive.org/details/predatorydinosau00paul/page/464 464] | isbn=978-0-671-61946-6 | oclc=18350868 | url=https://archive.org/details/predatorydinosau00paul/page/464 }}</ref> but there is evidence that some of their ancestors, perhaps including ancestors of the therians, may have had body temperatures like those of modern therians.<ref>{{Cite journal|journal=Australian Journal of Zoology|title=Monotreme Cell-Cycles and the Evolution of Homeothermy| vauthors = Watson JM, Graves JA |volume=36|issue=5|pages=573–584|year=1988| doi = 10.1071/ZO9880573}}</ref> Likewise, some modern therians like afrotheres and xenarthrans have secondarily developed lower body temperatures.<ref>{{cite journal| vauthors = McNab BK |year=1980|title=Energetics and the limits to the temperate distribution in armadillos|journal=Journal of Mammalogy|volume=61|issue=4|pages=606–627|doi=10.2307/1380307|jstor=1380307}}</ref> | ||
| Line 292: | Line 291: | ||
===Rise of the mammals=== | ===Rise of the mammals=== | ||
[[File:Hyaenodon horridus, Niobrara County, Wyoming, USA, Late Oligocene - Royal Ontario Museum - DSC00114.JPG|thumb|left|''[[Hyaenodon]] horridus'' at the [[Royal Ontario Museum]]. The genus ''Hyaenodon'' was among the most successful mammals of the late [[Eocene]]-early [[Miocene]] epochs spanning for most of the [[Paleogene]] and some of the [[Neogene]] periods, undergoing many endemic radiations in North America, Europe, and Asia.<ref>{{cite journal|last1=Pfaff|first1=Cathrin|last2=Nagel|first2=Doris|last3=Gunnell|first3=Gregg|last4=Weber|first4=Gerhard W.|last5=Kriwet|first5=Jürgen|last6=Morlo|first6=Michael|last7=Bastl|first7=Katharina|year=2017|title=Palaeobiology of Hyaenodon exiguus (Hyaenodonta, Mammalia) based on morphometric analysis of the bony labyrinth|journal=Journal of Anatomy|volume=230|issue=2|pages=282–289|doi=10.1111/joa.12545|pmid=27666133 |pmc=5244453 }}</ref>]] | [[File:Hyaenodon horridus, Niobrara County, Wyoming, USA, Late Oligocene - Royal Ontario Museum - DSC00114.JPG|thumb|left|''[[Hyaenodon]] horridus'' at the [[Royal Ontario Museum]]. The genus ''Hyaenodon'' was among the most successful mammals of the late [[Eocene]]-early [[Miocene]] epochs spanning for most of the [[Paleogene]] and some of the [[Neogene]] periods, undergoing many endemic radiations in North America, Europe, and Asia.<ref>{{cite journal|last1=Pfaff|first1=Cathrin|last2=Nagel|first2=Doris|last3=Gunnell|first3=Gregg|last4=Weber|first4=Gerhard W.|last5=Kriwet|first5=Jürgen|last6=Morlo|first6=Michael|last7=Bastl|first7=Katharina|year=2017|title=Palaeobiology of Hyaenodon exiguus (Hyaenodonta, Mammalia) based on morphometric analysis of the bony labyrinth|journal=Journal of Anatomy|volume=230|issue=2|pages=282–289|doi=10.1111/joa.12545|pmid=27666133 |pmc=5244453 }}</ref>]] | ||
Therians took over the medium- to large-sized ecological niches in the [[Cenozoic]], after the [[Cretaceous–Paleogene extinction event]] approximately 66 million years ago emptied ecological space once filled by non-avian dinosaurs and other groups of reptiles, as well as various other mammal groups,<ref name="SahneyBentonFerry2010LinksDiversityVertebrates">{{cite journal | vauthors = Sahney S, Benton MJ, Ferry PA | title = Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land | journal = Biology Letters | volume = 6 | issue = 4 | pages = 544–547 | date = August 2010 | pmid = 20106856 | pmc = 2936204 | doi = 10.1098/rsbl.2009.1024 }}</ref> and underwent an exponential increase in body size ([[megafauna#In terrestrial mammals|megafauna]]).<ref name="F.A.Smith">{{cite journal | vauthors = Smith FA, Boyer AG, Brown JH, Costa DP, Dayan T, Ernest SK, Evans AR, Fortelius M, Gittleman JL, Hamilton MJ, Harding LE, Lintulaakso K, Lyons SK, McCain C, Okie JG, Saarinen JJ, Sibly RM, Stephens PR, Theodor J, Uhen MD | display-authors = 6 | title = The evolution of maximum body size of terrestrial mammals | journal = Science | volume = 330 | issue = 6008 | pages = 1216–1219 | date = November 2010 | pmid = 21109666 | doi = 10.1126/science.1194830 | citeseerx = 10.1.1.383.8581 | bibcode = 2010Sci...330.1216S | s2cid = 17272200 }}</ref> The increase in mammalian diversity was not, however, solely because of expansion into large-bodied niches.<ref>{{Cite journal |last1=Benevento |first1=Gemma Louise |last2=Benson |first2=Roger B. J. |last3=Close |first3=Roger A. |last4=Butler |first4=Richard J. |date=16 June 2023 |title=Early Cenozoic increases in mammal diversity cannot be explained solely by expansion into larger body sizes |journal=[[Palaeontology (journal)|Palaeontology]] |language=en |volume=66 |issue=3 | | Therians took over the medium- to large-sized ecological niches in the [[Cenozoic]], after the [[Cretaceous–Paleogene extinction event]] approximately 66 million years ago emptied ecological space once filled by non-avian dinosaurs and other groups of reptiles, as well as various other mammal groups,<ref name="SahneyBentonFerry2010LinksDiversityVertebrates">{{cite journal | vauthors = Sahney S, Benton MJ, Ferry PA | title = Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land | journal = Biology Letters | volume = 6 | issue = 4 | pages = 544–547 | date = August 2010 | pmid = 20106856 | pmc = 2936204 | doi = 10.1098/rsbl.2009.1024 }}</ref> and underwent an exponential increase in body size ([[megafauna#In terrestrial mammals|megafauna]]).<ref name="F.A.Smith">{{cite journal | vauthors = Smith FA, Boyer AG, Brown JH, Costa DP, Dayan T, Ernest SK, Evans AR, Fortelius M, Gittleman JL, Hamilton MJ, Harding LE, Lintulaakso K, Lyons SK, McCain C, Okie JG, Saarinen JJ, Sibly RM, Stephens PR, Theodor J, Uhen MD | display-authors = 6 | title = The evolution of maximum body size of terrestrial mammals | journal = Science | volume = 330 | issue = 6008 | pages = 1216–1219 | date = November 2010 | pmid = 21109666 | doi = 10.1126/science.1194830 | citeseerx = 10.1.1.383.8581 | bibcode = 2010Sci...330.1216S | s2cid = 17272200 }}</ref> The increase in mammalian diversity was not, however, solely because of expansion into large-bodied niches.<ref>{{Cite journal |last1=Benevento |first1=Gemma Louise |last2=Benson |first2=Roger B. J. |last3=Close |first3=Roger A. |last4=Butler |first4=Richard J. |date=16 June 2023 |title=Early Cenozoic increases in mammal diversity cannot be explained solely by expansion into larger body sizes |journal=[[Palaeontology (journal)|Palaeontology]] |language=en |volume=66 |issue=3 |article-number=12653 |doi=10.1111/pala.12653 |issn=0031-0239 |doi-access=free |bibcode=2023Palgy..6612653B }}</ref> Mammals diversified very quickly, displaying an exponential rise in diversity.<ref name="SahneyBentonFerry2010LinksDiversityVertebrates"/> For example, the earliest-known bat dates from about 50 million years ago, only 16 million years after the extinction of the non-avian dinosaurs.<ref>{{cite journal | vauthors = Simmons NB, Seymour KL, Habersetzer J, Gunnell GF | title = Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation | journal = Nature | volume = 451 | issue = 7180 | pages = 818–821 | date = February 2008 | pmid = 18270539 | doi = 10.1038/nature06549 | url = https://www.nature.com/articles/nature06549.epdf?referrer_access_token=vvnCZKFsJpI9PyHTMCW0AtRgN0jAjWel9jnR3ZoTv0OIjnS1VOVvLEmlM3pVKicSGILcK5-gC0KUTwfjLtGsWX-Jl3sk3aQbBWjeluiuMfZh8gMqZJ4qV9dfir4OcYHZFaqbm8GbWK-9JqFbcMEjN3G_-d7t8hJWLm5RDaih5vZhy47BSgJOQDuz8aRMBtHCvZEWV7affpdxsSefk_6x80U5fE1N1SjLKUHVdainKEM%3D&tracking_referrer=arstechnica.com | bibcode = 2008Natur.451..818S | hdl = 2027.42/62816 | s2cid = 4356708 | hdl-access = free | access-date = 25 January 2024 | archive-date = 25 January 2024 | archive-url = https://web.archive.org/web/20240125191352/https://www.nature.com/articles/nature06549.epdf?referrer_access_token=vvnCZKFsJpI9PyHTMCW0AtRgN0jAjWel9jnR3ZoTv0OIjnS1VOVvLEmlM3pVKicSGILcK5-gC0KUTwfjLtGsWX-Jl3sk3aQbBWjeluiuMfZh8gMqZJ4qV9dfir4OcYHZFaqbm8GbWK-9JqFbcMEjN3G_-d7t8hJWLm5RDaih5vZhy47BSgJOQDuz8aRMBtHCvZEWV7affpdxsSefk_6x80U5fE1N1SjLKUHVdainKEM%3D&tracking_referrer=arstechnica.com | url-status = live }}</ref> | ||
Molecular phylogenetic studies initially suggested that most placental orders diverged about 100 to 85 million years ago and that modern families appeared in the period from the late [[Eocene]] through the [[Miocene]].<ref name="Bininda2007">{{cite journal | vauthors = Bininda-Emonds OR, Cardillo M, Jones KE, MacPhee RD, Beck RM, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A | display-authors = 6 | title = The delayed rise of present-day mammals | journal = Nature | volume = 446 | issue = 7135 | pages = 507–512 | date = March 2007 | pmid = 17392779 | doi = 10.1038/nature05634 | url = https://www.utheria.org/uploads/nature05634.pdf | bibcode = 2007Natur.446..507B | s2cid = 4314965 | access-date = 25 January 2024 | archive-date = 25 January 2024 | archive-url = https://web.archive.org/web/20240125191351/https://www.utheria.org/uploads/nature05634.pdf | url-status = live }}</ref> However, no placental fossils have been found from before the end of the Cretaceous.<ref name="Wible2007"/> The earliest undisputed fossils of placentals come from the early [[Paleocene]], after the extinction of the non-avian dinosaurs.<ref name="Wible2007">{{cite journal | vauthors = Wible JR, Rougier GW, Novacek MJ, Asher RJ | title = Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary | journal = Nature | volume = 447 | issue = 7147 | pages = 1003–1006 | date = June 2007 | pmid = 17581585 | doi = 10.1038/nature05854 | bibcode = 2007Natur.447.1003W | s2cid = 4334424 }}</ref> (Scientists identified an early Paleocene animal named ''[[Protungulatum donnae]]'' as one of the first placental mammals,<ref name="SCI-20130208">{{cite journal | vauthors = O'Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo ZX, Meng J, Ni X, Novacek MJ, Perini FA, Randall ZS, Rougier GW, Sargis EJ, Silcox MT, Simmons NB, Spaulding M, Velazco PM, Weksler M, Wible JR, Cirranello AL | display-authors = 6 | title = The placental mammal ancestor and the post-K-Pg radiation of placentals | journal = Science | volume = 339 | issue = 6120 | pages = 662–667 | date = February 2013 | pmid = 23393258 | doi = 10.1126/science.1229237 | url = https://www.science.org/doi/abs/10.1126/science.1229237 | bibcode = 2013Sci...339..662O | hdl = 11336/7302 | s2cid = 206544776 | hdl-access = free | access-date = 30 June 2022 | archive-date = 10 November 2021 | archive-url = https://web.archive.org/web/20211110174432/https://www.science.org/doi/abs/10.1126/science.1229237 | url-status = live }}</ref> but it has since been reclassified as a non-placental eutherian.)<ref>{{cite journal | vauthors = Halliday TJ, Upchurch P, Goswami A | title = Resolving the relationships of Paleocene placental mammals | journal = Biological Reviews of the Cambridge Philosophical Society | volume = 92 | issue = 1 | pages = 521–550 | date = February 2017 | pmid = 28075073 | pmc = 6849585 | doi = 10.1111/brv.12242 }}</ref> Recalibrations of genetic and morphological diversity rates have suggested a [[Maastrichtian|Late Cretaceous]] origin for placentals, and a Paleocene origin for most modern clades.<ref>{{cite journal | vauthors = Halliday TJ, Upchurch P, Goswami A | title = Eutherians experienced elevated evolutionary rates in the immediate aftermath of the Cretaceous-Palaeogene mass extinction | journal = Proceedings. Biological Sciences| volume = 283 | issue = 1833 | | Molecular phylogenetic studies initially suggested that most placental orders diverged about 100 to 85 million years ago and that modern families appeared in the period from the late [[Eocene]] through the [[Miocene]].<ref name="Bininda2007">{{cite journal | vauthors = Bininda-Emonds OR, Cardillo M, Jones KE, MacPhee RD, Beck RM, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A | display-authors = 6 | title = The delayed rise of present-day mammals | journal = Nature | volume = 446 | issue = 7135 | pages = 507–512 | date = March 2007 | pmid = 17392779 | doi = 10.1038/nature05634 | url = https://www.utheria.org/uploads/nature05634.pdf | bibcode = 2007Natur.446..507B | s2cid = 4314965 | access-date = 25 January 2024 | archive-date = 25 January 2024 | archive-url = https://web.archive.org/web/20240125191351/https://www.utheria.org/uploads/nature05634.pdf | url-status = live }}</ref> However, no placental fossils have been found from before the end of the Cretaceous.<ref name="Wible2007"/> The earliest undisputed fossils of placentals come from the early [[Paleocene]], after the extinction of the non-avian dinosaurs.<ref name="Wible2007">{{cite journal | vauthors = Wible JR, Rougier GW, Novacek MJ, Asher RJ | title = Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary | journal = Nature | volume = 447 | issue = 7147 | pages = 1003–1006 | date = June 2007 | pmid = 17581585 | doi = 10.1038/nature05854 | bibcode = 2007Natur.447.1003W | s2cid = 4334424 }}</ref> (Scientists identified an early Paleocene animal named ''[[Protungulatum donnae]]'' as one of the first placental mammals,<ref name="SCI-20130208">{{cite journal | vauthors = O'Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo ZX, Meng J, Ni X, Novacek MJ, Perini FA, Randall ZS, Rougier GW, Sargis EJ, Silcox MT, Simmons NB, Spaulding M, Velazco PM, Weksler M, Wible JR, Cirranello AL | display-authors = 6 | title = The placental mammal ancestor and the post-K-Pg radiation of placentals | journal = Science | volume = 339 | issue = 6120 | pages = 662–667 | date = February 2013 | pmid = 23393258 | doi = 10.1126/science.1229237 | url = https://www.science.org/doi/abs/10.1126/science.1229237 | bibcode = 2013Sci...339..662O | hdl = 11336/7302 | s2cid = 206544776 | hdl-access = free | access-date = 30 June 2022 | archive-date = 10 November 2021 | archive-url = https://web.archive.org/web/20211110174432/https://www.science.org/doi/abs/10.1126/science.1229237 | url-status = live | url-access = subscription }}</ref> but it has since been reclassified as a non-placental eutherian.)<ref>{{cite journal | vauthors = Halliday TJ, Upchurch P, Goswami A | title = Resolving the relationships of Paleocene placental mammals | journal = Biological Reviews of the Cambridge Philosophical Society | volume = 92 | issue = 1 | pages = 521–550 | date = February 2017 | pmid = 28075073 | pmc = 6849585 | doi = 10.1111/brv.12242 }}</ref> Recalibrations of genetic and morphological diversity rates have suggested a [[Maastrichtian|Late Cretaceous]] origin for placentals, and a Paleocene origin for most modern clades.<ref>{{cite journal | vauthors = Halliday TJ, Upchurch P, Goswami A | title = Eutherians experienced elevated evolutionary rates in the immediate aftermath of the Cretaceous-Palaeogene mass extinction | journal = Proceedings. Biological Sciences| volume = 283 | issue = 1833 | at = Article no.: 20153026 | date = June 2016 | pmid = 27358361 | pmc = 4936024 | doi = 10.1098/rspb.2015.3026 }}</ref> | ||
The earliest-known ancestor of primates is ''[[Archicebus achilles]]''<ref name="NTR-20130606">{{cite journal | vauthors = Ni X, Gebo DL, Dagosto M, Meng J, Tafforeau P, Flynn JJ, Beard KC | title = The oldest known primate skeleton and early haplorhine evolution | journal = Nature | volume = 498 | issue = 7452 | pages = 60–64 | date = June 2013 | pmid = 23739424 | doi = 10.1038/nature12200 | bibcode = 2013Natur.498...60N | s2cid = 4321956 }}</ref> from around 55 million years ago.<ref name="NTR-20130606"/> This tiny primate weighed 20–30 grams (0.7–1.1 ounce) and could fit within a human palm.<ref name="NTR-20130606"/> | The earliest-known ancestor of primates is ''[[Archicebus achilles]]''<ref name="NTR-20130606">{{cite journal | vauthors = Ni X, Gebo DL, Dagosto M, Meng J, Tafforeau P, Flynn JJ, Beard KC | title = The oldest known primate skeleton and early haplorhine evolution | journal = Nature | volume = 498 | issue = 7452 | pages = 60–64 | date = June 2013 | pmid = 23739424 | doi = 10.1038/nature12200 | bibcode = 2013Natur.498...60N | s2cid = 4321956 }}</ref> from around 55 million years ago.<ref name="NTR-20130606"/> This tiny primate weighed 20–30 grams (0.7–1.1 ounce) and could fit within a human palm.<ref name="NTR-20130606"/> | ||
| Line 308: | Line 307: | ||
* '''[[Jaw|Jaw joint]]''' – The [[dentary]] (the lower jaw bone, which carries the teeth) and the [[squamosal]] (a small [[cranial]] bone) meet to form the joint. In most [[gnathostomes]], including early [[therapsids]], the joint consists of the [[articular]] (a small bone at the back of the lower jaw) and [[Quadrate bone|quadrate]] (a small bone at the back of the upper jaw).<ref name=jawbone2006/> | * '''[[Jaw|Jaw joint]]''' – The [[dentary]] (the lower jaw bone, which carries the teeth) and the [[squamosal]] (a small [[cranial]] bone) meet to form the joint. In most [[gnathostomes]], including early [[therapsids]], the joint consists of the [[articular]] (a small bone at the back of the lower jaw) and [[Quadrate bone|quadrate]] (a small bone at the back of the upper jaw).<ref name=jawbone2006/> | ||
* '''[[Middle ear]]''' – In crown-group mammals, sound is carried from the [[eardrum]] by a chain of three bones, the [[malleus]], the [[incus]] and the [[stapes]]. Ancestrally, the malleus and the incus are derived from the articular and the quadrate bones that constituted the jaw joint of early therapsids.<ref>{{cite journal | vauthors = Anthwal N, Joshi L, Tucker AS | title = Evolution of the mammalian middle ear and jaw: adaptations and novel structures | journal = Journal of Anatomy | volume = 222 | issue = 1 | pages = 147–160 | date = January 2013 | pmid = 22686855 | pmc = 3552421 | doi = 10.1111/j.1469-7580.2012.01526.x }}</ref> | * '''[[Middle ear]]''' – In crown-group mammals, sound is carried from the [[eardrum]] by a chain of three bones, the [[malleus]], the [[incus]] and the [[stapes]]. Ancestrally, the malleus and the incus are derived from the articular and the quadrate bones that constituted the jaw joint of early therapsids.<ref>{{cite journal | vauthors = Anthwal N, Joshi L, Tucker AS | title = Evolution of the mammalian middle ear and jaw: adaptations and novel structures | journal = Journal of Anatomy | volume = 222 | issue = 1 | pages = 147–160 | date = January 2013 | pmid = 22686855 | pmc = 3552421 | doi = 10.1111/j.1469-7580.2012.01526.x }}</ref> | ||
* '''Tooth replacement''' – Teeth can be replaced once ([[diphyodonty]]) or (as in toothed whales and [[Muridae|murid]] rodents) not at all ([[Dentition|monophyodont]]y).<ref>{{cite journal | vauthors = van Nievelt AF, Smith KK |year=2005 |title=To replace or not to replace: the significance of reduced functional tooth replacement in marsupial and placental mammals |journal=Paleobiology |volume=31 |issue=2 |pages=324–346 |doi=10.1666/0094-8373(2005)031[0324:trontr]2.0.co;2|s2cid=37750062 }}</ref> Elephants, manatees, and kangaroos continually grow new teeth throughout their life ([[polyphyodont]]y).<ref>{{cite journal | vauthors = Libertini G, Ferrara N | title = Aging of perennial cells and organ parts according to the programmed aging paradigm | journal = Age | volume = 38 | issue = 2 | | * '''Tooth replacement''' – Teeth can be replaced once ([[diphyodonty]]) or (as in toothed whales and [[Muridae|murid]] rodents) not at all ([[Dentition|monophyodont]]y).<ref>{{cite journal | vauthors = van Nievelt AF, Smith KK |year=2005 |title=To replace or not to replace: the significance of reduced functional tooth replacement in marsupial and placental mammals |journal=Paleobiology |volume=31 |issue=2 |pages=324–346 |doi=10.1666/0094-8373(2005)031[0324:trontr]2.0.co;2|s2cid=37750062 }}</ref> Elephants, manatees, and kangaroos continually grow new teeth throughout their life ([[polyphyodont]]y).<ref>{{cite journal | vauthors = Libertini G, Ferrara N | title = Aging of perennial cells and organ parts according to the programmed aging paradigm | journal = Age | volume = 38 | issue = 2 | article-number = 35 | date = April 2016 | pmid = 26957493 | pmc = 5005898 | doi = 10.1007/s11357-016-9895-0 }}</ref> | ||
* '''Prismatic enamel''' – The [[tooth enamel|enamel]] coating on the surface of a tooth consists of prisms, solid, rod-like structures extending from the [[dentin]] to the tooth's surface.<ref>{{cite journal | vauthors = Mao F, Wang Y, Meng J | title = A Systematic Study on Tooth Enamel Microstructures of Lambdopsalis bulla (Multituberculate, Mammalia) – Implications for Multituberculate Biology and Phylogeny | journal = PLOS ONE | volume = 10 | issue = 5 | | * '''Prismatic enamel''' – The [[tooth enamel|enamel]] coating on the surface of a tooth consists of prisms, solid, rod-like structures extending from the [[dentin]] to the tooth's surface.<ref>{{cite journal | vauthors = Mao F, Wang Y, Meng J | title = A Systematic Study on Tooth Enamel Microstructures of Lambdopsalis bulla (Multituberculate, Mammalia) – Implications for Multituberculate Biology and Phylogeny | journal = PLOS ONE | volume = 10 | issue = 5 | article-number = e0128243 | year = 2015 | pmid = 26020958 | pmc = 4447277 | doi = 10.1371/journal.pone.0128243 | bibcode = 2015PLoSO..1028243M | doi-access = free }}</ref> | ||
* '''[[Occipital condyle]]s''' – Two knobs at the base of the skull fit into the topmost [[Cervical vertebrae|neck vertebra]]; most other [[tetrapod]]s, in contrast, have only one such knob.<ref>{{cite journal |jstor=2453526 | vauthors = Osborn HF |year=1900 |title=Origin of the Mammalia, III. Occipital Condyles of Reptilian Tripartite Type|journal=The American Naturalist|volume=34|number=408| pages=943–947 |doi=10.1086/277821|doi-access=free | bibcode = 1900ANat...34..943O }}</ref> | * '''[[Occipital condyle]]s''' – Two knobs at the base of the skull fit into the topmost [[Cervical vertebrae|neck vertebra]]; most other [[tetrapod]]s, in contrast, have only one such knob.<ref>{{cite journal |jstor=2453526 | vauthors = Osborn HF |year=1900 |title=Origin of the Mammalia, III. Occipital Condyles of Reptilian Tripartite Type|journal=The American Naturalist|volume=34|number=408| pages=943–947 |doi=10.1086/277821|doi-access=free | bibcode = 1900ANat...34..943O }}</ref> | ||
| Line 338: | Line 337: | ||
====Circulatory systems==== | ====Circulatory systems==== | ||
The mammalian [[heart]] has four chambers, two upper [[atrium (heart)|atria]], the receiving chambers, and two lower [[ventricle (heart)|ventricles]], the discharging chambers.<ref>{{cite book| vauthors = Standring S, Borley NR |year=2008|title=Gray's anatomy: the anatomical basis of clinical practice|edition=40th|location=London|publisher=Churchill Livingstone|pages=960–962|isbn=978-0-8089-2371-8|oclc=213447727}}</ref> The heart has four valves, which separate its chambers and ensures blood flows in the correct direction through the heart (preventing backflow). After [[gas exchange]] in the pulmonary capillaries (blood vessels in the lungs), oxygen-rich blood returns to the left atrium via one of the four [[pulmonary vein]]s. Blood flows nearly continuously back into the atrium, which acts as the receiving chamber, and from here through an opening into the left ventricle. Most blood flows passively into the heart while both the atria and ventricles are relaxed, but toward the end of the [[diastole|ventricular relaxation period]], the left atrium will contract, pumping blood into the ventricle. The heart also requires nutrients and oxygen found in blood like other muscles, and is supplied via [[coronary circulation|coronary arteries]].<ref>{{cite book|vauthors=Betts JF, Desaix P, Johnson E, Johnson JE, Korol O, Kruse D, Poe B, Wise JA, Womble M, Young KA|display-authors=6|title=Anatomy & physiology|year=2013|isbn=978-1-938168-13-0|oclc=898069394|url=https://cnx.org/content/m46676/latest/?collection=col11496/latest|location=Houston|publisher=Rice University Press|pages=787–846|access-date=25 January 2024|archive-date=23 February 2022|archive-url=https://web.archive.org/web/20220223063018/https://openstax.org/books/anatomy-and-physiology/pages/19-1-heart-anatomy|url-status=live}}</ref> | The mammalian [[heart]] has four chambers, two upper [[atrium (heart)|atria]], the receiving chambers, and two lower [[ventricle (heart)|ventricles]], the discharging chambers.<ref>{{cite book| vauthors = Standring S, Borley NR |year=2008|title=Gray's anatomy: the anatomical basis of clinical practice|edition=40th|location=London|publisher=Churchill Livingstone|pages=960–962|isbn=978-0-8089-2371-8|oclc=213447727}}</ref> The heart has four valves, which separate its chambers and ensures blood flows in the correct direction through the heart (preventing backflow). After [[gas exchange]] in the pulmonary capillaries (blood vessels in the lungs), oxygen-rich blood returns to the left atrium via one of the four [[pulmonary vein]]s. Blood flows nearly continuously back into the atrium, which acts as the receiving chamber, and from here through an opening into the left ventricle. Most blood flows passively into the heart while both the atria and ventricles are relaxed, but toward the end of the [[diastole|ventricular relaxation period]], the left atrium will contract, pumping blood into the ventricle. The heart also requires nutrients and oxygen found in blood like other muscles, and is supplied via [[coronary circulation|coronary arteries]].<ref>{{cite book|vauthors=Betts JF, Desaix P, Johnson E, Johnson JE, Korol O, Kruse D, Poe B, Wise JA, Womble M, Young KA|display-authors=6|title=Anatomy & physiology|year=2013|isbn=978-1-938168-13-0|oclc=898069394|url=https://cnx.org/content/m46676/latest/?collection=col11496/latest|location=Houston|publisher=Rice University Press|pages=787–846|access-date=25 January 2024|archive-date=23 February 2022|archive-url=https://web.archive.org/web/20220223063018/https://openstax.org/books/anatomy-and-physiology/pages/19-1-heart-anatomy|url-status=live}}</ref> | ||
The [[red blood cell]]s of mammals also lack a nucleus to make space for more [[haemoglobin]], which significantly increases the cell's oxygen-carrying capacity.<ref>{{cite web|url=https://wi.mit.edu/news/how-red-blood-cells-nuke-their-nuclei |title=How Red Blood Cells Nuke Their Nuclei|vauthors=Carr|date=February 2008}}</ref> | |||
====Respiratory systems==== | ====Respiratory systems==== | ||
| Line 363: | Line 363: | ||
====Excretory and genitourinary systems==== | ====Excretory and genitourinary systems==== | ||
[[File:Glycerination of Bovine kidney.jpg|thumb|Bovine kidney]] | [[File:Glycerination of Bovine kidney.jpg|thumb|Bovine kidney]] | ||
[[File:Image from page 702 of "Outlines of zoology" (1895) (20732795545).jpg|thumb| | [[File:Image from page 702 of "Outlines of zoology" (1895) (20732795545).jpg|thumb|upright|[[Genitourinary system]] of a male and female rabbit]] | ||
The mammalian [[excretory system]] involves many components. Like | |||
The mammalian [[excretory system]] involves many components. Like amphibians, mammals are [[ureotelic]], and convert [[ammonia]] into [[urea]], which is done by the [[liver]] as part of the [[urea cycle]].<ref>{{cite book | vauthors = Sreekumar S |title=Basic Physiology|publisher=PHI Learning Pvt. Ltd.|year=2010|pages=180–181|isbn=978-81-203-4107-4|url ={{Google books|plainurl=yes|id=IxYR9wTeXQgC|page=180}}}}</ref> [[Bilirubin]], a waste product derived from [[blood cell]]s, is passed through [[bile]] and [[urine]] with the help of enzymes excreted by the liver.<ref>{{cite book| vauthors = Cheifetz AS |title=Oxford American Handbook of Gastroenterology and Hepatology|year=2010|publisher=Oxford University Press, US|location=Oxford|isbn=978-0-19-983012-1|page=165}}</ref> The passing of bilirubin via bile through the [[intestinal tract]] gives mammalian [[feces]] a distinctive brown coloration.<ref>{{cite book| vauthors = Kuntz E |title=Hepatology: Textbook and Atlas|year=2008|publisher=Springer|location=Germany|isbn=978-3-540-76838-8|page=38}}</ref> Distinctive features of the [[mammalian kidney]] include the presence of the [[renal pelvis]] and [[renal pyramid]]s, and of a clearly distinguishable [[renal cortex|cortex]] and [[renal medulla|medulla]], which is due to the presence of elongated [[Loop of Henle|loops of Henle]]. Only the mammalian kidney has a bean shape, although there are some exceptions, such as the multilobed [[reniculate kidney]]s of pinnipeds, [[cetacea]]ns and bears.<ref>{{cite journal | vauthors = Ortiz RM | title = Osmoregulation in marine mammals | journal = The Journal of Experimental Biology | volume = 204 | issue = Pt 11 | pages = 1831–1844 | date = June 2001 | doi = 10.1242/jeb.204.11.1831 | pmid = 11441026 | url = https://jeb.biologists.org/cgi/content/short/204/11/1831 | doi-access = free | bibcode = 2001JExpB.204.1831O | access-date = 25 January 2024 | archive-date = 25 January 2024 | archive-url = https://web.archive.org/web/20240125191351/https://jeb.biologists.org/cgi/content/short/204/11/1831 | url-status = live }}</ref><ref name=VB/> Most adult placentals have no remaining trace of the [[cloaca]]. In the embryo, the [[embryonic cloaca]] divides into a posterior region that becomes part of the [[anus]], and an anterior region that has different fates depending on the sex of the individual: in females, it develops into the [[vulval vestibule|vestibule]] or [[Urogenital sinus#Other animals|urogenital sinus]] that receives the [[urethra]] and [[vagina]], while in males it forms the entirety of the [[penile urethra]].<ref name=VB/><ref>{{cite book|last=Linzey|first=Donald W.|title=Vertebrate Biology: Systematics, Taxonomy, Natural History, and Conservation|publisher=Johns Hopkins University Press|year=2020|page=306|isbn=978-1-42143-733-0|url=https://books.google.com/books?id=Rur4DwAAQBAJ&pg=PA306|access-date=22 January 2024|archive-date=22 January 2024|archive-url=https://web.archive.org/web/20240122190826/https://books.google.com/books?id=Rur4DwAAQBAJ&pg=PA306|url-status=live}}</ref> However, the [[Afrosoricida|afrosoricids]] and some [[shrew]]s retain a cloaca as adults.<ref>{{Cite journal |url=http://journals.cambridge.org/action//displayFulltext?type=6&fid=290402&jid=BRE&volumeId=80&issueId=01&aid=275550&fulltextType=RV&fileId=S1464793104006566 |title=Biological Reviews – Cambridge Journals |journal=Biological Reviews |date=February 2005 |volume=80 |issue=1 |pages=93–128 |doi=10.1017/S1464793104006566 |access-date=21 January 2017 |archive-date=22 November 2015 |archive-url=https://web.archive.org/web/20151122104221/http://journals.cambridge.org/action//displayFulltext?type=6&fid=290402&jid=BRE&volumeId=80&issueId=01&aid=275550&fulltextType=RV&fileId=S1464793104006566 |url-status=live |last1=Symonds |first1=Matthew R. E. |pmid=15727040 |url-access=subscription }}</ref> In marsupials, the genital tract is separate from the anus, but a trace of the original cloaca does remain externally.<ref name=VB>{{cite book| vauthors = Roman AS, Parsons TS |year=1977|title=The Vertebrate Body|publisher=Holt-Saunders International|location=Philadelphia|pages=396–399|isbn=978-0-03-910284-5}}</ref> Monotremes, which translates from [[Ancient Greek|Greek]] into "single hole", have a true cloaca.<ref>{{cite book|url={{Google books|plainurl=yes|https://books.google.com/books?id=wojUDAAAQBAJ|page=281}} |vauthors = Dawkins R, Wong Y |year=2016|title=The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution|edition=2nd|publisher=Mariner Books|location=Boston|page=281|isbn=978-0-544-85993-7}}</ref> Urine flows from the [[ureter]]s into the cloaca in monotremes and into the [[bladder]] in placentals.<ref name=VB/> | |||
===Sound production=== | ===Sound production=== | ||
| Line 372: | Line 373: | ||
[[File:Beluga_vocalizations.ogg|left|thumb|[[Beluga whale]] echolocation sounds]] | [[File:Beluga_vocalizations.ogg|left|thumb|[[Beluga whale]] echolocation sounds]] | ||
Some mammals have a large larynx and thus a low-pitched voice, namely the [[hammer-headed bat]] (''Hypsignathus monstrosus'') where the larynx can take up the entirety of the [[thoracic cavity]] while pushing the lungs, heart, and trachea into the [[abdomen]].<ref>{{cite journal| vauthors = Langevin P, Barclay RM |year=1990 |title= ''Hypsignathus monstrosus''|journal=Mammalian Species|issue=357 |pages=1–4 |doi=10.2307/3504110|jstor=3504110 |doi-access=free }}</ref> Large vocal pads can also lower the pitch, as in the low-pitched roars of [[big cat]]s.<ref>{{cite journal | vauthors = Weissengruber GE, Forstenpointner G, Peters G, Kübber-Heiss A, Fitch WT | title = Hyoid apparatus and pharynx in the lion (Panthera leo), jaguar (Panthera onca), tiger (Panthera tigris), cheetah (Acinonyxjubatus) and domestic cat (Felis silvestris f. catus) | journal = Journal of Anatomy | volume = 201 | issue = 3 | pages = 195–209 | date = September 2002 | pmid = 12363272 | pmc = 1570911 | doi = 10.1046/j.1469-7580.2002.00088.x }}</ref> The production of [[infrasound]] is possible in some mammals such as the [[African elephant]] (''Loxodonta'' spp.) and [[baleen whale]]s.<ref>{{cite journal | vauthors = Stoeger AS, Heilmann G, Zeppelzauer M, Ganswindt A, Hensman S, Charlton BD | title = Visualizing sound emission of elephant vocalizations: evidence for two rumble production types | journal = PLOS ONE | volume = 7 | issue = 11 | | Some mammals have a large larynx and thus a low-pitched voice, namely the [[hammer-headed bat]] (''Hypsignathus monstrosus'') where the larynx can take up the entirety of the [[thoracic cavity]] while pushing the lungs, heart, and trachea into the [[abdomen]].<ref>{{cite journal| vauthors = Langevin P, Barclay RM |year=1990 |title= ''Hypsignathus monstrosus''|journal=Mammalian Species|issue=357 |pages=1–4 |doi=10.2307/3504110|jstor=3504110 |doi-access=free }}</ref> Large vocal pads can also lower the pitch, as in the low-pitched roars of [[big cat]]s.<ref>{{cite journal | vauthors = Weissengruber GE, Forstenpointner G, Peters G, Kübber-Heiss A, Fitch WT | title = Hyoid apparatus and pharynx in the lion (Panthera leo), jaguar (Panthera onca), tiger (Panthera tigris), cheetah (Acinonyxjubatus) and domestic cat (Felis silvestris f. catus) | journal = Journal of Anatomy | volume = 201 | issue = 3 | pages = 195–209 | date = September 2002 | pmid = 12363272 | pmc = 1570911 | doi = 10.1046/j.1469-7580.2002.00088.x }}</ref> The production of [[infrasound]] is possible in some mammals such as the [[African elephant]] (''Loxodonta'' spp.) and [[baleen whale]]s.<ref>{{cite journal | vauthors = Stoeger AS, Heilmann G, Zeppelzauer M, Ganswindt A, Hensman S, Charlton BD | title = Visualizing sound emission of elephant vocalizations: evidence for two rumble production types | journal = PLOS ONE | volume = 7 | issue = 11 | article-number = e48907 | year = 2012 | pmid = 23155427 | pmc = 3498347 | doi = 10.1371/journal.pone.0048907 | bibcode = 2012PLoSO...748907S | doi-access = free }}</ref><ref>{{cite journal| vauthors = Clark CW |year=2004 |title= Baleen whale infrasonic sounds: Natural variability and function|journal=Journal of the Acoustical Society of America |volume=115 |issue=5|doi=10.1121/1.4783845|page=2554|bibcode=2004ASAJ..115.2554C}}</ref> Small mammals with small larynxes have the ability to produce [[ultrasound]], which can be detected by modifications to the [[middle ear]] and [[cochlea]]. Ultrasound is inaudible to birds and reptiles, which might have been important during the Mesozoic, when birds and reptiles were the dominant predators. This private channel is used by some rodents in, for example, mother-to-pup communication, and by bats when echolocating. Toothed whales also use echolocation, but, as opposed to the vocal membrane that extends upward from the vocal folds, they have a [[Melon (cetacean)|melon]] to manipulate sounds. Some mammals, namely the primates, have air sacs attached to the larynx, which may function to lower the resonances or increase the volume of sound.<ref name=fitchbrown2006>{{cite book |chapter-url=https://homepage.univie.ac.at/tecumseh.fitch/wp-content/uploads/2010/08/Fitch2006MammalVocalProd.pdf |vauthors=Fitch WT |chapter=Production of Vocalizations in Mammals |year=2006 |title=Encyclopedia of Language and Linguistics |veditors=Brown K |publisher=Elsevier |location=Oxford |pages=115–121 |access-date=25 January 2024 |archive-date=1 June 2024 |archive-url=https://web.archive.org/web/20240601150858/https://homepage.univie.ac.at/tecumseh.fitch/wp-content/uploads/2010/08/Fitch2006MammalVocalProd.pdf/ |url-status=live }}</ref> | ||
The vocal production system is controlled by the [[cranial nerve nucleus|cranial nerve nuclei]] in the brain, and supplied by the [[recurrent laryngeal nerve]] and the [[superior laryngeal nerve]], branches of the [[vagus nerve]]. The vocal tract is supplied by the [[hypoglossal nerve]] and [[facial nerve]]s. Electrical stimulation of the [[periaqueductal grey]] (PEG) region of the mammalian [[midbrain]] elicit vocalisations. The ability to learn new vocalisations is only exemplified in humans, seals, cetaceans, elephants and possibly bats; in humans, this is the result of a direct connection between the [[motor cortex]], which controls movement, and the [[motor neuron]]s in the spinal cord.<ref name=fitchbrown2006/> | The vocal production system is controlled by the [[cranial nerve nucleus|cranial nerve nuclei]] in the brain, and supplied by the [[recurrent laryngeal nerve]] and the [[superior laryngeal nerve]], branches of the [[vagus nerve]]. The vocal tract is supplied by the [[hypoglossal nerve]] and [[facial nerve]]s. Electrical stimulation of the [[periaqueductal grey]] (PEG) region of the mammalian [[midbrain]] elicit vocalisations. The ability to learn new vocalisations is only exemplified in humans, seals, cetaceans, elephants and possibly bats; in humans, this is the result of a direct connection between the [[motor cortex]], which controls movement, and the [[motor neuron]]s in the spinal cord.<ref name=fitchbrown2006/> | ||
| Line 403: | Line 404: | ||
====Coloration==== | ====Coloration==== | ||
Mammalian coats are coloured for a variety of reasons, the major selective pressures including [[camouflage]], [[sexual selection]], communication, and thermoregulation. Coloration in both the hair and skin of mammals is mainly determined by the type and amount of [[melanin]]; [[eumelanin]]s for brown and black colours and [[pheomelanin]] for a range of yellowish to reddish colours, giving mammals an [[earth tone]].<ref>{{cite journal | vauthors = Slominski A, Tobin DJ, Shibahara S, Wortsman J | title = Melanin pigmentation in mammalian skin and its hormonal regulation | journal = Physiological Reviews | volume = 84 | issue = 4 | pages = 1155–1228 | date = October 2004 | pmid = 15383650 | doi = 10.1152/physrev.00044.2003 | s2cid = 21168932 }}</ref><ref name="HiltonPond">{{cite journal | url=https://www.hiltonpond.org/ArticleAnimalColorsMain.html | title=South Carolina Wildlife | publisher=Hilton Pond Center | journal=Animal Colors | year=1996 | access-date=26 November 2011 | vauthors=Hilton Jr B | pages=10–15 | volume=43 | issue=4 | archive-date=25 January 2024 | archive-url=https://web.archive.org/web/20240125191353/https://www.hiltonpond.org/ArticleAnimalColorsMain.html | url-status=live }}</ref> Some mammals have more vibrant colours; certain monkeys such [[mandrill]]s and [[vervet monkey]]s, and opossums such as the [[Mexican mouse opossum]]s and [[Derby's woolly opossum]]s, have blue skin due to [[structural coloration|light diffraction]] in [[collagen]] fibres.<ref name="Prum2004"/> Many sloths appear green because their fur hosts green [[algae]]; this may be a [[symbiosis|symbiotic]] relation that affords [[camouflage]] to the sloths.<ref>{{cite journal | vauthors = Suutari M, Majaneva M, Fewer DP, Voirin B, Aiello A, Friedl T, Chiarello AG, Blomster J | display-authors = 6 | title = Molecular evidence for a diverse green algal community growing in the hair of sloths and a specific association with Trichophilus welckeri (Chlorophyta, Ulvophyceae) | journal = BMC Evolutionary Biology | volume = 10 | issue = 86 | | Mammalian coats are coloured for a variety of reasons, the major selective pressures including [[camouflage]], [[sexual selection]], communication, and thermoregulation. Coloration in both the hair and skin of mammals is mainly determined by the type and amount of [[melanin]]; [[eumelanin]]s for brown and black colours and [[pheomelanin]] for a range of yellowish to reddish colours, giving mammals an [[earth tone]].<ref>{{cite journal | vauthors = Slominski A, Tobin DJ, Shibahara S, Wortsman J | title = Melanin pigmentation in mammalian skin and its hormonal regulation | journal = Physiological Reviews | volume = 84 | issue = 4 | pages = 1155–1228 | date = October 2004 | pmid = 15383650 | doi = 10.1152/physrev.00044.2003 | s2cid = 21168932 }}</ref><ref name="HiltonPond">{{cite journal | url=https://www.hiltonpond.org/ArticleAnimalColorsMain.html | title=South Carolina Wildlife | publisher=Hilton Pond Center | journal=Animal Colors | year=1996 | access-date=26 November 2011 | vauthors=Hilton Jr B | pages=10–15 | volume=43 | issue=4 | archive-date=25 January 2024 | archive-url=https://web.archive.org/web/20240125191353/https://www.hiltonpond.org/ArticleAnimalColorsMain.html | url-status=live }}</ref> Some mammals have more vibrant colours; certain monkeys such [[mandrill]]s and [[vervet monkey]]s, and opossums such as the [[Mexican mouse opossum]]s and [[Derby's woolly opossum]]s, have blue skin due to [[structural coloration|light diffraction]] in [[collagen]] fibres.<ref name="Prum2004"/> Many sloths appear green because their fur hosts green [[algae]]; this may be a [[symbiosis|symbiotic]] relation that affords [[camouflage]] to the sloths.<ref>{{cite journal | vauthors = Suutari M, Majaneva M, Fewer DP, Voirin B, Aiello A, Friedl T, Chiarello AG, Blomster J | display-authors = 6 | title = Molecular evidence for a diverse green algal community growing in the hair of sloths and a specific association with Trichophilus welckeri (Chlorophyta, Ulvophyceae) | journal = BMC Evolutionary Biology | volume = 10 | issue = 86 | article-number = 86 | date = March 2010 | pmid = 20353556 | pmc = 2858742 | doi = 10.1186/1471-2148-10-86 | doi-access = free | bibcode = 2010BMCEE..10...86S }}</ref> | ||
Camouflage is a powerful influence in a large number of mammals, as it helps to conceal individuals from predators or prey.<ref name="bioscience.oxfordjournals.org">{{cite journal | vauthors = Caro T |year=2005 |title= The Adaptive Significance of Coloration in Mammals |journal=BioScience |volume= 55 | issue = 2 |pages= 125–136 |doi=10.1641/0006-3568(2005)055[0125:tasoci]2.0.co;2 |doi-access=free }}</ref> In arctic and subarctic mammals such as the [[arctic fox]] (''Alopex lagopus''), [[collared lemming]] (''Dicrostonyx groenlandicus''), [[stoat]] (''Mustela erminea''), and [[snowshoe hare]] (''Lepus americanus''), [[seasonal polyphenism|seasonal color change]] between brown in summer and white in winter is driven largely by camouflage.<ref>{{cite journal | vauthors = Mills LS, Zimova M, Oyler J, Running S, Abatzoglou JT, Lukacs PM | title = Camouflage mismatch in seasonal coat color due to decreased snow duration | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 110 | issue = 18 | pages = 7360–7365 | date = April 2013 | pmid = 23589881 | pmc = 3645584 | doi = 10.1073/pnas.1222724110 | bibcode = 2013PNAS..110.7360M |bibcode-access=free | doi-access = free }}</ref> Some arboreal mammals, notably primates and marsupials, have shades of violet, green, or blue skin on parts of their bodies, indicating some distinct advantage in their largely [[arboreal]] habitat due to [[convergent evolution]].<ref name="Prum2004">{{cite journal | vauthors = Prum RO, Torres RH | title = Structural colouration of mammalian skin: convergent evolution of coherently scattering dermal collagen arrays | journal = The Journal of Experimental Biology | volume = 207 | issue = Pt 12 | pages = 2157–2172 | date = May 2004 | pmid = 15143148 | doi = 10.1242/jeb.00989 | bibcode = 2004JExpB.207.2157P | url = https://jeb.biologists.org/content/207/12/2157.full.pdf | hdl = 1808/1599 | s2cid = 8268610 | access-date = 25 January 2024 | archive-date = 5 June 2024 | archive-url = https://web.archive.org/web/20240605171545/https://jeb.biologists.org/content/207/12/2157.full.pdf | url-status = live }}</ref> | Camouflage is a powerful influence in a large number of mammals, as it helps to conceal individuals from predators or prey.<ref name="bioscience.oxfordjournals.org">{{cite journal | vauthors = Caro T |year=2005 |title= The Adaptive Significance of Coloration in Mammals |journal=BioScience |volume= 55 | issue = 2 |pages= 125–136 |doi=10.1641/0006-3568(2005)055[0125:tasoci]2.0.co;2 |doi-access=free }}</ref> In arctic and subarctic mammals such as the [[arctic fox]] (''Alopex lagopus''), [[collared lemming]] (''Dicrostonyx groenlandicus''), [[stoat]] (''Mustela erminea''), and [[snowshoe hare]] (''Lepus americanus''), [[seasonal polyphenism|seasonal color change]] between brown in summer and white in winter is driven largely by camouflage.<ref>{{cite journal | vauthors = Mills LS, Zimova M, Oyler J, Running S, Abatzoglou JT, Lukacs PM | title = Camouflage mismatch in seasonal coat color due to decreased snow duration | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 110 | issue = 18 | pages = 7360–7365 | date = April 2013 | pmid = 23589881 | pmc = 3645584 | doi = 10.1073/pnas.1222724110 | bibcode = 2013PNAS..110.7360M |bibcode-access=free | doi-access = free }}</ref> Some arboreal mammals, notably primates and marsupials, have shades of violet, green, or blue skin on parts of their bodies, indicating some distinct advantage in their largely [[arboreal]] habitat due to [[convergent evolution]].<ref name="Prum2004">{{cite journal | vauthors = Prum RO, Torres RH | title = Structural colouration of mammalian skin: convergent evolution of coherently scattering dermal collagen arrays | journal = The Journal of Experimental Biology | volume = 207 | issue = Pt 12 | pages = 2157–2172 | date = May 2004 | pmid = 15143148 | doi = 10.1242/jeb.00989 | bibcode = 2004JExpB.207.2157P | url = https://jeb.biologists.org/content/207/12/2157.full.pdf | hdl = 1808/1599 | s2cid = 8268610 | access-date = 25 January 2024 | archive-date = 5 June 2024 | archive-url = https://web.archive.org/web/20240605171545/https://jeb.biologists.org/content/207/12/2157.full.pdf | url-status = live }}</ref> | ||
[[Aposematism]], warning off possible predators, is the most likely explanation of the black-and-white pelage of many mammals which are able to defend themselves, such as in the foul-smelling [[skunk]] and the powerful and aggressive [[honey badger]].<ref>{{cite journal | vauthors = Caro T | title = Contrasting coloration in terrestrial mammals | doi-access = free | journal = Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences | volume = 364 | issue = 1516 | pages = 537–548 | date = February 2009 | pmid = 18990666 | pmc = 2674080 | doi = 10.1098/rstb.2008.0221 }}</ref> Coat color is sometimes [[sexual dimorphism|sexually dimorphic]], as in [[Sexual dimorphism in non-human primates#Pelage color and markings|many primate species]].<ref>{{cite journal | vauthors = Plavcan JM | title = Sexual dimorphism in primate evolution | journal = American Journal of Physical Anthropology | volume = Suppl 33 | issue = 33 | pages = 25–53 | year = 2001 | pmid = 11786990 | doi = 10.1002/ajpa.10011 | s2cid = 31722173 |s2cid-access=free | doi-access = free }}</ref> Differences in female and male coat color may indicate nutrition and hormone levels, important in mate selection.<ref name="eva.mpg.de">{{cite journal | vauthors = Bradley BJ, Gerald MS, Widdig A, Mundy NI |year=2012 |title=Coat Color Variation and Pigmentation Gene Expression in Rhesus Macaques (''Macaca Mulatta'') |journal=Journal of Mammalian Evolution |volume=20 |issue=3 |pages=263–270 |doi=10.1007/s10914-012-9212-3 |s2cid=13916535 |url=https://www.eva.mpg.de/pks/staff/widdig/pdf/Bradley_et_al_2012.pdf | [[Aposematism]], warning off possible predators, is the most likely explanation of the black-and-white pelage of many mammals which are able to defend themselves, such as in the foul-smelling [[skunk]] and the powerful and aggressive [[honey badger]].<ref>{{cite journal | vauthors = Caro T | title = Contrasting coloration in terrestrial mammals | doi-access = free | journal = Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences | volume = 364 | issue = 1516 | pages = 537–548 | date = February 2009 | pmid = 18990666 | pmc = 2674080 | doi = 10.1098/rstb.2008.0221 }}</ref> Coat color is sometimes [[sexual dimorphism|sexually dimorphic]], as in [[Sexual dimorphism in non-human primates#Pelage color and markings|many primate species]].<ref>{{cite journal | vauthors = Plavcan JM | title = Sexual dimorphism in primate evolution | journal = American Journal of Physical Anthropology | volume = Suppl 33 | issue = 33 | pages = 25–53 | year = 2001 | pmid = 11786990 | doi = 10.1002/ajpa.10011 | bibcode = 2001AJPA..116S..25P | s2cid = 31722173 |s2cid-access=free | doi-access = free }}</ref> Differences in female and male coat color may indicate nutrition and hormone levels, important in mate selection.<ref name="eva.mpg.de">{{cite journal | vauthors = Bradley BJ, Gerald MS, Widdig A, Mundy NI |year=2012 |title=Coat Color Variation and Pigmentation Gene Expression in Rhesus Macaques (''Macaca Mulatta'') |journal=Journal of Mammalian Evolution |volume=20 |issue=3 |pages=263–270 |doi=10.1007/s10914-012-9212-3 |s2cid=13916535 |url=https://www.eva.mpg.de/pks/staff/widdig/pdf/Bradley_et_al_2012.pdf |archive-url=https://web.archive.org/web/20150924004623/http://www.eva.mpg.de/pks/staff/widdig/pdf/Bradley_et_al_2012.pdf |archive-date=24 September 2015 }}</ref> Coat color may influence the ability to retain heat, depending on how much light is reflected. Mammals with a darker coloured coat can absorb more heat from solar radiation, and stay warmer, and some smaller mammals, such as [[vole]]s, have darker fur in the winter. The white, pigmentless fur of arctic mammals, such as the polar bear, may reflect more solar radiation directly onto the skin.<ref name=hair/>{{rp|166–167}}<ref name=dawson2014/> The dazzling black-and-white striping of [[zebra]]s appear to provide some protection from biting flies.<ref name=Caro>{{cite journal | vauthors = Caro T, Izzo A, Reiner RC, Walker H, Stankowich T | title = The function of zebra stripes |bibcode-access=free | journal = Nature Communications | volume = 5 | article-number = 3535 | date = April 2014 | pmid = 24691390 | doi = 10.1038/ncomms4535 | author1-link = Tim Caro | bibcode = 2014NatCo...5.3535C | s2cid = 9849814 |s2cid-access=free | doi-access = free }}</ref> | ||
===Reproductive system=== | ===Reproductive system=== | ||
{{Main|Mammalian reproduction}} | {{Main|Mammalian reproduction}} | ||
[[File:Goat family.jpg|thumb|right|[[Goat]] kids stay with their mother until they are weaned.]] | [[File:Goat family.jpg|thumb|right|[[Goat]] kids stay with their mother until they are weaned.]] | ||
Mammals reproduce by [[internal fertilisation]]<ref name="naguib">{{Cite book|last=Naguib|first=Marc|url=https://books.google.com/books?id=KgTeDwAAQBAJ&pg=PA65|title=Advances in the Study of Behavior|date=19 April 2020|publisher=Academic Press|isbn=978-0-12-820726-0}}</ref> and are solely [[Gonochorism|gonochoric]] (an animal is born with either male or female genitalia, as opposed to [[hermaphrodite]]s where there is no such schism).<ref>{{Cite book| vauthors = Kobayashi K, Kitano T, Iwao Y, Kondo M |url=https://books.google.com/books?id=g4teDwAAQBAJ&q=mammal+gonochorism&pg=PA290|title=Reproductive and Developmental Strategies: The Continuity of Life |date=2018|publisher=Springer|isbn=978-4-431-56609-0| | Mammals reproduce by [[internal fertilisation]]<ref name="naguib">{{Cite book|last=Naguib|first=Marc|url=https://books.google.com/books?id=KgTeDwAAQBAJ&pg=PA65|title=Advances in the Study of Behavior|date=19 April 2020|publisher=Academic Press|isbn=978-0-12-820726-0}}</ref> and are solely [[Gonochorism|gonochoric]] (an animal is born with either male or female genitalia, as opposed to [[hermaphrodite]]s where there is no such schism).<ref>{{Cite book| vauthors = Kobayashi K, Kitano T, Iwao Y, Kondo M |url=https://books.google.com/books?id=g4teDwAAQBAJ&q=mammal+gonochorism&pg=PA290|title=Reproductive and Developmental Strategies: The Continuity of Life |date=2018|publisher=Springer|isbn=978-4-431-56609-0|page=290|language=en}}</ref> Male mammals [[Ejaculation|ejaculate]] [[semen]] during [[Copulation (zoology)|copulation]] through a [[penis]], which may be contained in a [[Penile sheath|prepuce]] when not erect. Male placentals also [[urinate]] through a penis, and some placentals also have a penis bone ([[baculum]]).<ref name="Lombardi1998">{{cite book| vauthors = Lombardi J |title=Comparative Vertebrate Reproduction|url=https://books.google.com/books?id=cqQX9RMPAegC|date= 1998|publisher=Springer Science & Business Media|isbn=978-0-7923-8336-9}}</ref><ref name="Hyman1992">{{cite book |author=Libbie Henrietta Hyman |url=https://books.google.com/books?id=VKlWjdOkiMwC&pg=PA583 |title=Hyman's Comparative Vertebrate Anatomy |date=15 September 1992 |publisher=University of Chicago Press |isbn=978-0-226-87013-7 |pages=583–}}</ref><ref name="naguib" /> Marsupials typically have forked penises,<ref name="Tyndale-BiscoeRenfree1987">{{cite book| vauthors = Tyndale-Biscoe H, Renfree M |title=Reproductive Physiology of Marsupials|url=https://books.google.com/books?id=HpjovN0vXW4C|date=1987|publisher=Cambridge University Press|isbn=978-0-521-33792-2}}</ref> while the [[echidna]] penis generally has four heads with only two functioning.<ref>{{Cite journal | doi=10.1086/522847| pmid=18171162| title=One-Sided Ejaculation of Echidna Sperm Bundles| journal=The American Naturalist| volume=170| issue=6| pages=E162–E164| year=2007| vauthors = Johnston SD, Smith B, Pyne M, Stenzel D, Holt WV | bibcode=2007ANat..170E.162J| s2cid=40632746| url=https://espace.library.uq.edu.au/view/UQ:130591/UQ130591_OA.pdf}}</ref> Depending on the species, an [[erection]] may be fuelled by blood flow into vascular, spongy tissue or by muscular action.<ref name="Lombardi1998" /> The [[testicles]] of most mammals descend into the [[scrotum]] which is typically posterior to the penis but is often anterior in marsupials. Female mammals generally have a [[vulva]] ([[clitoris]] and [[labia]]) on the outside, while the internal system contains paired [[oviduct]]s, one or two [[uteri]], one or two [[Cervix|cervices]] and a [[vagina]].<ref>{{cite book|last1=Bacha Jr.|first1=William J.|last2=Bacha|first2=Linda M.|title= Color Atlas of Veterinary Histology |publisher = Wiley |year = 2012|page=308|access-date = 28 November 2023 |isbn= 978-1-11824-364-0|url = https://books.google.com/books?id=08BOg2b7zRgC&pg=PA308}}</ref><ref>{{cite book|last1=Cooke|first1=Fred|last2=Bruce|first2=Jenni|title= The Encyclopedia of Animals: A Complete Visual Guide |publisher = University of California Press |year = 2004|page=79| access-date = 28 November 2023 |isbn= 978-0-52024-406-1|url = https://books.google.com/books?id=2V1tHqi4hLEC&pg=PA79}}</ref> Marsupials have two lateral vaginas and a medial vagina. The "vagina" of monotremes is better understood as a "urogenital sinus". The uterine systems of placentals can vary between a duplex, where there are two uteri and cervices which open into the vagina, a bipartite, where two [[uterine horn]]s have a single cervix that connects to the vagina, a bicornuate, which consists where two uterine horns that are connected distally but separate medially creating a Y-shape, and a simplex, which has a single uterus.<ref>{{cite book| vauthors = Maxwell KE |year=2013|title=The Sex Imperative: An Evolutionary Tale of Sexual Survival|publisher=Springer|pages=112–113|isbn=978-1-4899-5988-1|url=https://books.google.com/books?id=dnf1BwAAQBAJ}}</ref><ref>{{cite book| vauthors = Vaughan TA, Ryan JP, Czaplewski NJ |year= 2011 |title= Mammalogy|publisher=Jones & Bartlett Publishers|page=387 |isbn= 978-0-03-025034-7 }}</ref><ref name="hair"/>{{rp|220–221, 247}} | ||
[[File:Dendrolagus matschiei 1.jpg|thumb|left|[[Matschie's tree-kangaroo]] with young in pouch]] | [[File:Dendrolagus matschiei 1.jpg|thumb|left|[[Matschie's tree-kangaroo]] with young in pouch]] | ||
The ancestral condition for mammal reproduction is the birthing of relatively undeveloped young, either through direct [[vivipary]] or a short period as soft-shelled eggs. This is likely due to the fact that the torso could not expand due to the presence of [[epipubic bones]]. The oldest demonstration of this reproductive style is with ''[[Kayentatherium]]'', which produced undeveloped [[perinate]]s, but at much higher litter sizes than any modern mammal, 38 specimens.<ref name="Hoffman&Rowe">{{cite journal | vauthors = Hoffman EA, Rowe TB | title = Jurassic stem-mammal perinates and the origin of mammalian reproduction and growth | journal = Nature | volume = 561 | issue = 7721 | pages = 104–108 | date = September 2018 | pmid = 30158701 | doi = 10.1038/s41586-018-0441-3 | bibcode = 2018Natur.561..104H| s2cid = 205570021 }}</ref> Most modern mammals are [[viviparity|viviparous]], giving birth to live young. However, the five species of monotreme, the platypus and the four species of echidna, lay eggs. The monotremes have a [[sex-determination system]] different from that of most other mammals.<ref>{{cite journal | vauthors = Wallis MC, Waters PD, Delbridge ML, Kirby PJ, Pask AJ, Grützner F, Rens W, Ferguson-Smith MA, Graves JA | display-authors = 6 | title = Sex determination in platypus and echidna: autosomal location of SOX3 confirms the absence of SRY from monotremes | journal = Chromosome Research | volume = 15 | issue = 8 | pages = 949–959 | year = 2007 | pmid = 18185981 | doi = 10.1007/s10577-007-1185-3 | s2cid = 812974 }}</ref> In particular, the [[sex chromosome]]s of a platypus are more like those of a chicken than those of a therian mammal.<ref>{{cite journal | vauthors = Marshall Graves JA | title = Weird animal genomes and the evolution of vertebrate sex and sex chromosomes | journal = Annual Review of Genetics | volume = 42 | pages = 565–586 | year = 2008 | pmid = 18983263 | doi = 10.1146/annurev.genet.42.110807.091714 | url = https://www.mnf.uni-greifswald.de/fileadmin/Zoologisches_Museum/Hildebrandt/Dokumente/graves08.pdf | The ancestral condition for mammal reproduction is the birthing of relatively undeveloped young, either through direct [[vivipary]] or a short period as soft-shelled eggs. This is likely due to the fact that the torso could not expand due to the presence of [[epipubic bones]]. The oldest demonstration of this reproductive style is with ''[[Kayentatherium]]'', which produced undeveloped [[perinate]]s, but at much higher litter sizes than any modern mammal, 38 specimens.<ref name="Hoffman&Rowe">{{cite journal | vauthors = Hoffman EA, Rowe TB | title = Jurassic stem-mammal perinates and the origin of mammalian reproduction and growth | journal = Nature | volume = 561 | issue = 7721 | pages = 104–108 | date = September 2018 | pmid = 30158701 | doi = 10.1038/s41586-018-0441-3 | bibcode = 2018Natur.561..104H| s2cid = 205570021 }}</ref> Most modern mammals are [[viviparity|viviparous]], giving birth to live young. However, the five species of monotreme, the platypus and the four species of echidna, lay eggs. The monotremes have a [[sex-determination system]] different from that of most other mammals.<ref>{{cite journal | vauthors = Wallis MC, Waters PD, Delbridge ML, Kirby PJ, Pask AJ, Grützner F, Rens W, Ferguson-Smith MA, Graves JA | display-authors = 6 | title = Sex determination in platypus and echidna: autosomal location of SOX3 confirms the absence of SRY from monotremes | journal = Chromosome Research | volume = 15 | issue = 8 | pages = 949–959 | year = 2007 | pmid = 18185981 | doi = 10.1007/s10577-007-1185-3 | s2cid = 812974 }}</ref> In particular, the [[sex chromosome]]s of a platypus are more like those of a chicken than those of a therian mammal.<ref>{{cite journal | vauthors = Marshall Graves JA | title = Weird animal genomes and the evolution of vertebrate sex and sex chromosomes | journal = Annual Review of Genetics | volume = 42 | pages = 565–586 | year = 2008 | pmid = 18983263 | doi = 10.1146/annurev.genet.42.110807.091714 | url = https://www.mnf.uni-greifswald.de/fileadmin/Zoologisches_Museum/Hildebrandt/Dokumente/graves08.pdf | archive-url = http://webarchive.nationalarchives.gov.uk/20120904084145/http%3A//www.mnf.uni%2Dgreifswald.de/fileadmin/Zoologisches_Museum/Hildebrandt/Dokumente/graves08.pdf | archive-date = 4 September 2012 | access-date = 25 January 2024 }}</ref> | ||
Viviparous mammals are in the subclass Theria; those living today are in the marsupial and placental infraclasses. Marsupials have a short [[gestation]] period, typically shorter than its [[estrous cycle]] and generally giving birth to a number of undeveloped newborns that then undergo further development; in many species, this takes place within a pouch-like sac, the [[Pouch (marsupial)|marsupium]], located in the front of the mother's [[abdomen]]. This is the [[Symplesiomorphy|plesiomorphic]] condition among viviparous mammals; the presence of epipubic bones in all non-placentals prevents the expansion of the torso needed for full pregnancy.<ref name=schulkin>{{cite book| vauthors = Power ML, Schulkin J |year=2013|title=The Evolution Of The Human Placenta|publisher=Johns Hopkins University Press|url={{Google books|plainurl=yes|id=xfffGC3hjPoC|page=1891}}|pages=1890–1891|location=Baltimore|isbn=978-1-4214-0643-5|oclc=940749490}}</ref> Even non-placental eutherians probably reproduced this way.<ref name="Epipubic bones in eutherian mammals"/> The placentals give birth to relatively complete and developed young, usually after long gestation periods.<ref>{{cite book|chapter-url={{Google books|plainurl=yes|id=dK-D6HMSOQIC|page=6}}|location=Chicago| vauthors = Sally M |title=Mammals|chapter=Mammal Behavior and Lifestyle|year=2005|publisher=Raintree|page=6|isbn=978-1-4109-1050-9|oclc=53476660}}</ref> They get their name from the [[placenta]], which connects the developing fetus to the uterine wall to allow nutrient uptake.<ref>{{cite book|url={{Google books|plainurl=yes|id=23s9DAAAQBAJ|page=288}} | vauthors = Verma PS, Pandey BP |year=2013|title=ISC Biology Book I for Class XI|publisher=S. Chand and Company|page=288|location=New Delhi|isbn=978-81-219-2557-0}}</ref> In placentals, the epipubic is either completely lost or converted into the baculum; allowing the torso to be able to expand and thus birth developed offspring.<ref name="Hoffman&Rowe"/> | Viviparous mammals are in the subclass Theria; those living today are in the marsupial and placental infraclasses. Marsupials have a short [[gestation]] period, typically shorter than its [[estrous cycle]] and generally giving birth to a number of undeveloped newborns that then undergo further development; in many species, this takes place within a pouch-like sac, the [[Pouch (marsupial)|marsupium]], located in the front of the mother's [[abdomen]]. This is the [[Symplesiomorphy|plesiomorphic]] condition among viviparous mammals; the presence of epipubic bones in all non-placentals prevents the expansion of the torso needed for full pregnancy.<ref name=schulkin>{{cite book| vauthors = Power ML, Schulkin J |year=2013|title=The Evolution Of The Human Placenta|publisher=Johns Hopkins University Press|url={{Google books|plainurl=yes|id=xfffGC3hjPoC|page=1891}}|pages=1890–1891|location=Baltimore|isbn=978-1-4214-0643-5|oclc=940749490}}</ref> Even non-placental eutherians probably reproduced this way.<ref name="Epipubic bones in eutherian mammals"/> The placentals give birth to relatively complete and developed young, usually after long gestation periods.<ref>{{cite book|chapter-url={{Google books|plainurl=yes|id=dK-D6HMSOQIC|page=6}}|location=Chicago| vauthors = Sally M |title=Mammals|chapter=Mammal Behavior and Lifestyle|year=2005|publisher=Raintree|page=6|isbn=978-1-4109-1050-9|oclc=53476660}}</ref> They get their name from the [[placenta]], which connects the developing fetus to the uterine wall to allow nutrient uptake.<ref>{{cite book|url={{Google books|plainurl=yes|id=23s9DAAAQBAJ|page=288}} | vauthors = Verma PS, Pandey BP |year=2013|title=ISC Biology Book I for Class XI|publisher=S. Chand and Company|page=288|location=New Delhi|isbn=978-81-219-2557-0}}</ref> In placentals, the epipubic is either completely lost or converted into the baculum; allowing the torso to be able to expand and thus birth developed offspring.<ref name="Hoffman&Rowe"/> The great majority of mammals give birth multiple times during their lifespan, but a few species are [[semelparous]].{{cn|date=September 2025}} | ||
The [[mammary gland]]s of mammals are specialised to produce milk, the primary source of nutrition for newborns. The monotremes branched early from other mammals and do not have the [[teat]]s seen in most mammals, but they do have mammary glands. The young lick the milk from a mammary patch on the mother's belly.<ref>{{cite journal | vauthors = Oftedal OT | title = The mammary gland and its origin during synapsid evolution | journal = Journal of Mammary Gland Biology and Neoplasia | volume = 7 | issue = 3 | pages = 225–252 | date = July 2002 | pmid = 12751889 | doi = 10.1023/a:1022896515287 | s2cid = 25806501 }}</ref> Compared to placental mammals, the milk of marsupials changes greatly in both production rate and in nutrient composition, due to the underdeveloped young. In addition, the mammary glands have more autonomy allowing them to supply separate milks to young at different development stages.<ref>{{cite book| vauthors = Krockenberger A |year=2006 |title= Marsupials | chapter = Lactation| veditors = Dickman CR, Armati PJ, Hume ID |page=109|publisher=Cambridge University Press |isbn=978-1-139-45742-2}}</ref> [[Lactose]] is the main sugar in placental milk while monotreme and marsupial milk is dominated by [[oligosaccharide]]s.<ref>{{cite book| vauthors = Schulkin J, Power ML |year=2016|title=Milk: The Biology of Lactation|publisher=Johns Hopkins University Press|page=66|isbn=978-1-4214-2042-4}}</ref> [[Weaning]] is the process in which a mammal becomes less dependent on their mother's milk and more on solid food.<ref>{{cite book | vauthors = Thompson KV, Baker AJ, Baker AM |year=2010|title=Wild Mammals in Captivity Principles and Techniques for Zoo Management|publisher=University of Chicago Press| chapter = Paternal Care and Behavioral Development in Captive Mammals | veditors = Kleiman DG, Thompson KV, Baer CK |page=374|isbn=978-0-226-44011-8|edition=2nd}}</ref> | The [[mammary gland]]s of mammals are specialised to produce milk, the primary source of nutrition for newborns. The monotremes branched early from other mammals and do not have the [[teat]]s seen in most mammals, but they do have mammary glands. The young lick the milk from a mammary patch on the mother's belly.<ref>{{cite journal | vauthors = Oftedal OT | title = The mammary gland and its origin during synapsid evolution | journal = Journal of Mammary Gland Biology and Neoplasia | volume = 7 | issue = 3 | pages = 225–252 | date = July 2002 | pmid = 12751889 | doi = 10.1023/a:1022896515287 | s2cid = 25806501 }}</ref> Compared to placental mammals, the milk of marsupials changes greatly in both production rate and in nutrient composition, due to the underdeveloped young. In addition, the mammary glands have more autonomy allowing them to supply separate milks to young at different development stages.<ref>{{cite book| vauthors = Krockenberger A |year=2006 |title= Marsupials | chapter = Lactation| veditors = Dickman CR, Armati PJ, Hume ID |page=109|publisher=Cambridge University Press |isbn=978-1-139-45742-2}}</ref> [[Lactose]] is the main sugar in placental milk while monotreme and marsupial milk is dominated by [[oligosaccharide]]s.<ref>{{cite book| vauthors = Schulkin J, Power ML |year=2016|title=Milk: The Biology of Lactation|publisher=Johns Hopkins University Press|page=66|isbn=978-1-4214-2042-4}}</ref> [[Weaning]] is the process in which a mammal becomes less dependent on their mother's milk and more on solid food.<ref>{{cite book | vauthors = Thompson KV, Baker AJ, Baker AM |year=2010|title=Wild Mammals in Captivity Principles and Techniques for Zoo Management|publisher=University of Chicago Press| chapter = Paternal Care and Behavioral Development in Captive Mammals | veditors = Kleiman DG, Thompson KV, Baer CK |page=374|isbn=978-0-226-44011-8|edition=2nd}}</ref> | ||
| Line 426: | Line 427: | ||
===Species lifespan=== | ===Species lifespan=== | ||
{{See also|Life expectancy|Maximum life span}} | {{See also|Life expectancy|Maximum life span}} | ||
Among mammals, species maximum lifespan varies significantly | Among mammals, species maximum lifespan varies significantly from one year in the [[yellow-sided opossum]]{{cn|date=September 2025}} to 211 years in the oldest [[bowhead whale]] recorded.<ref name="pmid19896964">{{cite journal | vauthors = Lorenzini A, Johnson FB, Oliver A, Tresini M, Smith JS, Hdeib M, Sell C, Cristofalo VJ, Stamato TD | display-authors = 6 | title = Significant correlation of species longevity with DNA double strand break recognition but not with telomere length | journal = Mechanisms of Ageing and Development | volume = 130 | issue = 11–12 | pages = 784–792 | year = 2009 | pmid = 19896964 | pmc = 2799038 | doi = 10.1016/j.mad.2009.10.004 }}</ref> Although the underlying basis for these lifespan differences is still uncertain, numerous studies indicate that the ability to [[DNA repair|repair DNA damage]] is an important determinant of mammalian lifespan. In a 1974 study by Hart and Setlow,<ref name="pmid4526202">{{cite journal | vauthors = Hart RW, Setlow RB | title = Correlation between deoxyribonucleic acid excision-repair and life-span in a number of mammalian species | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 71 | issue = 6 | pages = 2169–2173 | date = June 1974 | pmid = 4526202 | pmc = 388412 | doi = 10.1073/pnas.71.6.2169 | bibcode = 1974PNAS...71.2169H | doi-access = free }}</ref> it was found that DNA excision repair capability increased systematically with species lifespan among seven mammalian species. Species lifespan was observed to be robustly correlated with the capacity to recognise DNA double-strand breaks as well as the level of the DNA repair protein [[Ku80]].<ref name="pmid19896964"/> In a study of the cells from sixteen mammalian species, genes employed in DNA repair were found to be [[Downregulation and upregulation|up-regulated]] in the longer-lived species.<ref name="pmid27874830">{{cite journal | vauthors = Ma S, Upneja A, Galecki A, Tsai YM, Burant CF, Raskind S, Zhang Q, Zhang ZD, Seluanov A, Gorbunova V, Clish CB, Miller RA, Gladyshev VN | display-authors = 6 | title = Cell culture-based profiling across mammals reveals DNA repair and metabolism as determinants of species longevity | journal = eLife | volume = 5 | date = November 2016 | article-number = e19130 | pmid = 27874830 | pmc = 5148604 | doi = 10.7554/eLife.19130 | doi-access = free }}</ref> The cellular level of the DNA repair enzyme [[poly ADP ribose polymerase]] was found to correlate with species lifespan in a study of 13 mammalian species.<ref name="pmid1465394">{{cite journal | vauthors = Grube K, Bürkle A | title = Poly(ADP-ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 89 | issue = 24 | pages = 11759–11763 | date = December 1992 | pmid = 1465394 | pmc = 50636 | doi = 10.1073/pnas.89.24.11759 | bibcode = 1992PNAS...8911759G | doi-access = free }}</ref> Three additional studies of a variety of mammalian species also reported a correlation between species lifespan and DNA repair capability.<ref name="pmid7266079">{{cite journal | vauthors = Francis AA, Lee WH, Regan JD | title = The relationship of DNA excision repair of ultraviolet-induced lesions to the maximum life span of mammals | journal = Mechanisms of Ageing and Development | volume = 16 | issue = 2 | pages = 181–189 | date = June 1981 | pmid = 7266079 | doi = 10.1016/0047-6374(81)90094-4 | s2cid = 19830165 }}</ref><ref name="pmid7060140">{{cite journal | vauthors = Treton JA, Courtois Y | title = Correlation between DNA excision repair and mammalian lifespan in lens epithelial cells | journal = Cell Biology International Reports | volume = 6 | issue = 3 | pages = 253–260 | date = March 1982 | pmid = 7060140 | doi = 10.1016/0309-1651(82)90077-7 | doi-broken-date = 1 July 2025 }}</ref><ref name="pmid3974310">{{cite journal | vauthors = Maslansky CJ, Williams GM | title = Ultraviolet light-induced DNA repair synthesis in hepatocytes from species of differing longevities | journal = Mechanisms of Ageing and Development | volume = 29 | issue = 2 | pages = 191–203 | date = February 1985 | pmid = 3974310 | doi = 10.1016/0047-6374(85)90018-1 | s2cid = 23988416 }}</ref> | ||
===Locomotion=== | ===Locomotion=== | ||
| Line 434: | Line 435: | ||
{{Main|Terrestrial locomotion}} | {{Main|Terrestrial locomotion}} | ||
[[File:Muybridge race horse animated.gif|thumb|[[running|Running gait]]. Photographs by [[Eadweard Muybridge]], 1887]] | [[File:Muybridge race horse animated.gif|thumb|[[running|Running gait]]. Photographs by [[Eadweard Muybridge]], 1887]] | ||
Most | Most vertebrates are [[plantigrade]], walking on the whole of the underside of the foot. Many mammals, such as cats and dogs, are [[digitigrade]], walking on their toes, the greater stride length allowing more speed. Some animals such as [[horse]]s are [[unguligrade]], walking on the tips of their toes. This even further increases their stride length and thus their speed.<ref>{{cite book|url={{Google books |plainurl=yes |id=LaaLNfY6gB8C |page=3}}| vauthors = Walker WF, Homberger DG |author-link2= Dominique G. Homberger|year=1998|title=Anatomy and Dissection of the Fetal Pig|edition=5th|location=New York|publisher=W. H. Freeman and Company|page=3|isbn=978-0-7167-2637-1|oclc=40576267}}</ref> A few mammals, namely the great apes, are also known to [[Knuckle-walking|walk on their knuckles]], at least for their front legs. [[Giant anteater]]s<ref>{{cite journal | vauthors = Orr CM | title = Knuckle-walking anteater: a convergence test of adaptation for purported knuckle-walking features of African Hominidae | journal = American Journal of Physical Anthropology | volume = 128 | issue = 3 | pages = 639–658 | date = November 2005 | pmid = 15861420 | doi = 10.1002/ajpa.20192 }}</ref> and platypuses<ref>{{cite journal | vauthors = Fish FE, Frappell PB, Baudinette RV, MacFarlane PM | title = Energetics of terrestrial locomotion of the platypus Ornithorhynchus anatinus | journal = The Journal of Experimental Biology | volume = 204 | issue = Pt 4 | pages = 797–803 | date = February 2001 | doi = 10.1242/jeb.204.4.797 | pmid = 11171362 | bibcode = 2001JExpB.204..797F | hdl = 2440/12192 | url = https://jeb.biologists.org/cgi/reprint/204/4/797.pdf | access-date = 25 January 2024 | archive-date = 14 March 2024 | archive-url = https://web.archive.org/web/20240314100116/https://jeb.biologists.org/cgi/reprint/204/4/797.pdf | url-status = live }}</ref> are also knuckle-walkers. Some mammals are [[bipedalism|bipeds]], using only two limbs for locomotion, which can be seen in, for example, humans and the great apes. Bipedal species have a larger field of [[Mammalian vision|vision]] than quadrupeds, conserve more energy and have the ability to manipulate objects with their hands, which aids in foraging. Instead of walking, some bipeds hop, such as kangaroos and [[kangaroo rat]]s.<ref>{{cite journal|url=http://www.philosophistry.com/static/bipedalism.html|vauthors=Dhingra P|year=2004|title=Comparative Bipedalism – How the Rest of the Animal Kingdom Walks on two legs|journal=Anthropological Science|volume=131|issue=231|access-date=11 March 2017|archive-date=21 April 2021|archive-url=https://web.archive.org/web/20210421085055/https://philosophistry.com/static/bipedalism.html|url-status=live}}</ref><ref>{{cite journal | vauthors = Alexander RM | title = Bipedal animals, and their differences from humans | journal = Journal of Anatomy | volume = 204 | issue = 5 | pages = 321–330 | date = May 2004 | pmid = 15198697 | pmc = 1571302 | doi = 10.1111/j.0021-8782.2004.00289.x }}</ref> | ||
Animals will use different gaits for different speeds, terrain and situations. For example, horses show four natural gaits, the slowest [[horse gait]] is the [[Horse gait#Walk|walk]], then there are three faster gaits which, from slowest to fastest, are the [[trot (horse gait)|trot]], the [[canter]] and the [[Horse gait#Gallop|gallop]]. Animals may also have unusual gaits that are used occasionally, such as for moving sideways or backwards. For example, the main [[gait (human)|human gaits]] are bipedal [[walking]] and [[running]], but they employ many other gaits occasionally, including a four-legged [[crawling (human)|crawl]] in tight spaces.<ref name=dagg>{{cite journal| vauthors = Dagg AI |author-link=Anne Innis Dagg|year=1973|title=Gaits in Mammals|journal=Mammal Review|volume=3|issue=4|pages=135–154|doi=10.1111/j.1365-2907.1973.tb00179.x|bibcode=1973MamRv...3..135D }}</ref> Mammals show a vast range of [[gait]]s, the order that they place and lift their appendages in locomotion. Gaits can be grouped into categories according to their patterns of support sequence. For quadrupeds, there are three main categories: walking gaits, running gaits and [[leaping gaits]].<ref>{{cite book| vauthors = Roberts TD |title=Understanding Balance: The Mechanics of Posture and Locomotion|url={{Google books|plainurl=yes|id=o8RvD3X8ur8C|page=211}}|location=San Diego|year=1995|publisher= Nelson Thornes|isbn=978-1-56593-416-0|page=211|oclc=33167785}}</ref> Walking is the most common gait, where some feet are on the ground at any given time, and found in almost all legged animals. Running is considered to occur when at some points in the stride all feet are off the ground in a moment of suspension.<ref name=dagg/> | Animals will use different gaits for different speeds, terrain and situations. For example, horses show four natural gaits, the slowest [[horse gait]] is the [[Horse gait#Walk|walk]], then there are three faster gaits which, from slowest to fastest, are the [[trot (horse gait)|trot]], the [[canter]] and the [[Horse gait#Gallop|gallop]]. Animals may also have unusual gaits that are used occasionally, such as for moving sideways or backwards. For example, the main [[gait (human)|human gaits]] are bipedal [[walking]] and [[running]], but they employ many other gaits occasionally, including a four-legged [[crawling (human)|crawl]] in tight spaces.<ref name=dagg>{{cite journal| vauthors = Dagg AI |author-link=Anne Innis Dagg|year=1973|title=Gaits in Mammals|journal=Mammal Review|volume=3|issue=4|pages=135–154|doi=10.1111/j.1365-2907.1973.tb00179.x|bibcode=1973MamRv...3..135D }}</ref> Mammals show a vast range of [[gait]]s, the order that they place and lift their appendages in locomotion. Gaits can be grouped into categories according to their patterns of support sequence. For quadrupeds, there are three main categories: walking gaits, running gaits and [[leaping gaits]].<ref>{{cite book| vauthors = Roberts TD |title=Understanding Balance: The Mechanics of Posture and Locomotion|url={{Google books|plainurl=yes|id=o8RvD3X8ur8C|page=211}}|location=San Diego|year=1995|publisher= Nelson Thornes|isbn=978-1-56593-416-0|page=211|oclc=33167785}}</ref> Walking is the most common gait, where some feet are on the ground at any given time, and found in almost all legged animals. Running is considered to occur when at some points in the stride all feet are off the ground in a moment of suspension.<ref name=dagg/> | ||
| Line 451: | Line 452: | ||
====Fossorial and subterranean==== | ====Fossorial and subterranean==== | ||
{{See also|Fossorial|Burrow}} | |||
{{Multiple image|align=right|image1=Wombat3.jpg|image2=ScalopusAquaticus.jpg|total_width=400|footer=Semi-fossorial [[Southern hairy-nosed wombat|wombat]] (left) vs. fully fossorial [[eastern mole]] (right)}} | {{Multiple image|align=right|image1=Wombat3.jpg|image2=ScalopusAquaticus.jpg|total_width=400|footer=Semi-fossorial [[Southern hairy-nosed wombat|wombat]] (left) vs. fully fossorial [[eastern mole]] (right)}} | ||
A fossorial (from Latin ''fossor'', meaning "digger") is an animal adapted to digging which lives primarily, but not solely, underground. Some examples are [[badger]]s, and [[naked mole-rat]]s. Many [[rodent]] species are also considered fossorial because they live in burrows for most but not all of the day. Species that live exclusively underground are subterranean, and those with limited adaptations to a fossorial lifestyle sub-fossorial. Some organisms are fossorial to aid in [[temperature regulation]] while others use the underground habitat for protection from [[predator]]s or for [[food storage]].<ref name=":2">Damiani, R, 2003, Earliest evidence of cynodont burrowing, The Royal Society Publishing, Volume 270, Issue 1525</ref> | A fossorial (from Latin ''fossor'', meaning "digger") is an animal adapted to digging which lives primarily, but not solely, underground. Some examples are [[badger]]s, and [[naked mole-rat]]s. Many [[rodent]] species are also considered fossorial because they live in burrows for most but not all of the day. Species that live exclusively underground are subterranean, and those with limited adaptations to a fossorial lifestyle sub-fossorial. Some organisms are fossorial to aid in [[temperature regulation]] while others use the underground habitat for protection from [[predator]]s or for [[food storage]].<ref name=":2">Damiani, R, 2003, Earliest evidence of cynodont burrowing, The Royal Society Publishing, Volume 270, Issue 1525</ref> | ||
| Line 462: | Line 464: | ||
{{Main|Aquatic locomotion|Marine mammal|Aquatic mammal}} | {{Main|Aquatic locomotion|Marine mammal|Aquatic mammal}} | ||
[[File:Living-on-the-Edge-Settlement-Patterns-by-the-Symbiotic-Barnacle-Xenobalanus-globicipitis-on-Small-pone.0127367.s001.ogv|thumb|A pod of [[short-beaked common dolphin]]s swimming]] | [[File:Living-on-the-Edge-Settlement-Patterns-by-the-Symbiotic-Barnacle-Xenobalanus-globicipitis-on-Small-pone.0127367.s001.ogv|thumb|A pod of [[short-beaked common dolphin]]s swimming]] | ||
Fully aquatic mammals, the cetaceans and [[sirenia]]ns, have lost their legs and have a tail fin to propel themselves through the water. [[Flipper (anatomy)|Flipper]] movement is continuous. Whales swim by moving their tail fin and lower body up and down, propelling themselves through vertical movement, while their flippers are mainly used for steering. Their skeletal anatomy allows them to be fast swimmers. Most species have a [[dorsal fin]] to prevent themselves from turning upside-down in the water.<ref>{{cite journal | vauthors = Perry DA |year=1949 |title=The anatomical basis of swimming in Whales |journal=Journal of Zoology |volume=119 |issue=1 |pages=49–60 |doi=10.1111/j.1096-3642.1949.tb00866.x}}</ref><ref>{{cite journal | vauthors = Fish FE, Hui CA |year=1991 |title=Dolphin swimming – a review |journal=Mammal Review |volume=21 |issue=4 |pages=181–195 |url=https://darwin.wcupa.edu/~biology/fish/pubs/pdf/1991MRDolphinswimming.pdf |archive-url=https://web.archive.org/web/20060829000617/http://darwin.wcupa.edu/~biology/fish/pubs/pdf/1991MRDolphinswimming.pdf | Fully aquatic mammals, the cetaceans and [[sirenia]]ns, have lost their legs and have a tail fin to propel themselves through the water. [[Flipper (anatomy)|Flipper]] movement is continuous. Whales swim by moving their tail fin and lower body up and down, propelling themselves through vertical movement, while their flippers are mainly used for steering. Their skeletal anatomy allows them to be fast swimmers. Most species have a [[dorsal fin]] to prevent themselves from turning upside-down in the water.<ref>{{cite journal | vauthors = Perry DA |year=1949 |title=The anatomical basis of swimming in Whales |journal=Journal of Zoology |volume=119 |issue=1 |pages=49–60 |doi=10.1111/j.1096-3642.1949.tb00866.x}}</ref><ref>{{cite journal | vauthors = Fish FE, Hui CA |year=1991 |title=Dolphin swimming – a review |journal=Mammal Review |volume=21 |issue=4 |pages=181–195 |url=https://darwin.wcupa.edu/~biology/fish/pubs/pdf/1991MRDolphinswimming.pdf |archive-url=https://web.archive.org/web/20060829000617/http://darwin.wcupa.edu/~biology/fish/pubs/pdf/1991MRDolphinswimming.pdf |archive-date=29 August 2006 |doi=10.1111/j.1365-2907.1991.tb00292.x }}</ref> The flukes of sirenians are raised up and down in long strokes to move the animal forward, and can be twisted to turn. The forelimbs are paddle-like flippers which aid in turning and slowing.<ref>{{cite book| vauthors = Marsh H |chapter-url= https://www.environment.gov.au/biodiversity/abrs/publications/fauna-of-australia/pubs/volume1b/57-ind.pdf |chapter=Chapter 57: Dugongidae |title=Fauna of Australia |volume=1 |publisher=Australian Government Publications |isbn=978-0-644-06056-1 |location=Canberra |year=1989 |oclc=27492815 |archive-url=https://web.archive.org/web/20130511221756/http://www.environment.gov.au/biodiversity/abrs/publications/fauna-of-australia/pubs/volume1b/57-ind.pdf |archive-date=11 May 2013 }}</ref> | ||
[[Semi-aquatic]] mammals, like pinnipeds, have two pairs of flippers on the front and back, the fore-flippers and hind-flippers. The elbows and ankles are enclosed within the body.<ref name=Berta63>{{cite book | vauthors = Berta A | title = Return to the Sea: The Life and Evolutionary Times of Marine Mammals | chapter = Pinniped Diversity: Evolution and Adaptations | publisher = University of California Press | date = 2012 | isbn = 978-0-520-27057-2 | pages = 62–64}}</ref><ref name="Fish 2003">{{cite journal | vauthors = Fish FE, Hurley J, Costa DP | title = Maneuverability by the sea lion Zalophus californianus: turning performance of an unstable body design | journal = The Journal of Experimental Biology | volume = 206 | issue = Pt 4 | pages = 667–674 | date = February 2003 | pmid = 12517984 | doi = 10.1242/jeb.00144 | doi-access = free | bibcode = 2003JExpB.206..667F }}</ref> Pinnipeds have several adaptions for reducing [[Drag (physics)|drag]]. In addition to their streamlined bodies, they have smooth networks of [[Muscle fascicle|muscle bundles]] in their skin that may increase [[laminar flow]] and make it easier for them to slip through water. They also lack [[Arrector pili muscle|arrector pili]], so their fur can be streamlined as they swim.<ref name=Riedman3/> They rely on their fore-flippers for locomotion in a wing-like manner similar to [[penguin]]s and [[sea turtles]].<ref name="Fish1996">{{Cite journal | vauthors = Fish FE |title=Transitions from drag-based to lift-based propulsion in mammalian swimming |doi=10.1093/icb/36.6.628 |journal=Integrative and Comparative Biology |volume=36 |issue=6 |pages=628–641 |year=1996|doi-access=free }}</ref> Fore-flipper movement is not continuous, and the animal glides between each stroke.<ref name="Fish 2003"/> Compared to terrestrial carnivorans, the fore-limbs are reduced in length, which gives the locomotor muscles at the shoulder and elbow joints greater mechanical advantage;<ref name=Berta63/> the hind-flippers serve as stabilizers.<ref name=Riedman3>{{cite book| vauthors = Riedman M |year=1990|title=The Pinnipeds: Seals, Sea Lions, and Walruses| url = https://archive.org/details/pinnipedssealsse0000ried | url-access = registration |publisher=University of California Press|isbn=978-0-520-06497-3|oclc=19511610}}</ref> Other semi-aquatic mammals include beavers, [[hippopotamus]]es, [[otter]]s and platypuses.<ref>{{cite journal | vauthors = Fish FE | title = Biomechanics and energetics in aquatic and semiaquatic mammals: platypus to whale | journal = Physiological and Biochemical Zoology | volume = 73 | issue = 6 | pages = 683–698 | year = 2000 | pmid = 11121343 | doi = 10.1086/318108 | url = https://darwin.wcupa.edu/~biology/fish/pubs/pdf/2000PBZ-PlatToWhale.pdf | [[Semi-aquatic]] mammals, like pinnipeds, have two pairs of flippers on the front and back, the fore-flippers and hind-flippers. The elbows and ankles are enclosed within the body.<ref name=Berta63>{{cite book | vauthors = Berta A | title = Return to the Sea: The Life and Evolutionary Times of Marine Mammals | chapter = Pinniped Diversity: Evolution and Adaptations | publisher = University of California Press | date = 2012 | isbn = 978-0-520-27057-2 | pages = 62–64}}</ref><ref name="Fish 2003">{{cite journal | vauthors = Fish FE, Hurley J, Costa DP | title = Maneuverability by the sea lion Zalophus californianus: turning performance of an unstable body design | journal = The Journal of Experimental Biology | volume = 206 | issue = Pt 4 | pages = 667–674 | date = February 2003 | pmid = 12517984 | doi = 10.1242/jeb.00144 | doi-access = free | bibcode = 2003JExpB.206..667F }}</ref> Pinnipeds have several adaptions for reducing [[Drag (physics)|drag]]. In addition to their streamlined bodies, they have smooth networks of [[Muscle fascicle|muscle bundles]] in their skin that may increase [[laminar flow]] and make it easier for them to slip through water. They also lack [[Arrector pili muscle|arrector pili]], so their fur can be streamlined as they swim.<ref name=Riedman3/> They rely on their fore-flippers for locomotion in a wing-like manner similar to [[penguin]]s and [[sea turtles]].<ref name="Fish1996">{{Cite journal | vauthors = Fish FE |title=Transitions from drag-based to lift-based propulsion in mammalian swimming |doi=10.1093/icb/36.6.628 |journal=Integrative and Comparative Biology |volume=36 |issue=6 |pages=628–641 |year=1996|doi-access=free }}</ref> Fore-flipper movement is not continuous, and the animal glides between each stroke.<ref name="Fish 2003"/> Compared to terrestrial carnivorans, the fore-limbs are reduced in length, which gives the locomotor muscles at the shoulder and elbow joints greater mechanical advantage;<ref name=Berta63/> the hind-flippers serve as stabilizers.<ref name=Riedman3>{{cite book| vauthors = Riedman M |year=1990|title=The Pinnipeds: Seals, Sea Lions, and Walruses| url = https://archive.org/details/pinnipedssealsse0000ried | url-access = registration |publisher=University of California Press|isbn=978-0-520-06497-3|oclc=19511610}}</ref> Other semi-aquatic mammals include beavers, [[hippopotamus]]es, [[otter]]s and platypuses.<ref>{{cite journal | vauthors = Fish FE | title = Biomechanics and energetics in aquatic and semiaquatic mammals: platypus to whale | journal = Physiological and Biochemical Zoology | volume = 73 | issue = 6 | pages = 683–698 | year = 2000 | pmid = 11121343 | doi = 10.1086/318108 | url = https://darwin.wcupa.edu/~biology/fish/pubs/pdf/2000PBZ-PlatToWhale.pdf | citeseerx = 10.1.1.734.1217 | s2cid = 49732160 | archive-url = https://web.archive.org/web/20160804111726/http://darwin.wcupa.edu/~biology/fish/pubs/pdf/2000PBZ-PlatToWhale.pdf | archive-date = 4 August 2016 }}</ref> Hippos are very large semi-aquatic mammals, and their barrel-shaped bodies have [[wikt:graviportal|graviportal]] skeletal structures,<ref>{{cite book | vauthors = Eltringham SK |year=1999|title=The Hippos|chapter=Anatomy and Physiology|location= London|publisher=T & AD Poyser Ltd|page=8|isbn=978-0-85661-131-5|oclc=42274422}}</ref> adapted to carrying their enormous weight, and their [[specific gravity]] allows them to sink and move along the bottom of a river.<ref>{{cite magazine|title=Hippopotamus ''Hippopotamus amphibius''|magazine=National Geographic|access-date= 30 April 2016|url= https://animals.nationalgeographic.com/animals/mammals/hippopotamus/|archive-url= https://web.archive.org/web/20141125041546/http://animals.nationalgeographic.com/animals/mammals/hippopotamus/|archive-date= 25 November 2014}}</ref> | ||
==Behavior== | ==Behavior== | ||
| Line 472: | Line 474: | ||
[[File:Monkey & Baby.JPG|thumb|upright|[[Vervet monkey]]s use at least four distinct [[alarm signal|alarm calls]] for different [[predator]]s.<ref name=Seyfarth/>]] | [[File:Monkey & Baby.JPG|thumb|upright|[[Vervet monkey]]s use at least four distinct [[alarm signal|alarm calls]] for different [[predator]]s.<ref name=Seyfarth/>]] | ||
Many mammals communicate by vocalising. Vocal communication serves many purposes, including in mating rituals, as [[alarm signal|warning calls]],<ref>{{cite journal | vauthors = Zuberbühler K |title=Predator-specific alarm calls in Campbell's monkeys, ''Cercopithecus campbelli'' |journal=Behavioral Ecology and Sociobiology |volume=50 |issue=5 |year=2001 |pages=414–442 |jstor=4601985 |doi=10.1007/s002650100383|bibcode=2001BEcoS..50..414Z |s2cid=21374702 }}</ref> to indicate food sources, and for social purposes. Males often call during mating rituals to ward off other males and to attract females, as in the [[roar (vocalization)|roaring]] of [[lion]]s and [[red deer]].<ref>{{cite journal | vauthors = Slabbekoorn H, Smith TB | title = Bird song, ecology and speciation | journal = Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences | volume = 357 | issue = 1420 | pages = 493–503 | date = April 2002 | pmid = 12028787 | pmc = 1692962 | doi = 10.1098/rstb.2001.1056 }}</ref> The [[whale song|songs]] of the humpback whale may be signals to females;<ref>{{cite book | vauthors = Bannister JL |chapter=Baleen Whales (Mysticetes) |pages=80–89 |title=Encyclopedia of Marine Mammals |edition=2nd | veditors = Perrin WF, Würsig B, Thewissen JG |editor3-link = Hans Thewissen |year=2008 |publisher=Academic Press |isbn=978-0-12-373553-9 |chapter-url={{Google books |plainurl=yes |id=2rkHQpToi9sC |page=1007}}}}</ref> they have different dialects in different regions of the ocean.<ref>{{cite journal | vauthors = Scott N |year=2002 |title=Creatures of Culture? Making the Case for Cultural Systems in Whales and Dolphins |journal=BioScience |volume=52 |issue=1 |pages=9–14 |doi=10.1641/0006-3568(2002)052[0009:COCMTC]2.0.CO;2|s2cid=86121405 |doi-access=free }}</ref> Social vocalisations include the [[territory (animal)|territorial]] calls of [[gibbon]]s, and the use of frequency in [[greater spear-nosed bat]]s to distinguish between groups.<ref>{{cite journal | vauthors = Boughman JW | title = Vocal learning by greater spear-nosed bats | journal = Proceedings. Biological Sciences | volume = 265 | issue = 1392 | pages = 227–233 | date = February 1998 | pmid = 9493408 | pmc = 1688873 | doi = 10.1098/rspb.1998.0286 }}</ref> The [[vervet monkey]] gives a distinct alarm call for each of at least four different predators, and the reactions of other monkeys vary according to the call. For example, if an alarm call signals a python, the monkeys climb into the trees, whereas the eagle alarm causes monkeys to seek a hiding place on the ground.<ref name=Seyfarth>{{cite journal |vauthors=Seyfarth RM, Cheney DL, Marler P |title=Vervet Monkey Alarm Calls: Semantic communication in a Free-Ranging Primate |journal=Animal Behaviour |volume=28 |issue=4 |pages=1070–1094 |year=1980 |doi=10.1016/S0003-3472(80)80097-2 |s2cid=53165940 |url=https://www.researchgate.net/publication/223576319 |access-date=22 September 2018 |archive-date=12 September 2019 |archive-url=https://web.archive.org/web/20190912082142/https://www.researchgate.net/publication/223576319_Vervet_Monkey_Alarm_Calls_Semantic_Communication_In_A_Free-Ranging_Primate |url-status=live }}</ref> [[Prairie dogs]] similarly have complex calls that signal the type, size, and speed of an approaching predator.<ref>{{cite web |url=https://www.cbc.ca/news/technology/prairie-dogs-language-decoded-by-scientists-1.1322230 |title=Prairie dogs' language decoded by scientists |date=21 June 2013 |publisher=CBC News |access-date=20 May 2015 |archive-date=22 May 2015 |archive-url=https://web.archive.org/web/20150522024501/http://www.cbc.ca/news/technology/prairie-dogs-language-decoded-by-scientists-1.1322230 |url-status=live }}</ref> Elephants communicate socially with a variety of sounds including snorting, screaming, trumpeting, roaring and rumbling. Some of the rumbling calls are [[infrasound|infrasonic]], below the hearing range of humans, and can be heard by other elephants up to {{convert|6|mi}} away at still times near sunrise and sunset.<ref>{{cite magazine | vauthors = Mayell H |title=Elephants Call Long-Distance After-Hours |url=https://news.nationalgeographic.com/news/2004/03/0303_040303_elephants.html |archive-url=https://web.archive.org/web/20040305154249/http://news.nationalgeographic.com/news/2004/03/0303_040303_elephants.html | Many mammals communicate by vocalising. Vocal communication serves many purposes, including in mating rituals, as [[alarm signal|warning calls]],<ref>{{cite journal | vauthors = Zuberbühler K |title=Predator-specific alarm calls in Campbell's monkeys, ''Cercopithecus campbelli'' |journal=Behavioral Ecology and Sociobiology |volume=50 |issue=5 |year=2001 |pages=414–442 |jstor=4601985 |doi=10.1007/s002650100383|bibcode=2001BEcoS..50..414Z |s2cid=21374702 }}</ref> to indicate food sources, and for social purposes. Males often call during mating rituals to ward off other males and to attract females, as in the [[roar (vocalization)|roaring]] of [[lion]]s and [[red deer]].<ref>{{cite journal | vauthors = Slabbekoorn H, Smith TB | title = Bird song, ecology and speciation | journal = Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences | volume = 357 | issue = 1420 | pages = 493–503 | date = April 2002 | pmid = 12028787 | pmc = 1692962 | doi = 10.1098/rstb.2001.1056 }}</ref> The [[whale song|songs]] of the humpback whale may be signals to females;<ref>{{cite book | vauthors = Bannister JL |chapter=Baleen Whales (Mysticetes) |pages=80–89 |title=Encyclopedia of Marine Mammals |edition=2nd | veditors = Perrin WF, Würsig B, Thewissen JG |editor3-link = Hans Thewissen |year=2008 |publisher=Academic Press |isbn=978-0-12-373553-9 |chapter-url={{Google books |plainurl=yes |id=2rkHQpToi9sC |page=1007}}}}</ref> they have different dialects in different regions of the ocean.<ref>{{cite journal | vauthors = Scott N |year=2002 |title=Creatures of Culture? Making the Case for Cultural Systems in Whales and Dolphins |journal=BioScience |volume=52 |issue=1 |pages=9–14 |doi=10.1641/0006-3568(2002)052[0009:COCMTC]2.0.CO;2|s2cid=86121405 |doi-access=free }}</ref> Social vocalisations include the [[territory (animal)|territorial]] calls of [[gibbon]]s, and the use of frequency in [[greater spear-nosed bat]]s to distinguish between groups.<ref>{{cite journal | vauthors = Boughman JW | title = Vocal learning by greater spear-nosed bats | journal = Proceedings. Biological Sciences | volume = 265 | issue = 1392 | pages = 227–233 | date = February 1998 | pmid = 9493408 | pmc = 1688873 | doi = 10.1098/rspb.1998.0286 }}</ref> The [[vervet monkey]] gives a distinct alarm call for each of at least four different predators, and the reactions of other monkeys vary according to the call. For example, if an alarm call signals a python, the monkeys climb into the trees, whereas the eagle alarm causes monkeys to seek a hiding place on the ground.<ref name=Seyfarth>{{cite journal |vauthors=Seyfarth RM, Cheney DL, Marler P |title=Vervet Monkey Alarm Calls: Semantic communication in a Free-Ranging Primate |journal=Animal Behaviour |volume=28 |issue=4 |pages=1070–1094 |year=1980 |doi=10.1016/S0003-3472(80)80097-2 |bibcode=1980AnBeh..28.1070S |s2cid=53165940 |url=https://www.researchgate.net/publication/223576319 |access-date=22 September 2018 |archive-date=12 September 2019 |archive-url=https://web.archive.org/web/20190912082142/https://www.researchgate.net/publication/223576319_Vervet_Monkey_Alarm_Calls_Semantic_Communication_In_A_Free-Ranging_Primate |url-status=live }}</ref> [[Prairie dogs]] similarly have complex calls that signal the type, size, and speed of an approaching predator.<ref>{{cite web |url=https://www.cbc.ca/news/technology/prairie-dogs-language-decoded-by-scientists-1.1322230 |title=Prairie dogs' language decoded by scientists |date=21 June 2013 |publisher=CBC News |access-date=20 May 2015 |archive-date=22 May 2015 |archive-url=https://web.archive.org/web/20150522024501/http://www.cbc.ca/news/technology/prairie-dogs-language-decoded-by-scientists-1.1322230 |url-status=live }}</ref> Elephants communicate socially with a variety of sounds including snorting, screaming, trumpeting, roaring and rumbling. Some of the rumbling calls are [[infrasound|infrasonic]], below the hearing range of humans, and can be heard by other elephants up to {{convert|6|mi}} away at still times near sunrise and sunset.<ref>{{cite magazine | vauthors = Mayell H |title=Elephants Call Long-Distance After-Hours |url=https://news.nationalgeographic.com/news/2004/03/0303_040303_elephants.html |archive-url=https://web.archive.org/web/20040305154249/http://news.nationalgeographic.com/news/2004/03/0303_040303_elephants.html |archive-date=5 March 2004 |magazine=National Geographic |access-date=15 November 2016 |date=3 March 2004}}</ref> | ||
[[file:Killer whale.ogg|left|thumb|Orca calling including occasional echolocation clicks]] | [[file:Killer whale.ogg|left|thumb|Orca calling including occasional echolocation clicks]] | ||
Mammals signal by a variety of means. Many give visual [[Anti-predator adaptation|anti-predator signals]], as when deer and [[gazelle]] [[stotting|stot]], [[honest signal|honestly indicating]] their fit condition and their ability to escape,<ref>{{cite book | title=Animal Signals | publisher=Oxford University Press | vauthors = Smith JM, Harper D | year=2003 | author1-link=John Maynard Smith| pages=61–63 |url={{Google books |plainurl=yes |id=SUA51MeG1lcC |page=61}}|isbn=978-0-19-852684-1 |oclc=54460090 |series=Oxford Series in Ecology and Evolution}}</ref><ref>{{cite journal|title=Stotting in Thomson's gazelles: an honest signal of condition |url=https://webs.wofford.edu/moellerjf/Animal%20Behavior%202011/stotting%20in%20gazelles.pdf | vauthors = FitzGibbon CD, Fanshawe JH |journal=Behavioral Ecology and Sociobiology |year=1988 |volume=23 |issue=2 |pages=69–74 |doi=10.1007/bf00299889 |bibcode=1988BEcoS..23...69F |s2cid=2809268 | Mammals signal by a variety of means. Many give visual [[Anti-predator adaptation|anti-predator signals]], as when deer and [[gazelle]] [[stotting|stot]], [[honest signal|honestly indicating]] their fit condition and their ability to escape,<ref>{{cite book | title=Animal Signals | publisher=Oxford University Press | vauthors = Smith JM, Harper D | year=2003 | author1-link=John Maynard Smith| pages=61–63 |url={{Google books |plainurl=yes |id=SUA51MeG1lcC |page=61}}|isbn=978-0-19-852684-1 |oclc=54460090 |series=Oxford Series in Ecology and Evolution}}</ref><ref>{{cite journal|title=Stotting in Thomson's gazelles: an honest signal of condition |url=https://webs.wofford.edu/moellerjf/Animal%20Behavior%202011/stotting%20in%20gazelles.pdf | vauthors = FitzGibbon CD, Fanshawe JH |journal=Behavioral Ecology and Sociobiology |year=1988 |volume=23 |issue=2 |pages=69–74 |doi=10.1007/bf00299889 |bibcode=1988BEcoS..23...69F |s2cid=2809268 |archive-url=https://web.archive.org/web/20140225073844/http://webs.wofford.edu/moellerjf/Animal%20Behavior%202011/stotting%20in%20gazelles.pdf |archive-date=25 February 2014 }}</ref> or when [[white-tailed deer]] and other prey mammals flag with conspicuous tail markings when alarmed, informing the predator that it has been detected.<ref>{{cite journal | vauthors = Bildstein KL |title=Why White-Tailed Deer Flag Their Tails |journal=The American Naturalist |date=May 1983 |volume=121 |issue=5 |pages=709–715 |jstor=2460873 |doi=10.1086/284096|bibcode=1983ANat..121..709B |s2cid=83504795 }}</ref> Many mammals make use of [[scent-marking]], sometimes possibly to help defend territory, but probably with a range of functions both within and between species.<ref>{{cite journal | vauthors = Gosling LM | title = A reassessment of the function of scent marking in territories. | journal = Zeitschrift für Tierpsychologie | date = January 1982 | volume = 60 | issue = 2 | pages = 89–118 | url = https://www.researchgate.net/publication/230317056 | doi = 10.1111/j.1439-0310.1982.tb00492.x | bibcode = 1982Ethol..60...89G | access-date = 12 October 2019 | archive-date = 27 March 2018 | archive-url = https://web.archive.org/web/20180327084413/https://www.researchgate.net/profile/Leonard_Gosling/publication/230317056_A_Reassessment_of_the_Function_of_Scent_Marking_in_Territories/links/59dcd8b4a6fdcca56e35e24c/A-Reassessment-of-the-Function-of-Scent-Marking-in-Territories.pdf | url-status = live }}</ref><ref>{{cite journal | vauthors = Zala SM, Potts WK, Penn DJ | title = Scent-marking displays provide honest signals of health and infection. | journal = Behavioral Ecology | date = March 2004 | volume = 15 | issue = 2 | pages = 338–344 | doi = 10.1093/beheco/arh022 | hdl = 10.1093/beheco/arh022 | hdl-access = free }}</ref><ref>{{cite journal | vauthors = Johnson RP |title=Scent Marking in Mammals |journal=Animal Behaviour |date=August 1973 |volume=21 |issue=3 |pages=521–535 |doi=10.1016/S0003-3472(73)80012-0 |bibcode=1973AnBeh..21..521J }}</ref> [[Microbat]]s and [[toothed whale]]s including [[oceanic dolphin]]s vocalise both socially and in [[animal echolocation|echolocation]].<ref>{{cite journal | vauthors = Schevill WE, McBride AF | year=1956 | title=Evidence for echolocation by cetaceans | journal=Deep-Sea Research | volume=3 | issue=2 | pages=153–154 | doi=10.1016/0146-6313(56)90096-x |bibcode=1956DSR.....3..153S}}</ref><ref>{{Cite book | vauthors = Wilson W, Moss C |year=2004 |title=Echolocation in Bats and Dolphins | veditors = Thomas J |page=22 |publisher=Chicago University Press |isbn=978-0-226-79599-7 |oclc=50143737}}</ref><ref>{{cite book |url={{Google books |plainurl=yes |id=Q3MIsrPDA5EC |page=front}} | vauthors = Au WW |year=1993 |title=The Sonar of Dolphins |publisher=Springer-Verlag |isbn=978-3-540-97835-0 |oclc=26158593}}</ref> | ||
===Feeding=== | ===Feeding=== | ||
[[File:Short-beaked echidna in suburban-Sydney backyard.webm|thumb|A [[short-beaked echidna]] foraging for insects]] | [[File:Short-beaked echidna in suburban-Sydney backyard.webm|thumb|A [[short-beaked echidna]] foraging for insects]] | ||
To maintain a high constant body temperature is energy expensive—mammals therefore need a nutritious and plentiful diet. While the earliest mammals were probably predators, different species have since adapted to meet their dietary requirements in a variety of ways. Some eat other animals—this is a [[carnivore|carnivorous]] diet (and includes insectivorous diets). Other mammals, called [[herbivore]]s, eat plants, which contain [[complex carbohydrate]]s such as cellulose. An herbivorous diet includes subtypes such as [[granivory]] (seed eating), [[folivory]] (leaf eating), [[frugivory]] (fruit eating), [[nectarivory]] (nectar eating), [[gummivory]] (gum eating) and [[mycophagy]] (fungus eating). The digestive tract of an herbivore is host to bacteria that ferment these complex substances, and make them available for digestion, which are either housed in the multichambered [[stomach]] or in a large cecum.<ref name="Comparative anatomy of the stomach"/> Some mammals are [[coprophagous]], consuming [[feces]] to absorb the nutrients not digested when the food was first ingested.<ref name=hair/>{{rp|131–137}} An [[omnivore]] eats both prey and plants. Carnivorous mammals have a simple [[digestive system|digestive tract]] because the [[protein]]s, [[lipid]]s and [[mineral]]s found in meat require little in the way of specialised digestion. Exceptions to this include [[baleen whale]]s who also house [[gut flora]] in a multi-chambered stomach, like terrestrial herbivores.<ref>{{cite journal | vauthors = Sanders JG, Beichman AC, Roman J, Scott JJ, Emerson D, McCarthy JJ, Girguis PR |author7-link= Peter Girguis | title = Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores | journal = Nature Communications | volume = 6 | | To maintain a high constant body temperature is energy expensive—mammals therefore need a nutritious and plentiful diet. While the earliest mammals were probably predators, different species have since adapted to meet their dietary requirements in a variety of ways. Some eat other animals—this is a [[carnivore|carnivorous]] diet (and includes insectivorous diets). Other mammals, called [[herbivore]]s, eat plants, which contain [[complex carbohydrate]]s such as cellulose. An herbivorous diet includes subtypes such as [[granivory]] (seed eating), [[folivory]] (leaf eating), [[frugivory]] (fruit eating), [[nectarivory]] (nectar eating), [[gummivory]] (gum eating) and [[mycophagy]] (fungus eating). The digestive tract of an herbivore is host to bacteria that ferment these complex substances, and make them available for digestion, which are either housed in the multichambered [[stomach]] or in a large cecum.<ref name="Comparative anatomy of the stomach"/> Some mammals are [[coprophagous]], consuming [[feces]] to absorb the nutrients not digested when the food was first ingested.<ref name=hair/>{{rp|131–137}} An [[omnivore]] eats both prey and plants. Carnivorous mammals have a simple [[digestive system|digestive tract]] because the [[protein]]s, [[lipid]]s and [[mineral]]s found in meat require little in the way of specialised digestion. Exceptions to this include [[baleen whale]]s who also house [[gut flora]] in a multi-chambered stomach, like terrestrial herbivores.<ref>{{cite journal | vauthors = Sanders JG, Beichman AC, Roman J, Scott JJ, Emerson D, McCarthy JJ, Girguis PR |author7-link= Peter Girguis | title = Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores | journal = Nature Communications | volume = 6 | article-number = 8285 | date = September 2015 | pmid = 26393325 | pmc = 4595633 | doi = 10.1038/ncomms9285 | bibcode = 2015NatCo...6.8285S }}</ref> | ||
The size of an animal is also a factor in determining diet type ([[Allen's rule]]). Since small mammals have a high ratio of heat-losing surface area to heat-generating volume, they tend to have high energy requirements and a high [[metabolism|metabolic rate]]. Mammals that weigh less than about {{convert|18|oz|g+lb}} are mostly insectivorous because they cannot tolerate the slow, complex digestive process of an herbivore. Larger animals, on the other hand, generate more heat and less of this heat is lost. They can therefore tolerate either a slower collection process (carnivores that feed on larger vertebrates) or a slower digestive process (herbivores).<ref>{{cite journal |url=https://www.abdn.ac.uk/energetics-research/publications/pdf_docs/86.pdf |vauthors=Speaksman JR |year=1996 |title=Energetics and the evolution of body size in small terrestrial mammals |journal=Symposia of the Zoological Society of London |number=69 |pages=69–81 |access-date=31 May 2016 |archive-date=2 June 2021 |archive-url=https://web.archive.org/web/20210602065723/https://www.abdn.ac.uk/energetics-research/publications/pdf_docs/86.pdf }}</ref> Furthermore, mammals that weigh more than {{convert|18|oz|g+lb}} usually cannot collect enough insects during their waking hours to sustain themselves. The only large insectivorous mammals are those that feed on huge colonies of insects ([[ant]]s or [[termite]]s).<ref name="Smithsonian_Animal"/> | |||
{{Multiple image|image1=Blacky.jpg|image2=A polar bear (Ursus maritimus) scavenging a narwhal whale (Monodon monoceros) carcass - journal.pone.0060797.g001-A.png|footer=The [[hypocarnivore|hypocarnivorous]] [[American black bear]] (''Ursus americanus'') vs. the [[hypercarnivorous]] [[polar bear]] (''Ursus maritimus'')<ref name=valkenburgh2007/>|direction=horizontal}} | |||
Some mammals are omnivores and display varying degrees of carnivory and herbivory, generally leaning in favour of one more than the other. Since plants and meat are digested differently, there is a preference for one over the other, as in bears where some species may be mostly carnivorous and others mostly herbivorous.<ref>{{cite journal| vauthors = Sacco T, van Valkenburgh B |year=2004|title=Ecomorphological indicators of feeding behaviour in the bears (Carnivora: Ursidae)|journal=Journal of Zoology|volume=263|issue=1|pages=41–54|doi=10.1017/S0952836904004856}}</ref> They are grouped into three categories: [[mesocarnivore|mesocarnivory]] (50–70% meat), [[hypercarnivore|hypercarnivory]] (70% and greater of meat), and [[hypocarnivore|hypocarnivory]] (50% or less of meat). The dentition of hypocarnivores consists of dull, triangular carnassial teeth meant for grinding food. Hypercarnivores, however, have conical teeth and sharp carnassials meant for slashing, and in some cases strong jaws for bone-crushing, as in the case of [[hyena]]s, allowing them to consume bones; some extinct groups, notably the [[Machairodontinae]], had sabre-shaped [[maxillary canine|canines]].<ref name=valkenburgh2007>{{cite journal | vauthors = Van Valkenburgh B | title = Deja vu: the evolution of feeding morphologies in the Carnivora | journal = Integrative and Comparative Biology | volume = 47 | issue = 1 | pages = 147–163 | date = July 2007 | pmid = 21672827 | doi = 10.1093/icb/icm016 | doi-access = free }}</ref> | Some mammals are omnivores and display varying degrees of carnivory and herbivory, generally leaning in favour of one more than the other. Since plants and meat are digested differently, there is a preference for one over the other, as in bears where some species may be mostly carnivorous and others mostly herbivorous.<ref>{{cite journal| vauthors = Sacco T, van Valkenburgh B |year=2004|title=Ecomorphological indicators of feeding behaviour in the bears (Carnivora: Ursidae)|journal=Journal of Zoology|volume=263|issue=1|pages=41–54|doi=10.1017/S0952836904004856}}</ref> They are grouped into three categories: [[mesocarnivore|mesocarnivory]] (50–70% meat), [[hypercarnivore|hypercarnivory]] (70% and greater of meat), and [[hypocarnivore|hypocarnivory]] (50% or less of meat). The dentition of hypocarnivores consists of dull, triangular carnassial teeth meant for grinding food. Hypercarnivores, however, have conical teeth and sharp carnassials meant for slashing, and in some cases strong jaws for bone-crushing, as in the case of [[hyena]]s, allowing them to consume bones; some extinct groups, notably the [[Machairodontinae]], had sabre-shaped [[maxillary canine|canines]].<ref name=valkenburgh2007>{{cite journal | vauthors = Van Valkenburgh B | title = Deja vu: the evolution of feeding morphologies in the Carnivora | journal = Integrative and Comparative Biology | volume = 47 | issue = 1 | pages = 147–163 | date = July 2007 | pmid = 21672827 | doi = 10.1093/icb/icm016 | doi-access = free }}</ref> | ||
| Line 499: | Line 502: | ||
[[File:A Bonobo at the San Diego Zoo "fishing" for termites.jpg|thumb|A [[bonobo]] fishing for [[termite]]s with a stick]] | [[File:A Bonobo at the San Diego Zoo "fishing" for termites.jpg|thumb|A [[bonobo]] fishing for [[termite]]s with a stick]] | ||
[[Tool use by animals]] may indicate different levels of [[learning]] and [[animal cognition|cognition]]. The [[tool use by sea otters|sea otter]] uses rocks as essential and regular parts of its foraging behaviour (smashing [[abalone]] from rocks or breaking open shells), with some populations spending 21% of their time making tools.<ref>{{cite journal | vauthors = Mann J, Patterson EM | title = Tool use by aquatic animals | journal = Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences | volume = 368 | issue = 1630 | | [[Tool use by non-humans|Tool use by animals]] may indicate different levels of [[learning]] and [[animal cognition|cognition]]. The [[tool use by sea otters|sea otter]] uses rocks as essential and regular parts of its foraging behaviour (smashing [[abalone]] from rocks or breaking open shells), with some populations spending 21% of their time making tools.<ref>{{cite journal | vauthors = Mann J, Patterson EM | title = Tool use by aquatic animals | journal = Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences | volume = 368 | issue = 1630 | article-number = 20120424 | date = November 2013 | pmid = 24101631 | pmc = 4027413 | doi = 10.1098/rstb.2012.0424 }}</ref> Other tool use, such as [[chimpanzee]]s using twigs to "fish" for termites, may be developed by [[Observational learning|watching others use tools]] and may even be a true example of animal teaching.<ref>{{cite book| vauthors = Raffaele P |year=2011 |title=Among the Great Apes: Adventures on the Trail of Our Closest Relatives |publisher=Harper |page=83 |isbn=978-0-06-167184-5 |location=New York |oclc=674694369}}</ref> Tools may even be used in solving puzzles in which the animal appears to experience a [[Eureka effect|"Eureka moment"]].<ref>{{cite book |url={{Google books|plainurl=yes|id=IIR8CgAAQBAJ}} | vauthors = Köhler W |year=1925 |publisher=Liveright |title=The Mentality of Apes |isbn=978-0-87140-108-3|oclc=2000769}}</ref> Other mammals that do not use tools, such as dogs, can also experience a Eureka moment.<ref>{{cite journal | vauthors = McGowan RT, Rehn T, Norling Y, Keeling LJ | title = Positive affect and learning: exploring the "Eureka Effect" in dogs | journal = Animal Cognition | volume = 17 | issue = 3 | pages = 577–587 | date = May 2014 | pmid = 24096703 | doi = 10.1007/s10071-013-0688-x | s2cid = 15216926 }}</ref> | ||
[[Brain size]] was previously considered a major indicator of the intelligence of an animal. Since most of the brain is used for maintaining bodily functions, greater ratios of [[Brain-to-body mass ratio|brain to body mass]] may increase the amount of brain mass available for more complex cognitive tasks. [[Allometric]] analysis indicates that mammalian brain size scales at approximately the {{frac|2|3}} or {{frac|3|4}} exponent of the body mass. Comparison of a particular animal's brain size with the expected brain size based on such allometric analysis provides an [[encephalization quotient|encephalisation quotient]] that can be used as another indication of animal intelligence.<ref>{{cite journal | vauthors = Karbowski J | title = Global and regional brain metabolic scaling and its functional consequences | journal = BMC Biology | volume = 5 | issue = 18 | | [[Brain size]] was previously considered a major indicator of the intelligence of an animal. Since most of the brain is used for maintaining bodily functions, greater ratios of [[Brain-to-body mass ratio|brain to body mass]] may increase the amount of brain mass available for more complex cognitive tasks. [[Allometric]] analysis indicates that mammalian brain size scales at approximately the {{frac|2|3}} or {{frac|3|4}} exponent of the body mass. Comparison of a particular animal's brain size with the expected brain size based on such allometric analysis provides an [[encephalization quotient|encephalisation quotient]] that can be used as another indication of animal intelligence.<ref>{{cite journal | vauthors = Karbowski J | title = Global and regional brain metabolic scaling and its functional consequences | journal = BMC Biology | volume = 5 | issue = 18 | article-number = 18 | date = May 2007 | pmid = 17488526 | pmc = 1884139 | doi = 10.1186/1741-7007-5-18 | bibcode = 2007arXiv0705.2913K | arxiv = 0705.2913 | doi-access = free }}</ref> [[Sperm whale]]s have the largest brain mass of any animal on earth, averaging {{convert|8000|cm3}} and {{convert|7.8|kg}} in mature males.<ref>{{cite journal | vauthors = Marino L | title = Cetacean brains: how aquatic are they? | journal = Anatomical Record | volume = 290 | issue = 6 | pages = 694–700 | date = June 2007 | pmid = 17516433 | doi = 10.1002/ar.20530 | s2cid = 27074107 | url = https://animalstudiesrepository.org/cgi/viewcontent.cgi?article=1006&context=anatom | doi-access = free | access-date = 5 October 2019 | archive-date = 20 March 2020 | archive-url = https://web.archive.org/web/20200320082257/https://animalstudiesrepository.org/cgi/viewcontent.cgi?article=1006&context=anatom | url-status = live }}</ref> | ||
[[Self-awareness]] appears to be a sign of abstract thinking. Self-awareness, although not well-defined, is believed to be a precursor to more advanced processes such as [[metacognition|metacognitive reasoning]]. The traditional method for measuring this is the [[mirror test]], which determines if an animal possesses the ability of self-recognition.<ref>{{cite journal | vauthors = Gallop GG | title = Chimpanzees: self-recognition | journal = Science | volume = 167 | issue = 3914 | pages = 86–87 | date = January 1970 | pmid = 4982211 | doi = 10.1126/science.167.3914.86 | bibcode = 1970Sci...167...86G | s2cid = 145295899 }}</ref> Mammals that have passed the mirror test include [[Asian elephant]]s (some pass, some do not);<ref>{{cite journal | vauthors = Plotnik JM, de Waal FB, Reiss D | title = Self-recognition in an Asian elephant | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 103 | issue = 45 | pages = 17053–17057 | date = November 2006 | pmid = 17075063 | pmc = 1636577 | doi = 10.1073/pnas.0608062103 | url = https://www.emory.edu/LIVING_LINKS/publications/articles/Plotnik_etal_2006.pdf | bibcode = 2006PNAS..10317053P | doi-access = free | access-date = 25 January 2024 | archive-date = 25 January 2024 | archive-url = https://web.archive.org/web/20240125191350/https://www.emory.edu/LIVING_LINKS/publications/articles/Plotnik_etal_2006.pdf | url-status = live }}</ref> chimpanzees;<ref name=robert>{{cite journal | vauthors = Robert S |title=Ontogeny of mirror behavior in two species of great apes |journal=American Journal of Primatology |volume=10 |issue=2 |pages=109–117 |year=1986 |doi=10.1002/ajp.1350100202 |pmid=31979488|s2cid=85330986 }}</ref> [[bonobo]]s;<ref>{{cite journal| vauthors = Walraven V, van Elsacker L, Verheyen R |year=1995 |title=Reactions of a group of pygmy chimpanzees (Pan paniscus) to their mirror images: evidence of self-recognition |journal=Primates |volume=36 |pages=145–150 |doi=10.1007/bf02381922|s2cid=38985498 }}</ref> [[orangutan]]s;<ref name=orangutan>{{cite book|chapter-url={{Google books |plainurl=yes |id=5ywsREEZ-j4C|page=150}} | vauthors = Leakey R |year=1994 |chapter=The Origin of the Mind |title=The Origin Of Humankind |location=New York |publisher=BasicBooks |page=150 |isbn=978-0-465-05313-1 |oclc=30739453}}</ref> humans, from 18 months ([[mirror stage]]);<ref name="archer">{{cite book | vauthors = Archer J |year=1992 |title=Ethology and Human Development |publisher=Rowman & Littlefield |pages=215–218 |isbn=978-0-389-20996-6 |oclc=25874476 |url={{Google books |plainurl=yes |id=QDT27k5envcC|page=217}}}}</ref> [[common bottlenose dolphin]]s;{{efn|Decreased latency to approach the mirror, repetitious head circling and close viewing of the marked areas were considered signs of self-recognition since they do not have arms and cannot touch the marked areas.<ref name=parker95/>}}<ref name=parker95>{{cite book |title=Self-awareness in Animals and Humans: Developmental Perspectives | vauthors = Marten K, Psarakos S |chapter=Evidence of self-awareness in the bottlenose dolphin (''Tursiops truncatus'') | veditors = Parker ST, Mitchell R, Boccia M |pages=361–379 |year=1995|location=Cambridge|publisher=Cambridge University Press |isbn=978-0-521-44108-7 |oclc=28180680}}</ref> [[orca]]s;<ref name="Delfour">{{cite journal | vauthors = Delfour F, Marten K | title = Mirror image processing in three marine mammal species: killer whales (Orcinus orca), false killer whales (Pseudorca crassidens) and California sea lions (Zalophus californianus) | journal = Behavioural Processes | volume = 53 | issue = 3 | pages = 181–190 | date = April 2001 | pmid = 11334706 | doi = 10.1016/s0376-6357(01)00134-6 | s2cid = 31124804 }}</ref> and [[false killer whale]]s.<ref name=Delfour/> | [[Self-awareness]] appears to be a sign of abstract thinking. Self-awareness, although not well-defined, is believed to be a precursor to more advanced processes such as [[metacognition|metacognitive reasoning]]. The traditional method for measuring this is the [[mirror test]], which determines if an animal possesses the ability of self-recognition.<ref>{{cite journal | vauthors = Gallop GG | title = Chimpanzees: self-recognition | journal = Science | volume = 167 | issue = 3914 | pages = 86–87 | date = January 1970 | pmid = 4982211 | doi = 10.1126/science.167.3914.86 | bibcode = 1970Sci...167...86G | s2cid = 145295899 }}</ref> Mammals that have passed the mirror test include [[Asian elephant]]s (some pass, some do not);<ref>{{cite journal | vauthors = Plotnik JM, de Waal FB, Reiss D | title = Self-recognition in an Asian elephant | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 103 | issue = 45 | pages = 17053–17057 | date = November 2006 | pmid = 17075063 | pmc = 1636577 | doi = 10.1073/pnas.0608062103 | url = https://www.emory.edu/LIVING_LINKS/publications/articles/Plotnik_etal_2006.pdf | bibcode = 2006PNAS..10317053P | doi-access = free | access-date = 25 January 2024 | archive-date = 25 January 2024 | archive-url = https://web.archive.org/web/20240125191350/https://www.emory.edu/LIVING_LINKS/publications/articles/Plotnik_etal_2006.pdf | url-status = live }}</ref> chimpanzees;<ref name=robert>{{cite journal | vauthors = Robert S |title=Ontogeny of mirror behavior in two species of great apes |journal=American Journal of Primatology |volume=10 |issue=2 |pages=109–117 |year=1986 |doi=10.1002/ajp.1350100202 |pmid=31979488|s2cid=85330986 }}</ref> [[bonobo]]s;<ref>{{cite journal| vauthors = Walraven V, van Elsacker L, Verheyen R |year=1995 |title=Reactions of a group of pygmy chimpanzees (Pan paniscus) to their mirror images: evidence of self-recognition |journal=Primates |volume=36 |pages=145–150 |doi=10.1007/bf02381922|s2cid=38985498 }}</ref> [[orangutan]]s;<ref name=orangutan>{{cite book|chapter-url={{Google books |plainurl=yes |id=5ywsREEZ-j4C|page=150}} | vauthors = Leakey R |year=1994 |chapter=The Origin of the Mind |title=The Origin Of Humankind |location=New York |publisher=BasicBooks |page=150 |isbn=978-0-465-05313-1 |oclc=30739453}}</ref> humans, from 18 months ([[mirror stage]]);<ref name="archer">{{cite book | vauthors = Archer J |year=1992 |title=Ethology and Human Development |publisher=Rowman & Littlefield |pages=215–218 |isbn=978-0-389-20996-6 |oclc=25874476 |url={{Google books |plainurl=yes |id=QDT27k5envcC|page=217}}}}</ref> [[common bottlenose dolphin]]s;{{efn|Decreased latency to approach the mirror, repetitious head circling and close viewing of the marked areas were considered signs of self-recognition since they do not have arms and cannot touch the marked areas.<ref name=parker95/>}}<ref name=parker95>{{cite book |title=Self-awareness in Animals and Humans: Developmental Perspectives | vauthors = Marten K, Psarakos S |chapter=Evidence of self-awareness in the bottlenose dolphin (''Tursiops truncatus'') | veditors = Parker ST, Mitchell R, Boccia M |pages=361–379 |year=1995|location=Cambridge|publisher=Cambridge University Press |isbn=978-0-521-44108-7 |oclc=28180680}}</ref> [[orca]]s;<ref name="Delfour">{{cite journal | vauthors = Delfour F, Marten K | title = Mirror image processing in three marine mammal species: killer whales (Orcinus orca), false killer whales (Pseudorca crassidens) and California sea lions (Zalophus californianus) | journal = Behavioural Processes | volume = 53 | issue = 3 | pages = 181–190 | date = April 2001 | pmid = 11334706 | doi = 10.1016/s0376-6357(01)00134-6 | s2cid = 31124804 }}</ref> and [[false killer whale]]s.<ref name=Delfour/> | ||
| Line 512: | Line 515: | ||
Presociality is when animals exhibit more than just sexual interactions with members of the same species, but fall short of qualifying as eusocial. That is, presocial animals can display communal living, cooperative care of young, or primitive division of reproductive labour, but they do not display all of the three essential traits of eusocial animals. Humans and some species of [[Callitrichidae]] ([[marmoset]]s and [[tamarin]]s) are unique among primates in their degree of cooperative care of young.<ref>{{cite book| vauthors = Hardy SB | year=2009| title=Mothers and Others: The Evolutionary Origins of Mutual Understanding| publisher=Belknap Press of Harvard University Press| pages=92–93| url={{Google books| plainurl=yes| id=dsiksDFQPDsC| page=92}}| location=Boston}}</ref> [[Harry Harlow]] set up an experiment with [[rhesus monkey]]s, presocial primates, in 1958; the results from this study showed that social encounters are necessary in order for the young monkeys to develop both mentally and sexually.<ref name=Harlow71>{{cite journal | vauthors = Harlow HF, Suomi SJ | title = Social recovery by isolation-reared monkeys | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 68 | issue = 7 | pages = 1534–1538 | date = July 1971 | pmid = 5283943 | pmc = 389234 | doi = 10.1073/pnas.68.7.1534 | bibcode = 1971PNAS...68.1534H | doi-access = free }}</ref> | Presociality is when animals exhibit more than just sexual interactions with members of the same species, but fall short of qualifying as eusocial. That is, presocial animals can display communal living, cooperative care of young, or primitive division of reproductive labour, but they do not display all of the three essential traits of eusocial animals. Humans and some species of [[Callitrichidae]] ([[marmoset]]s and [[tamarin]]s) are unique among primates in their degree of cooperative care of young.<ref>{{cite book| vauthors = Hardy SB | year=2009| title=Mothers and Others: The Evolutionary Origins of Mutual Understanding| publisher=Belknap Press of Harvard University Press| pages=92–93| url={{Google books| plainurl=yes| id=dsiksDFQPDsC| page=92}}| location=Boston}}</ref> [[Harry Harlow]] set up an experiment with [[rhesus monkey]]s, presocial primates, in 1958; the results from this study showed that social encounters are necessary in order for the young monkeys to develop both mentally and sexually.<ref name=Harlow71>{{cite journal | vauthors = Harlow HF, Suomi SJ | title = Social recovery by isolation-reared monkeys | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 68 | issue = 7 | pages = 1534–1538 | date = July 1971 | pmid = 5283943 | pmc = 389234 | doi = 10.1073/pnas.68.7.1534 | bibcode = 1971PNAS...68.1534H | doi-access = free }}</ref> | ||
A [[fission–fusion society]] is a society that changes frequently in its size and composition, making up a permanent social group called the "parent group". Permanent social networks consist of all individual members of a community and often varies to track changes in their environment. In a fission–fusion society, the main parent group can fracture (fission) into smaller stable subgroups or individuals to adapt to [[Social environment|environmental]] or social circumstances. For example, a number of males may break off from the main group in order to hunt or forage for food during the day, but at night they may return to join (fusion) the primary group to share food and partake in other activities. Many mammals exhibit this, such as primates (for example orangutans and [[spider monkey]]s),<ref>{{cite journal | vauthors = van Schaik CP | title = The socioecology of fission–fusion sociality in Orangutans | journal = Primates; Journal of Primatology | volume = 40 | issue = 1 | pages = 69–86 | date = January 1999 | pmid = 23179533 | doi = 10.1007/BF02557703 | s2cid = 13366732 }}</ref> elephants,<ref>{{cite journal | vauthors = Archie EA, Moss CJ, Alberts SC | title = The ties that bind: genetic relatedness predicts the fission and fusion of social groups in wild African elephants | journal = Proceedings. Biological Sciences | volume = 273 | issue = 1586 | pages = 513–522 | date = March 2006 | pmid = 16537121 | pmc = 1560064 | doi = 10.1098/rspb.2005.3361 }}</ref> [[spotted hyena]]s,<ref>{{cite journal| vauthors = Smith JE, Memenis SK, Holekamp KE | title=Rank-related partner choice in the fission–fusion society of the spotted hyena (''Crocuta crocuta'')| journal=Behavioral Ecology and Sociobiology| year=2007| volume=61| issue=5| pages=753–765| doi=10.1007/s00265-006-0305-y| bibcode=2007BEcoS..61..753S| s2cid=24927919| url=https://www.mills.edu/academics/faculty/bio/jesmith/partner.pdf | A [[fission–fusion society]] is a society that changes frequently in its size and composition, making up a permanent social group called the "parent group". Permanent social networks consist of all individual members of a community and often varies to track changes in their environment. In a fission–fusion society, the main parent group can fracture (fission) into smaller stable subgroups or individuals to adapt to [[Social environment|environmental]] or social circumstances. For example, a number of males may break off from the main group in order to hunt or forage for food during the day, but at night they may return to join (fusion) the primary group to share food and partake in other activities. Many mammals exhibit this, such as primates (for example orangutans and [[spider monkey]]s),<ref>{{cite journal | vauthors = van Schaik CP | title = The socioecology of fission–fusion sociality in Orangutans | journal = Primates; Journal of Primatology | volume = 40 | issue = 1 | pages = 69–86 | date = January 1999 | pmid = 23179533 | doi = 10.1007/BF02557703 | s2cid = 13366732 }}</ref> elephants,<ref>{{cite journal | vauthors = Archie EA, Moss CJ, Alberts SC | title = The ties that bind: genetic relatedness predicts the fission and fusion of social groups in wild African elephants | journal = Proceedings. Biological Sciences | volume = 273 | issue = 1586 | pages = 513–522 | date = March 2006 | pmid = 16537121 | pmc = 1560064 | doi = 10.1098/rspb.2005.3361 }}</ref> [[spotted hyena]]s,<ref>{{cite journal| vauthors = Smith JE, Memenis SK, Holekamp KE | title=Rank-related partner choice in the fission–fusion society of the spotted hyena (''Crocuta crocuta'')| journal=Behavioral Ecology and Sociobiology| year=2007| volume=61| issue=5| pages=753–765| doi=10.1007/s00265-006-0305-y| bibcode=2007BEcoS..61..753S| s2cid=24927919| url=https://www.mills.edu/academics/faculty/bio/jesmith/partner.pdf| archive-url=https://web.archive.org/web/20140425002800/http://www.mills.edu/academics/faculty/bio/jesmith/partner.pdf| archive-date=25 April 2014}}</ref> lions,<ref>{{cite journal | vauthors = Matoba T, Kutsukake N, Hasegawa T | title = Head rubbing and licking reinforce social bonds in a group of captive African lions, Panthera leo | journal = PLOS ONE | volume = 8 | issue = 9 | article-number = e73044 | year = 2013 | pmid = 24023806 | pmc = 3762833 | doi = 10.1371/journal.pone.0073044 | bibcode = 2013PLoSO...873044M | veditors = Hayward M | doi-access = free }}</ref> and dolphins.<ref>{{cite journal | vauthors = Krützen M, Barré LM, Connor RC, Mann J, Sherwin WB | title = 'O father: where art thou?' – Paternity assessment in an open fission–fusion society of wild bottlenose dolphins (Tursiops sp.) in Shark Bay, Western Australia | journal = Molecular Ecology | volume = 13 | issue = 7 | pages = 1975–1990 | date = July 2004 | pmid = 15189218 | doi = 10.1111/j.1365-294X.2004.02192.x | bibcode = 2004MolEc..13.1975K | s2cid = 4510393 }}</ref> | ||
Solitary animals defend a territory and avoid social interactions with the members of its species, except during breeding season. This is to avoid resource competition, as two individuals of the same species would occupy the same niche, and to prevent depletion of food.<ref>{{cite book| url={{Google books | plainurl=yes | id=Nb21BwAAQBAJ| page=114}} | vauthors = Martin C | year=1991 | title=The Rainforests of West Africa: Ecology – Threats – Conservation | publisher=Springer | doi=10.1007/978-3-0348-7726-8| isbn=978-3-0348-7726-8}}</ref> A solitary animal, while foraging, can also be less conspicuous to predators or prey.<ref>{{cite journal | vauthors = le Roux A, Cherry MI, Gygax L | title=Vigilance behaviour and fitness consequences: comparing a solitary foraging and an obligate group-foraging mammal| journal=Behavioral Ecology and Sociobiology | date=5 May 2009 | volume=63 | issue=8 | pages=1097–1107 | doi=10.1007/s00265-009-0762-1| bibcode=2009BEcoS..63.1097L| s2cid=21961356 }}</ref> | Solitary animals defend a territory and avoid social interactions with the members of its species, except during breeding season. This is to avoid resource competition, as two individuals of the same species would occupy the same niche, and to prevent depletion of food.<ref>{{cite book| url={{Google books | plainurl=yes | id=Nb21BwAAQBAJ| page=114}} | vauthors = Martin C | year=1991 | title=The Rainforests of West Africa: Ecology – Threats – Conservation | publisher=Springer | doi=10.1007/978-3-0348-7726-8| isbn=978-3-0348-7726-8}}</ref> A solitary animal, while foraging, can also be less conspicuous to predators or prey.<ref>{{cite journal | vauthors = le Roux A, Cherry MI, Gygax L | title=Vigilance behaviour and fitness consequences: comparing a solitary foraging and an obligate group-foraging mammal| journal=Behavioral Ecology and Sociobiology | date=5 May 2009 | volume=63 | issue=8 | pages=1097–1107 | doi=10.1007/s00265-009-0762-1| bibcode=2009BEcoS..63.1097L| s2cid=21961356 }}</ref> | ||
| Line 518: | Line 521: | ||
[[File:Fighting red kangaroos 2.jpg|thumb|left|[[Red kangaroo]]s "boxing" for [[dominance hierarchy|dominance]]]] | [[File:Fighting red kangaroos 2.jpg|thumb|left|[[Red kangaroo]]s "boxing" for [[dominance hierarchy|dominance]]]] | ||
In a [[dominance hierarchy|hierarchy]], individuals are either dominant or submissive. A despotic hierarchy is where one individual is dominant while the others are submissive, as in wolves and lemurs,<ref>{{cite journal | vauthors = Palagi E, Norscia I | title = The Season for Peace: Reconciliation in a Despotic Species (Lemur catta) | journal = PLOS ONE | volume = 10 | issue = 11 | | In a [[dominance hierarchy|hierarchy]], individuals are either dominant or submissive. A despotic hierarchy is where one individual is dominant while the others are submissive, as in wolves and lemurs,<ref>{{cite journal | vauthors = Palagi E, Norscia I | title = The Season for Peace: Reconciliation in a Despotic Species (Lemur catta) | journal = PLOS ONE | volume = 10 | issue = 11 | article-number = e0142150 | year = 2015 | pmid = 26569400 | pmc = 4646466 | doi = 10.1371/journal.pone.0142150 | bibcode = 2015PLoSO..1042150P | veditors = Samonds KE | doi-access = free }}</ref> and a [[pecking order]] is a linear ranking of individuals where there is a top individual and a bottom individual. Pecking orders may also be ranked by sex, where the lowest individual of a sex has a higher ranking than the top individual of the other sex, as in hyenas.<ref>{{cite journal| vauthors = East ML, Hofer H | year=2000 | title=Male spotted hyenas (''Crocuta crocuta'') queue for status in social groups dominated by females | journal=Behavioral Ecology | volume=12 | issue=15| pages=558–568 | doi=10.1093/beheco/12.5.558| doi-access=free }}</ref> Dominant individuals, or alphas, have a high chance of reproductive success, especially in [[harem (zoology)|harems]] where one or a few males (resident males) have exclusive breeding rights to females in a group.<ref>{{cite journal |author2-link=Joan Silk | vauthors = Samuels A, Silk JB, Rodman P | year=1984 | title=Changes in the dominance rank and reproductive behavior of male bonnet macaques (''Macaca radiate'')| journal=Animal Behaviour | volume=32 | issue=4 | pages=994–1003 | doi=10.1016/s0003-3472(84)80212-2| bibcode = 1984AnBeh..32..994S | s2cid=53186523 }}</ref> Non-resident males can also be accepted in harems, but some species, such as the [[common vampire bat]] (''Desmodus rotundus''), may be more strict.<ref>{{cite journal | vauthors = Delpietro HA, Russo RG | year=2002 | title=Observations of the common vampire bat (''Desmodus rotundus'') and the hairy-legged vampire bat (''Diphylla ecaudata'') in captivity | journal=[[Mammalian Biology]] | volume=67 | issue=2 | pages=65–78 | doi=10.1078/1616-5047-00011| bibcode=2002MamBi..67...65D }}</ref> | ||
Some mammals are perfectly [[Monogamy in animals|monogamous]], meaning that they [[pair bond|mate for life]] and take no other partners (even after the original mate's death), as with wolves, [[Eurasian beaver]]s, and otters.<ref>{{cite journal | vauthors = Kleiman DG | title = Monogamy in mammals | journal = The Quarterly Review of Biology | volume = 52 | issue = 1 | pages = 39–69 | date = March 1977 | pmid = 857268 | doi = 10.1086/409721 | s2cid = 25675086 }}</ref><ref>{{cite journal | vauthors = Holland B, Rice WR | journal = Evolution; International Journal of Organic Evolution | volume = 52 | issue = 1 | pages = 1–7 | date = February 1998 | pmid = 28568154 | doi = 10.2307/2410914 | url = https://wolfweb.unr.edu/homepage/jaz/eecb752/lecture06/Holland%26Rice1998.pdf | jstor = 2410914 | title = Perspective: Chase-Away Sexual Selection: Antagonistic Seduction Versus Resistance | access-date = 8 July 2016 | archive-url = https://web.archive.org/web/20190608065427/https://wolfweb.unr.edu/homepage/jaz/eecb752/lecture06/Holland%26Rice1998.pdf | archive-date = 8 June 2019 | Some mammals are perfectly [[Monogamy in animals|monogamous]], meaning that they [[pair bond|mate for life]] and take no other partners (even after the original mate's death), as with wolves, [[Eurasian beaver]]s, and otters.<ref>{{cite journal | vauthors = Kleiman DG | title = Monogamy in mammals | journal = The Quarterly Review of Biology | volume = 52 | issue = 1 | pages = 39–69 | date = March 1977 | pmid = 857268 | doi = 10.1086/409721 | s2cid = 25675086 }}</ref><ref>{{cite journal | vauthors = Holland B, Rice WR | journal = Evolution; International Journal of Organic Evolution | volume = 52 | issue = 1 | pages = 1–7 | date = February 1998 | pmid = 28568154 | doi = 10.2307/2410914 | url = https://wolfweb.unr.edu/homepage/jaz/eecb752/lecture06/Holland%26Rice1998.pdf | jstor = 2410914 | title = Perspective: Chase-Away Sexual Selection: Antagonistic Seduction Versus Resistance | access-date = 8 July 2016 | archive-url = https://web.archive.org/web/20190608065427/https://wolfweb.unr.edu/homepage/jaz/eecb752/lecture06/Holland%26Rice1998.pdf | archive-date = 8 June 2019 }}</ref> There are three types of polygamy: either one or multiple dominant males have breeding rights ([[polygyny in animals|polygyny]]), multiple males that females mate with (polyandry), or multiple males have exclusive relations with multiple females ([[polygynandry]]). It is much more common for polygynous mating to happen, which, excluding [[lek mating|leks]], are estimated to occur in up to 90% of mammals.<ref>{{cite journal | vauthors = Clutton-Brock TH | title = Mammalian mating systems | journal = Proceedings of the Royal Society of London. Series B, Biological Sciences | volume = 236 | issue = 1285 | pages = 339–372 | date = May 1989 | pmid = 2567517 | doi = 10.1098/rspb.1989.0027 | bibcode = 1989RSPSB.236..339C | s2cid = 84780662 | url = https://zenodo.org/record/8204699 }}</ref> Lek mating occurs when males congregate around females and try to attract them with various [[courtship display]]s and vocalisations, as in harbour seals.<ref>{{cite journal| vauthors = Boness DJ, Bowen D, Buhleier BM, Marshall GJ | year=2006 | title=Mating tactics and mating system of an aquatic-mating pinniped: the harbor seal, ''Phoca vitulina'' | journal=Behavioral Ecology and Sociobiology | volume=61 | issue=1 | pages=119–130 | doi=10.1007/s00265-006-0242-9 | bibcode=2006BEcoS..61..119B | s2cid=25266746 | url=https://www.researchgate.net/publication/226692255}}</ref> | ||
All [[higher mammal]]s (excluding monotremes) share two major adaptations for care of the young: live birth and lactation. These imply a group-wide choice of a degree of [[parental care]]. They may build nests and dig burrows to raise their young in, or feed and guard them often for a prolonged period of time. Many mammals are [[K-selected]], and invest more time and energy into their young than do [[r-selected]] animals. When two animals mate, they both share an interest in the success of the offspring, though often to different extremes. Mammalian females exhibit some degree of maternal aggression, another example of parental care, which may be targeted against other females of the species or the young of other females; however, some mammals may "aunt" the infants of other females, and care for them. Mammalian males may play a role in child rearing, as with [[tenrec]]s, however this varies species to species, even within the same genus. For example, the males of the [[southern pig-tailed macaque]] (''Macaca nemestrina'') do not participate in child care, whereas the males of the [[Japanese macaque]] (''M. fuscata'') do.<ref>{{cite book|chapter-url={{Google books|plainurl=yes|id=ipjhBwAAQBAJ|page=1}}|chapter=Origins of Parental Care| vauthors = Klopfer PH |year=1981 | veditors = Gubernick DJ |title=Parental Care in Mammals|publisher=Plenum Press|location=New York|isbn=978-1-4613-3150-6|oclc=913709574}}</ref> | All [[higher mammal]]s (excluding monotremes) share two major adaptations for care of the young: live birth and lactation. These imply a group-wide choice of a degree of [[parental care]]. They may build nests and dig burrows to raise their young in, or feed and guard them often for a prolonged period of time. Many mammals are [[K-selected]], and invest more time and energy into their young than do [[r-selected]] animals. When two animals mate, they both share an interest in the success of the offspring, though often to different extremes. Mammalian females exhibit some degree of maternal aggression, another example of parental care, which may be targeted against other females of the species or the young of other females; however, some mammals may "aunt" the infants of other females, and care for them. Mammalian males may play a role in child rearing, as with [[tenrec]]s, however this varies species to species, even within the same genus. For example, the males of the [[southern pig-tailed macaque]] (''Macaca nemestrina'') do not participate in child care, whereas the males of the [[Japanese macaque]] (''M. fuscata'') do.<ref>{{cite book|chapter-url={{Google books|plainurl=yes|id=ipjhBwAAQBAJ|page=1}}|chapter=Origins of Parental Care| vauthors = Klopfer PH |year=1981 | veditors = Gubernick DJ |title=Parental Care in Mammals|publisher=Plenum Press|location=New York|isbn=978-1-4613-3150-6|oclc=913709574}}</ref> | ||
| Line 530: | Line 533: | ||
[[File:Lascaux painting.jpg|thumb|[[Upper Paleolithic]] [[cave painting]] of a variety of large mammals, [[Lascaux]], {{circa|17,300}} years old]] | [[File:Lascaux painting.jpg|thumb|[[Upper Paleolithic]] [[cave painting]] of a variety of large mammals, [[Lascaux]], {{circa|17,300}} years old]] | ||
Non-human mammals play a wide variety of roles in human culture. They are the most popular of [[pet]]s, with tens of millions of dogs, cats and other animals including [[rabbit]]s and mice kept by families around the world.<ref>{{cite journal | vauthors = Murthy R, Bearman G, Brown S, Bryant K, Chinn R, Hewlett A, George BG, Goldstein EJ, Holzmann-Pazgal G, Rupp ME, Wiemken T, Weese JS, Weber DJ | display-authors = 6 | title = Animals in healthcare facilities: recommendations to minimize potential risks | journal = Infection Control and Hospital Epidemiology | volume = 36 | issue = 5 | pages = 495–516 | date = May 2015 | pmid = 25998315 | doi = 10.1017/ice.2015.15 |doi-access=free | s2cid = 541760 | url = https://www.cambridge.org/core/services/aop-cambridge-core/content/view/7086725BAB2AAA4C1949DA5B90F06F3B/S0899823X1500015Xa.pdf/div-class-title-animals-in-healthcare-facilities-recommendations-to-minimize-potential-risks-div.pdf |url-status=live |archive-url=https://web.archive.org/web/20231103092334/https://www.cambridge.org/core/services/aop-cambridge-core/content/view/7086725BAB2AAA4C1949DA5B90F06F3B/S0899823X1500015Xa.pdf/div-class-title-animals-in-healthcare-facilities-recommendations-to-minimize-potential-risks-div.pdf |archive-date=3 November 2023 }}</ref><ref>{{cite web |last=The Humane Society of the United States |title=U.S. Pet Ownership Statistics |url=https://www.humanesociety.org/issues/pet_overpopulation/facts/pet_ownership_statistics.html |access-date=27 April 2012 |archive-date=7 April 2012 |archive-url=https://web.archive.org/web/20120407193941/http://www.humanesociety.org/issues/pet_overpopulation/facts/pet_ownership_statistics.html | Non-human mammals play a wide variety of roles in human culture. They are the most popular of [[pet]]s, with tens of millions of dogs, cats and other animals including [[rabbit]]s and mice kept by families around the world.<ref>{{cite journal | vauthors = Murthy R, Bearman G, Brown S, Bryant K, Chinn R, Hewlett A, George BG, Goldstein EJ, Holzmann-Pazgal G, Rupp ME, Wiemken T, Weese JS, Weber DJ | display-authors = 6 | title = Animals in healthcare facilities: recommendations to minimize potential risks | journal = Infection Control and Hospital Epidemiology | volume = 36 | issue = 5 | pages = 495–516 | date = May 2015 | pmid = 25998315 | doi = 10.1017/ice.2015.15 |doi-access=free | s2cid = 541760 | url = https://www.cambridge.org/core/services/aop-cambridge-core/content/view/7086725BAB2AAA4C1949DA5B90F06F3B/S0899823X1500015Xa.pdf/div-class-title-animals-in-healthcare-facilities-recommendations-to-minimize-potential-risks-div.pdf |url-status=live |archive-url=https://web.archive.org/web/20231103092334/https://www.cambridge.org/core/services/aop-cambridge-core/content/view/7086725BAB2AAA4C1949DA5B90F06F3B/S0899823X1500015Xa.pdf/div-class-title-animals-in-healthcare-facilities-recommendations-to-minimize-potential-risks-div.pdf |archive-date=3 November 2023 }}</ref><ref>{{cite web |last=The Humane Society of the United States |title=U.S. Pet Ownership Statistics |url=https://www.humanesociety.org/issues/pet_overpopulation/facts/pet_ownership_statistics.html |access-date=27 April 2012 |archive-date=7 April 2012 |archive-url=https://web.archive.org/web/20120407193941/http://www.humanesociety.org/issues/pet_overpopulation/facts/pet_ownership_statistics.html }}</ref><ref>{{cite web |last=USDA |title=U.S. Rabbit Industry profile |url=https://www.aphis.usda.gov/animal_health/emergingissues/downloads/RabbitReport1.pdf |access-date=10 July 2013 |archive-url=https://web.archive.org/web/20190807115557/http://www.aphis.usda.gov/animal_health/emergingissues/downloads/RabbitReport1.pdf |archive-date=7 August 2019 }}</ref> Mammals such as [[mammoth]]s, horses and deer are among the earliest subjects of art, being found in [[Upper Paleolithic]] [[cave painting]]s such as at [[Lascaux]].<ref>{{Cite news |vauthors=McKie R |title=Prehistoric cave art in the Dordogne |url=https://www.theguardian.com/travel/2013/may/26/prehistoric-cave-art-dordogne |newspaper=[[The Guardian]] |access-date=9 November 2016 |date=26 May 2013 |archive-date=31 May 2021 |archive-url=https://web.archive.org/web/20210531050457/https://www.theguardian.com/travel/2013/may/26/prehistoric-cave-art-dordogne |url-status=live }}</ref> Major artists such as [[Albrecht Dürer]]<!--rhino-->, [[George Stubbs]]<!--horses--> and [[Edwin Landseer]]<!--red deer--> are known for their portraits of mammals.<ref name="Jones">{{cite news |vauthors=Jones J |title=The top 10 animal portraits in art |url=https://www.theguardian.com/artanddesign/jonathanjonesblog/2014/jun/27/top-10-animal-portraits-in-art |access-date=24 June 2016 |agency=[[The Guardian]] |date=27 June 2014 |archive-date=18 May 2016 |archive-url=https://web.archive.org/web/20160518105922/http://www.theguardian.com/artanddesign/jonathanjonesblog/2014/jun/27/top-10-animal-portraits-in-art |url-status=live }}</ref> Many species of mammals have been [[hunting|hunted]] for sport and for food; deer and [[wild boar]] are especially popular as [[game (hunting)|game animals]].<ref>{{cite web | title=Deer Hunting in the United States: An Analysis of Hunter Demographics and Behavior Addendum to the 2001 National Survey of Fishing, Hunting, and Wildlife-Associated Recreation Report 2001-6 | url=https://digitalmedia.fws.gov/cdm/ref/collection/document/id/292 | publisher=Fishery and Wildlife Service (US) | access-date=24 June 2016 | archive-date=13 August 2016 | archive-url=https://web.archive.org/web/20160813200949/http://digitalmedia.fws.gov/cdm/ref/collection/document/id/292 | url-status=live }}</ref><ref>{{cite web | vauthors = Shelton L | work = The Natchez Democrat | title=Recreational Hog Hunting Popularity Soaring | url=https://www.grandviewoutdoors.com/big-game-hunting/recreational-hog-hunting-popularity-soaring/ | publisher=Grand View Outdoors | access-date=24 June 2016 | date=5 April 2014 | archive-url=https://web.archive.org/web/20171212193350/https://www.grandviewoutdoors.com/big-game-hunting/recreational-hog-hunting-popularity-soaring/ | archive-date=12 December 2017 }}</ref><ref>{{cite book | vauthors = Nguyen J, Wheatley R | title=Hunting For Food: Guide to Harvesting, Field Dressing and Cooking Wild Game | url={{Google books|plainurl=yes|id=3XN6CgAAQBAJ|page=6}} | year=2015 | publisher=F+W Media | isbn=978-1-4403-3856-4 | pages=6–77}} Chapters on hunting deer, wild hog (boar), rabbit, and squirrel.</ref> Mammals such as [[horse racing|horses]] and [[greyhound racing|dogs]] are widely raced for sport, often combined with [[gambling|betting on the outcome]].<ref>{{cite encyclopedia |title=Horse racing | encyclopedia = The Encyclopædia Britannica |url= https://www.britannica.com/EBchecked/topic/272329/horse-racing |access-date=6 May 2014 |archive-url=https://web.archive.org/web/20131221033444/https://www.britannica.com/EBchecked/topic/272329/horse-racing |archive-date= 21 December 2013}}</ref><ref>{{cite book | vauthors = Genders R |title=Encyclopaedia of Greyhound Racing |year=1981 |publisher=Pelham Books |isbn=978-0-7207-1106-6|oclc=9324926}}</ref> There is a tension between the role of animals as companions to humans, and their existence as individuals with [[animal rights|rights of their own]].<ref>{{cite journal |title=The Role of Animals in Human Society | vauthors = Plous S |date=1993 |doi=10.1111/j.1540-4560.1993.tb00906.x |journal=Journal of Social Issues |volume=49 |issue=1 |pages=1–9}}</ref> Mammals further play a wide variety of roles in literature,<ref>{{Cite news|vauthors=Fowler KJ|title=Top 10 books about intelligent animals<!--all 10 are mammals...-->|url=https://www.theguardian.com/books/2014/mar/26/top-10-books-intelligent-animals-watership-down-animal-farm|newspaper=The Guardian|access-date=9 November 2016|date=26 March 2014|archive-date=28 May 2021|archive-url=https://web.archive.org/web/20210528154902/https://www.theguardian.com/books/2014/mar/26/top-10-books-intelligent-animals-watership-down-animal-farm|url-status=live}}</ref><ref>{{cite book | vauthors = Gamble N, Yates S |title=Exploring Children's Literature |year=2008 |publisher=Sage |isbn=978-1-4129-3013-0 |edition=2nd |location=Los Angeles |oclc=71285210}}</ref><ref>{{cite web|title=Books for Adults|url=https://www.sealsitters.org/marine_mammals/reading.html|website=Seal Sitters|access-date=9 November 2016|archive-date=11 July 2016|archive-url=https://web.archive.org/web/20160711034305/http://www.sealsitters.org/marine_mammals/reading.html|url-status=live}}</ref> film,<ref>{{cite journal | vauthors = Paterson J |title=Animals in Film and Media |journal=Oxford Bibliographies |year=2013 |doi=10.1093/obo/9780199791286-0044}}</ref> mythology, and religion.<ref>{{cite book | vauthors = Johns C |date=2011 |title=Cattle: History, Myth, Art |publisher=The British Museum Press |isbn=978-0-7141-5084-0 |location=London |oclc=665137673}}</ref><ref>{{cite book |title=Hayagrīva: The Mantrayānic Aspect of Horse-cult in China and Japan |publisher=Brill Archive |page=9 | vauthors = van Gulik RH }}</ref><ref>{{cite web| vauthors = Grainger R |title=Lion Depiction across Ancient and Modern Religions |url=https://lionalert.org/page/Lion_Depiction_Across_Ancient_and_Modern_Religions |publisher=ALERT |access-date=6 November 2016 |date=24 June 2012 |archive-url=https://web.archive.org/web/20160923134807/https://lionalert.org/page/Lion_Depiction_Across_Ancient_and_Modern_Religions |archive-date=23 September 2016 }}</ref> | ||
===Uses and importance=== | ===Uses and importance=== | ||
| Line 536: | Line 539: | ||
[[File:Hand milking a cow at Cobbes Farm Museum.jpg|thumb|left|upright|[[Cattle]] have been [[dairy farming|kept for milk]] for thousands of years.]] | [[File:Hand milking a cow at Cobbes Farm Museum.jpg|thumb|left|upright|[[Cattle]] have been [[dairy farming|kept for milk]] for thousands of years.]] | ||
The domestication of mammals was instrumental in the [[Neolithic Revolution|Neolithic development of agriculture]] and of [[civilisation]], causing farmers to replace [[hunter-gatherer]]s around the world.{{efn|Diamond discussed this matter further in his 1997 book ''[[Guns, Germs, and Steel]]''.<ref>{{cite book | vauthors = Diamond JM |author-link=Jared Diamond |year=1997 |title=Guns, Germs, and Steel: the Fates of Human Societies|chapter=Part 2: The rise and spread of food production |location=New York |publisher=W.W. Norton & Company|isbn=978-0-393-03891-0 |oclc=35792200 |chapter-url={{Google books|plainurl=yes |id=PWnWRFEGoeUC |page=176 }}}}</ref>}}<ref name="Larson">{{cite journal | vauthors = Larson G, Burger J | title = A population genetics view of animal domestication | journal = Trends in Genetics | volume = 29 | issue = 4 | pages = 197–205 | date = April 2013 | pmid = 23415592 | doi = 10.1016/j.tig.2013.01.003 | url = https://www.palaeobarn.com/sites/domestication.org.uk/files/downloads/98.pdf | access-date = 9 November 2016 | archive-date = 8 June 2019 | archive-url = https://web.archive.org/web/20190608065300/http://www.palaeobarn.com/sites/domestication.org.uk/files/downloads/98.pdf | The domestication of mammals was instrumental in the [[Neolithic Revolution|Neolithic development of agriculture]] and of [[civilisation]], causing farmers to replace [[hunter-gatherer]]s around the world.{{efn|Diamond discussed this matter further in his 1997 book ''[[Guns, Germs, and Steel]]''.<ref>{{cite book | vauthors = Diamond JM |author-link=Jared Diamond |year=1997 |title=Guns, Germs, and Steel: the Fates of Human Societies|chapter=Part 2: The rise and spread of food production |location=New York |publisher=W.W. Norton & Company|isbn=978-0-393-03891-0 |oclc=35792200 |chapter-url={{Google books|plainurl=yes |id=PWnWRFEGoeUC |page=176 }}}}</ref>}}<ref name="Larson">{{cite journal | vauthors = Larson G, Burger J | title = A population genetics view of animal domestication | journal = Trends in Genetics | volume = 29 | issue = 4 | pages = 197–205 | date = April 2013 | pmid = 23415592 | doi = 10.1016/j.tig.2013.01.003 | url = https://www.palaeobarn.com/sites/domestication.org.uk/files/downloads/98.pdf | access-date = 9 November 2016 | archive-date = 8 June 2019 | archive-url = https://web.archive.org/web/20190608065300/http://www.palaeobarn.com/sites/domestication.org.uk/files/downloads/98.pdf }}</ref> This transition from hunting and gathering to [[pastoralism|herding flocks]] and [[agriculture|growing crops]] was a major step in human history. The new agricultural economies, based on domesticated mammals, caused "radical restructuring of human societies, worldwide alterations in biodiversity, and significant changes in the Earth's landforms and its atmosphere... momentous outcomes".<ref>{{cite journal | vauthors = Zeder MA | title = Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 105 | issue = 33 | pages = 11597–11604 | date = August 2008 | pmid = 18697943 | pmc = 2575338 | doi = 10.1073/pnas.0801317105 | bibcode = 2008PNAS..10511597Z | doi-access = free }}</ref> | ||
[[Domestication|Domestic]] mammals form a large part of the [[livestock]] raised for [[meat]] across the world. They include (2009) around 1.4 billion [[cattle]], 1 billion [[sheep]], 1 billion [[domestic pig]]s,<ref>{{Cite news |title=Graphic detail Charts, maps and infographics. Counting chickens |newspaper=The Economist |url=https://www.economist.com/blogs/dailychart/2011/07/global-livestock-counts |access-date=6 November 2016 |date=27 July 2011 |archive-date=15 July 2016 |archive-url=https://web.archive.org/web/20160715181213/http://www.economist.com/blogs/dailychart/2011/07/global-livestock-counts |url-status=live }}</ref><ref>{{cite web |work=Cattle Today |url=https://cattle-today.com/ |title=Breeds of Cattle at CATTLE TODAY |publisher=Cattle-today.com |access-date=6 November 2016 |archive-date=15 July 2011 |archive-url=https://web.archive.org/web/20110715234745/https://cattle-today.com/ |url-status=live }}</ref> and (1985) over 700 million rabbits.<ref>{{cite web |vauthors=Lukefahr SD, Cheeke PR |title=Rabbit project development strategies in subsistence farming systems |url=https://www.fao.org/docrep/U4900T/u4900T0m.htm |publisher=[[Food and Agriculture Organization]] |access-date=6 November 2016 |archive-date=6 May 2016 |archive-url=https://web.archive.org/web/20160506105314/https://www.fao.org/docrep/U4900T/u4900T0m.htm |url-status=live }}</ref> [[Working animal|Working domestic animals]] including cattle and horses have been used for work and [[transport]] from the origins of agriculture, their numbers declining with the arrival of mechanised transport and [[agricultural machinery]]. In 2004 they still provided some 80% of the power for the mainly small farms in the third world, and some 20% of the world's transport, again mainly in rural areas. In mountainous regions unsuitable for wheeled vehicles, [[pack animal]]s continue to transport goods.<ref name="Pond2004">{{cite book |vauthors=Pond WG |title=Encyclopedia of Animal Science |url=https://books.google.com/books?id=1SQl7Ao3mHoC&pg=PA248 |year=2004 |publisher=CRC Press |oclc=57033325 |isbn=978-0-8247-5496-9 |pages=248–250 |access-date=5 October 2018 |archive-date=23 January 2023 |archive-url=https://web.archive.org/web/20230123110032/https://books.google.com/books?id=1SQl7Ao3mHoC&pg=PA248 |url-status=live }}</ref> Mammal skins provide [[leather]] for [[shoe]]s, [[clothing]] and [[upholstery]]. [[Wool]] from mammals including sheep, goats and [[alpaca]]s has been used for centuries for clothing.<ref>{{cite book | vauthors = Braaten AW |title=Encyclopedia of Clothing and Fashion |year=2005 |volume=3 |publisher=[[Thomson Gale]] |isbn=978-0-684-31394-8 |oclc=963977000 |pages=[https://archive.org/details/encyclopediaofcl00vale/page/441 441–443] | veditors = Steele V |chapter=Wool |chapter-url=https://archive.org/details/encyclopediaofcl00vale/page/441 }}</ref><ref>{{cite journal | vauthors = Quiggle C | title = Alpaca: An Ancient Luxury | journal = Interweave Knits | date =Fall 2000 | pages = 74–76 }}</ref> | [[Domestication|Domestic]] mammals form a large part of the [[livestock]] raised for [[meat]] across the world. They include (2009) around 1.4 billion [[cattle]], 1 billion [[sheep]], 1 billion [[domestic pig]]s,<ref>{{Cite news |title=Graphic detail Charts, maps and infographics. Counting chickens |newspaper=The Economist |url=https://www.economist.com/blogs/dailychart/2011/07/global-livestock-counts |access-date=6 November 2016 |date=27 July 2011 |archive-date=15 July 2016 |archive-url=https://web.archive.org/web/20160715181213/http://www.economist.com/blogs/dailychart/2011/07/global-livestock-counts |url-status=live }}</ref><ref>{{cite web |work=Cattle Today |url=https://cattle-today.com/ |title=Breeds of Cattle at CATTLE TODAY |publisher=Cattle-today.com |access-date=6 November 2016 |archive-date=15 July 2011 |archive-url=https://web.archive.org/web/20110715234745/https://cattle-today.com/ |url-status=live }}</ref> and (1985) over 700 million rabbits.<ref>{{cite web |vauthors=Lukefahr SD, Cheeke PR |title=Rabbit project development strategies in subsistence farming systems |url=https://www.fao.org/docrep/U4900T/u4900T0m.htm |publisher=[[Food and Agriculture Organization]] |access-date=6 November 2016 |archive-date=6 May 2016 |archive-url=https://web.archive.org/web/20160506105314/https://www.fao.org/docrep/U4900T/u4900T0m.htm |url-status=live }}</ref> [[Working animal|Working domestic animals]] including cattle and horses have been used for work and [[transport]] from the origins of agriculture, their numbers declining with the arrival of mechanised transport and [[agricultural machinery]]. In 2004 they still provided some 80% of the power for the mainly small farms in the third world, and some 20% of the world's transport, again mainly in rural areas. In mountainous regions unsuitable for wheeled vehicles, [[pack animal]]s continue to transport goods.<ref name="Pond2004">{{cite book |vauthors=Pond WG |title=Encyclopedia of Animal Science |url=https://books.google.com/books?id=1SQl7Ao3mHoC&pg=PA248 |year=2004 |publisher=CRC Press |oclc=57033325 |isbn=978-0-8247-5496-9 |pages=248–250 |access-date=5 October 2018 |archive-date=23 January 2023 |archive-url=https://web.archive.org/web/20230123110032/https://books.google.com/books?id=1SQl7Ao3mHoC&pg=PA248 |url-status=live }}</ref> Mammal skins provide [[leather]] for [[shoe]]s, [[clothing]] and [[upholstery]]. [[Wool]] from mammals including sheep, goats and [[alpaca]]s has been used for centuries for clothing.<ref>{{cite book | vauthors = Braaten AW |title=Encyclopedia of Clothing and Fashion |year=2005 |volume=3 |publisher=[[Thomson Gale]] |isbn=978-0-684-31394-8 |oclc=963977000 |pages=[https://archive.org/details/encyclopediaofcl00vale/page/441 441–443] | veditors = Steele V |chapter=Wool |chapter-url=https://archive.org/details/encyclopediaofcl00vale/page/441 }}</ref><ref>{{cite journal | vauthors = Quiggle C | title = Alpaca: An Ancient Luxury | journal = Interweave Knits | date =Fall 2000 | pages = 74–76 }}</ref> | ||
[[File:Distribution of Mammals on Earth.png|thumb| | |||
Mammals serve a major role in science as [[animal model|experimental animals]], both in fundamental biological research, such as in genetics,<ref>{{cite web |title=Genetics Research |url=https://www.aht.org.uk/cms-display/genetics.html |publisher=Animal Health Trust |access-date=6 November 2016 |archive-url=https://web.archive.org/web/20171212193051/http://www.aht.org.uk/cms-display/genetics.html |archive-date=12 December 2017 | [[File:Distribution of Mammals on Earth.png|thumb|400px|Livestock make up 62% of the world's mammal biomass; humans account for 34%; and wild mammals are just 4%<ref>{{Cite web |title=Wild mammals make up only a few percent of the world's mammals |url=https://ourworldindata.org/wild-mammals-birds-biomass |date=2022-12-15 |access-date=8 August 2023 |website=[[Our World in Data]] |first=Hannah |last=Ritchie |author-link=Hannah Ritchie}}</ref>]] | ||
Mammals serve a major role in science as [[animal model|experimental animals]], both in fundamental biological research, such as in genetics,<ref>{{cite web |title=Genetics Research |url=https://www.aht.org.uk/cms-display/genetics.html |publisher=Animal Health Trust |access-date=6 November 2016 |archive-url=https://web.archive.org/web/20171212193051/http://www.aht.org.uk/cms-display/genetics.html |archive-date=12 December 2017 }}</ref> and in the development of new medicines, which must be tested exhaustively to demonstrate their [[pharmacovigilance|safety]].<ref>{{cite web |title=Drug Development |url=https://www.animalresearch.info/en/drug-development/ |publisher=Animal Research.info |access-date=6 November 2016 |archive-date=8 June 2016 |archive-url=https://web.archive.org/web/20160608124406/https://www.animalresearch.info/en/drug-development/ |url-status=live }}</ref> Millions of mammals, especially mice and rats, are used in [[animal testing|experiments]] each year.<ref name="EUstatistics2013">{{cite web |title=EU statistics show decline in animal research numbers |url=https://speakingofresearch.com/2013/12/12/eu-statistics-show-decline-in-animal-research-numbers/ |publisher=Speaking of Research |year=2013 |access-date=6 November 2016 |archive-date=24 April 2019 |archive-url=https://web.archive.org/web/20190424155141/https://speakingofresearch.com/2013/12/12/eu-statistics-show-decline-in-animal-research-numbers/ |url-status=live }}</ref> A [[knockout mouse]] is a [[genetically modified mouse]] with an inactivated [[gene]], replaced or disrupted with an artificial piece of DNA. They enable the study of [[sequencing|sequenced]] genes whose functions are unknown.<ref>{{cite journal |vauthors=Pilcher HR |url=https://www.nature.com/news/1998/030512/full/news030512-17.html |title=It's a knockout |journal=Nature |date=2003 |access-date=6 November 2016 |doi=10.1038/news030512-17 |archive-date=10 November 2016 |archive-url=https://web.archive.org/web/20161110084106/http://www.nature.com/news/1998/030512/full/news030512-17.html |url-status=live |url-access=subscription }}</ref> A small percentage of the mammals are non-human primates, used in research for their similarity to humans.<ref>{{Cite web | url=https://www.ebra.org/ebrabulletin-the-supply-and-use-of-primates-in-the-eu_17.htm | title=The supply and use of primates in the EU | year=1996 | publisher=European Biomedical Research Association | archive-url=https://web.archive.org/web/20120117061036/http://www.ebra.org/ebrabulletin-the-supply-and-use-of-primates-in-the-eu_17.htm | archive-date=17 January 2012}}</ref><ref name="Carlsson2004">{{cite journal | vauthors = Carlsson HE, Schapiro SJ, Farah I, Hau J | title = Use of primates in research: a global overview | journal = American Journal of Primatology | volume = 63 | issue = 4 | pages = 225–237 | date = August 2004 | pmid = 15300710 | doi = 10.1002/ajp.20054 | s2cid = 41368228 }}</ref><ref name="Weatherall_etal2006">{{Cite report| vauthors = Weatherall D |display-authors=etal |year=2006 |title=The use of non-human primates in research |location=London |publisher=Academy of Medical Sciences |url=https://www.acmedsci.ac.uk/images/project/nhpdownl.pdf |archive-url=https://web.archive.org/web/20130323084639/http://www.acmedsci.ac.uk/images/project/nhpdownl.pdf |archive-date=23 March 2013 }}</ref> | |||
Despite the benefits domesticated mammals had for human development, humans have an increasingly detrimental effect on wild mammals across the world. It has been estimated that the mass of all ''wild'' mammals has declined to only 4% of all mammals, with 96% of mammals being humans and their livestock now (see figure). In fact, terrestrial wild mammals make up only 2% of all mammals.<ref>{{Cite journal |vauthors=[[Hannah Ritchie|Ritchie H]], [[Max Roser|Roser M]] |date=15 April 2021 |title=Biodiversity |url=https://ourworldindata.org/mammals |journal=Our World in Data |access-date=29 August 2021 |archive-date=11 December 2022 |archive-url=https://web.archive.org/web/20221211132929/https://ourworldindata.org/mammals |url-status=live }}</ref><ref name="Bar-On_2018">{{cite journal | vauthors = Bar-On YM, Phillips R, Milo R | title = The biomass distribution on Earth | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 115 | issue = 25 | pages = 6506–6511 | date = June 2018 | pmid = 29784790 | pmc = 6016768 | doi = 10.1073/pnas.1711842115 | bibcode = 2018PNAS..115.6506B | doi-access = free }}</ref> | Despite the benefits domesticated mammals had for human development, humans have an increasingly detrimental effect on wild mammals across the world. It has been estimated that the mass of all ''wild'' mammals has declined to only 4% of all mammals, with 96% of mammals being humans and their livestock now (see figure). In fact, terrestrial wild mammals make up only 2% of all mammals.<ref>{{Cite journal |vauthors=[[Hannah Ritchie|Ritchie H]], [[Max Roser|Roser M]] |date=15 April 2021 |title=Biodiversity |url=https://ourworldindata.org/mammals |journal=Our World in Data |access-date=29 August 2021 |archive-date=11 December 2022 |archive-url=https://web.archive.org/web/20221211132929/https://ourworldindata.org/mammals |url-status=live }}</ref><ref name="Bar-On_2018">{{cite journal | vauthors = Bar-On YM, Phillips R, Milo R | title = The biomass distribution on Earth | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 115 | issue = 25 | pages = 6506–6511 | date = June 2018 | pmid = 29784790 | pmc = 6016768 | doi = 10.1073/pnas.1711842115 | bibcode = 2018PNAS..115.6506B | doi-access = free }}</ref> | ||
| Line 546: | Line 551: | ||
===Hybrids=== | ===Hybrids=== | ||
{{Main|Hybrid (biology)}} | {{Main|Hybrid (biology)}} | ||
{{ | {{Gallery | ||
| | |align=left | ||
| | |height=140 | ||
|File:Equus quagga quagga, coloured.jpg | |||
|File:Rau Quagga on Devils Peak.jpg | |||
|width=200 | |width=200 | ||
|footer=A true [[quagga]], 1870 (left) vs. a [[Quagga Project|bred-back quagga]], 2014 (right) | |footer={{Align|left|A true [[quagga]], 1870 (left) vs. a [[Quagga Project|bred-back quagga]], 2014 (right)}} | ||
}} | }} | ||
| Line 563: | Line 570: | ||
[[File:Extinctions Africa Austrailia NAmerica Madagascar.gif|thumb|upright=1.4|Biodiversity of large mammal species per continent before and after humans arrived there]] | [[File:Extinctions Africa Austrailia NAmerica Madagascar.gif|thumb|upright=1.4|Biodiversity of large mammal species per continent before and after humans arrived there]] | ||
The loss of species from ecological communities, [[defaunation]], is primarily driven by human activity.<ref name=dirzo/> This has resulted in [[empty forest]]s, ecological communities depleted of large vertebrates.<ref name=primack2014>{{Cite book|title=Essentials of Conservation Biology | vauthors = Primack R |publisher=Sinauer Associates, Inc. Publishers |year=2014 |isbn=978-1-60535-289-3 |location=Sunderland, MA |pages=217–245 |edition=6th |oclc=876140621}}</ref><ref>{{cite journal | vauthors = Vignieri S | title = Vanishing fauna. Introduction | journal = Science | volume = 345 | issue = 6195 | pages = 392–395 | date = July 2014 | pmid = 25061199 | doi = 10.1126/science.345.6195.392 | doi-access = free | bibcode = 2014Sci...345..392V }}</ref> In the [[Quaternary extinction event]], the mass die-off of [[megafauna]]l variety coincided with the appearance of humans, suggesting a human influence. One hypothesis is that humans hunted large mammals, such as the [[woolly mammoth]], into extinction.<ref>{{cite journal | vauthors = Burney DA, Flannery TF | title = Fifty millennia of catastrophic extinctions after human contact | journal = Trends in Ecology & Evolution | volume = 20 | issue = 7 | pages = 395–401 | date = July 2005 | pmid = 16701402 | doi = 10.1016/j.tree.2005.04.022 | url = https://www.anthropology.hawaii.edu/Fieldschools/Kauai/Publications/Publication%204.pdf | The loss of species from ecological communities, [[defaunation]], is primarily driven by human activity.<ref name=dirzo/> This has resulted in [[empty forest]]s, ecological communities depleted of large vertebrates.<ref name=primack2014>{{Cite book|title=Essentials of Conservation Biology | vauthors = Primack R |publisher=Sinauer Associates, Inc. Publishers |year=2014 |isbn=978-1-60535-289-3 |location=Sunderland, MA |pages=217–245 |edition=6th |oclc=876140621}}</ref><ref>{{cite journal | vauthors = Vignieri S | title = Vanishing fauna. Introduction | journal = Science | volume = 345 | issue = 6195 | pages = 392–395 | date = July 2014 | pmid = 25061199 | doi = 10.1126/science.345.6195.392 | doi-access = free | bibcode = 2014Sci...345..392V }}</ref> In the [[Quaternary extinction event]], the mass die-off of [[megafauna]]l variety coincided with the appearance of humans, suggesting a human influence. One hypothesis is that humans hunted large mammals, such as the [[woolly mammoth]], into extinction.<ref>{{cite journal | vauthors = Burney DA, Flannery TF | title = Fifty millennia of catastrophic extinctions after human contact | journal = Trends in Ecology & Evolution | volume = 20 | issue = 7 | pages = 395–401 | date = July 2005 | pmid = 16701402 | doi = 10.1016/j.tree.2005.04.022 | url = https://www.anthropology.hawaii.edu/Fieldschools/Kauai/Publications/Publication%204.pdf | archive-url = https://web.archive.org/web/20100610061434/http://www.anthropology.hawaii.edu/Fieldschools/Kauai/Publications/Publication%204.pdf | archive-date = 10 June 2010 }}</ref><ref>{{cite book | vauthors = Diamond J | year=1984 |chapter=Historic extinctions: a Rosetta stone for understanding prehistoric extinctions |title=Quaternary extinctions: A prehistoric revolution | veditors = Martin PS, Klein RG | pages=824–862 | location=Tucson| publisher=University of Arizona Press | isbn=978-0-8165-1100-6|oclc=10301944}}</ref> The 2019 ''[[Global Assessment Report on Biodiversity and Ecosystem Services]]'' by [[IPBES]] states that the total [[Biomass (ecology)|biomass]] of wild mammals has declined by 82 per cent since the beginning of human civilisation.<ref>{{cite news |vauthors=Watts J |date=6 May 2019 |title=Human society under urgent threat from loss of Earth's natural life |url=https://www.theguardian.com/environment/2019/may/06/human-society-under-urgent-threat-loss-earth-natural-life-un-report |work=[[The Guardian]] |access-date=1 July 2019 |archive-date=14 June 2019 |archive-url=https://web.archive.org/web/20190614160705/https://www.theguardian.com/environment/2019/may/06/human-society-under-urgent-threat-loss-earth-natural-life-un-report |url-status=live }}</ref><ref>{{cite news|vauthors=McGrath M|date=6 May 2019|title=Nature crisis: Humans 'threaten 1m species with extinction'|url=https://www.bbc.com/news/science-environment-48169783|work=[[BBC]]|access-date=1 July 2019|archive-date=30 June 2019|archive-url=https://web.archive.org/web/20190630044916/https://www.bbc.com/news/science-environment-48169783|url-status=live}}</ref> Wild animals make up just 4% of mammalian [[biomass (ecology)|biomass]] on earth, while humans and their domesticated animals make up 96%.<ref name="Bar-On_2018"/> | ||
Various species are predicted to [[list of critically endangered species|become extinct in the near future]],<ref>{{cite web | vauthors = Main D | url = https://www.livescience.com/41421-animals-threatened-with-extinction.html | title = 7 Iconic Animals Humans Are Driving to Extinction | work = [[Live Science]] | date = 22 November 2013 | access-date = 25 January 2024 | archive-date = 6 January 2023 | archive-url = https://web.archive.org/web/20230106233208/https://www.livescience.com/41421-animals-threatened-with-extinction.html | url-status = live }}</ref> among them the [[rhinoceros]],<ref>{{cite web | url = https://blogs.scientificamerican.com/extinction-countdown/2011/10/25/poachers-drive-javan-rhino-to-extinction-in-vietnam/ | archive-url = https://web.archive.org/web/20150406103742/http://blogs.scientificamerican.com/extinction-countdown/2011/10/25/poachers-drive-javan-rhino-to-extinction-in-vietnam/ | archive-date = 6 April 2015 | title = Poachers Drive Javan Rhino to Extinction in Vietnam | vauthors = Platt JR | date = 25 October 2011 | publisher = [[Scientific American]] }}</ref> [[giraffe]]s,<ref>{{Cite news |url=https://www.theguardian.com/environment/2016/dec/08/giraffe-red-list-vulnerable-species-extinction |title=Giraffes facing extinction after devastating decline, experts warn |vauthors=Carrington D |date=8 December 2016 |newspaper=The Guardian |access-date=4 February 2017 |archive-date=13 August 2021 |archive-url=https://web.archive.org/web/20210813122004/https://www.theguardian.com/environment/2016/dec/08/giraffe-red-list-vulnerable-species-extinction |url-status=live }}</ref> and species of [[primate]]s<ref name="primates">{{cite journal | vauthors = Estrada A, Garber PA, Rylands AB, Roos C, Fernandez-Duque E, Di Fiore A, Nekaris KA, Nijman V, Heymann EW, Lambert JE, Rovero F, Barelli C, Setchell JM, Gillespie TR, Mittermeier RA, Arregoitia LV, de Guinea M, Gouveia S, Dobrovolski R, Shanee S, Shanee N, Boyle SA, Fuentes A, MacKinnon KC, Amato KR, Meyer AL, Wich S, Sussman RW, Pan R, Kone I, Li B | display-authors = 6 | title = Impending extinction crisis of the world's primates: Why primates matter | journal = Science Advances | volume = 3 | issue = 1 | | Various species are predicted to [[list of critically endangered species|become extinct in the near future]],<ref>{{cite web | vauthors = Main D | url = https://www.livescience.com/41421-animals-threatened-with-extinction.html | title = 7 Iconic Animals Humans Are Driving to Extinction | work = [[Live Science]] | date = 22 November 2013 | access-date = 25 January 2024 | archive-date = 6 January 2023 | archive-url = https://web.archive.org/web/20230106233208/https://www.livescience.com/41421-animals-threatened-with-extinction.html | url-status = live }}</ref> among them the [[rhinoceros]],<ref>{{cite web | url = https://blogs.scientificamerican.com/extinction-countdown/2011/10/25/poachers-drive-javan-rhino-to-extinction-in-vietnam/ | archive-url = https://web.archive.org/web/20150406103742/http://blogs.scientificamerican.com/extinction-countdown/2011/10/25/poachers-drive-javan-rhino-to-extinction-in-vietnam/ | archive-date = 6 April 2015 | title = Poachers Drive Javan Rhino to Extinction in Vietnam | vauthors = Platt JR | date = 25 October 2011 | publisher = [[Scientific American]] }}</ref> [[giraffe]]s,<ref>{{Cite news |url=https://www.theguardian.com/environment/2016/dec/08/giraffe-red-list-vulnerable-species-extinction |title=Giraffes facing extinction after devastating decline, experts warn |vauthors=Carrington D |date=8 December 2016 |newspaper=The Guardian |access-date=4 February 2017 |archive-date=13 August 2021 |archive-url=https://web.archive.org/web/20210813122004/https://www.theguardian.com/environment/2016/dec/08/giraffe-red-list-vulnerable-species-extinction |url-status=live }}</ref> and species of [[primate]]s<ref name="primates">{{cite journal | vauthors = Estrada A, Garber PA, Rylands AB, Roos C, Fernandez-Duque E, Di Fiore A, Nekaris KA, Nijman V, Heymann EW, Lambert JE, Rovero F, Barelli C, Setchell JM, Gillespie TR, Mittermeier RA, Arregoitia LV, de Guinea M, Gouveia S, Dobrovolski R, Shanee S, Shanee N, Boyle SA, Fuentes A, MacKinnon KC, Amato KR, Meyer AL, Wich S, Sussman RW, Pan R, Kone I, Li B | display-authors = 6 | title = Impending extinction crisis of the world's primates: Why primates matter | journal = Science Advances | volume = 3 | issue = 1 | article-number = e1600946 | date = January 2017 | pmid = 28116351 | pmc = 5242557 | doi = 10.1126/sciadv.1600946 | bibcode = 2017SciA....3E0946E }}</ref> and [[pangolin]]s.<ref>{{Cite news |url=https://www.telegraph.co.uk/news/earth/wildlife/11370277/Pangolins-why-this-cute-prehistoric-mammal-is-facing-extinction.html |archive-url=https://ghostarchive.org/archive/20220110/https://www.telegraph.co.uk/news/earth/wildlife/11370277/Pangolins-why-this-cute-prehistoric-mammal-is-facing-extinction.html |archive-date=10 January 2022 |url-access=subscription |url-status=live |title=Pangolins: why this cute prehistoric mammal is facing extinction| vauthors = Fletcher M |date=31 January 2015 |work=The Telegraph}}{{cbignore}}</ref> According to the WWF's 2020 ''[[Living Planet Report]]'', vertebrate [[wildlife]] populations have declined by 68% since 1970 as a result of human activities, particularly [[overconsumption]], [[population growth]] and [[intensive farming]], which is evidence that humans have triggered a [[sixth mass extinction]] event.<ref>{{cite news |vauthors=Greenfield P |date=9 September 2020 |title=Humans exploiting and destroying nature on unprecedented scale – report |url=https://www.theguardian.com/environment/2020/sep/10/humans-exploiting-and-destroying-nature-on-unprecedented-scale-report-aoe |work=[[The Guardian]] |access-date=13 October 2020 |archive-date=21 October 2021 |archive-url=https://web.archive.org/web/20211021225045/https://www.theguardian.com/environment/2020/sep/10/humans-exploiting-and-destroying-nature-on-unprecedented-scale-report-aoe |url-status=live }}</ref><ref>{{cite news |vauthors=McCarthy D |date=1 October 2020 |title=Terrifying wildlife losses show the extinction end game has begun – but it's not too late for change |url=https://www.independent.co.uk/voices/wildlife-loss-humans-population-agriculture-extinction-b738367.html |work=The Independent |access-date=13 October 2020 |archive-date=7 April 2023 |archive-url=https://web.archive.org/web/20230407003854/https://www.independent.co.uk/voices/wildlife-loss-humans-population-agriculture-extinction-b738367.html |url-status=live }}</ref> Hunting alone threatens hundreds of mammalian species around the world.<ref>{{cite web |url=https://www.science.org/content/article/people-are-hunting-primates-bats-and-other-mammals-extinction |title=People are hunting primates, bats, and other mammals to extinction |vauthors=Pennisi E |author-link=Elizabeth Pennisi |date=18 October 2016 |work=[[Science (magazine)|Science]] |access-date=3 February 2017 |archive-date=20 October 2021 |archive-url=https://web.archive.org/web/20211020025827/https://www.science.org/content/article/people-are-hunting-primates-bats-and-other-mammals-extinction |url-status=live }}</ref><ref>{{cite journal | vauthors = Ripple WJ, Abernethy K, Betts MG, Chapron G, Dirzo R, Galetti M, Levi T, Lindsey PA, Macdonald DW, Machovina B, Newsome TM, Peres CA, Wallach AD, Wolf C, Young H | display-authors = 6 | title = Bushmeat hunting and extinction risk to the world's mammals | journal = Royal Society Open Science | volume = 3 | issue = 10 | article-number = 160498 | date = October 2016 | pmid = 27853564 | pmc = 5098989 | doi = 10.1098/rsos.160498 | bibcode = 2016RSOS....360498R | hdl = 1893/24446 }}</ref> Scientists claim that the growing demand for [[meat]] is contributing to [[biodiversity loss]] as this is a significant driver of [[deforestation]] and [[habitat destruction]]; species-rich habitats, such as significant portions of the [[Amazon rainforest]], are being converted to agricultural land for meat production.<ref>{{cite journal | vauthors = Williams M, Zalasiewicz J, Haff PK, Schwägerl C, Barnosky AD, Ellis EC |author-link5=Anthony David Barnosky |year=2015 |title=The Anthropocene Biosphere |journal=The Anthropocene Review |volume=2 |issue=3 |pages=196–219 |doi=10.1177/2053019615591020|bibcode=2015AntRv...2..196W |s2cid=7771527 }}</ref><ref>{{cite web |url=https://www.science.org/content/article/meat-eaters-may-speed-worldwide-species-extinction-study-warns |title=Meat-eaters may speed worldwide species extinction, study warns |vauthors=Morell V |date=11 August 2015 |work=[[Science (magazine)|Science]] |access-date=3 February 2017 |archive-date=20 December 2016 |archive-url=https://web.archive.org/web/20161220105327/http://www.sciencemag.org/news/2015/08/meat-eaters-may-speed-worldwide-species-extinction-study-warns |url-status=live }}</ref><ref>{{cite journal | vauthors = Machovina B, Feeley KJ, Ripple WJ | title = Biodiversity conservation: The key is reducing meat consumption | journal = The Science of the Total Environment | volume = 536 | pages = 419–431 | date = December 2015 | pmid = 26231772 | doi = 10.1016/j.scitotenv.2015.07.022 | bibcode = 2015ScTEn.536..419M }}</ref> Another influence is over-hunting and [[species affected by poaching|poaching]], which can reduce the overall population of game animals,<ref>{{cite journal |vauthors=Redford KH |year=1992 |title=The empty forest |journal=BioScience |volume=42 |issue=6 |pages=412–422 |url=http://www.dse.ufpb.br/alexandre/Redford%201992%20-The%20empty%20forest.pdf |doi=10.2307/1311860 |jstor=1311860 |access-date=4 February 2017 |archive-date=28 February 2021 |archive-url=https://web.archive.org/web/20210228092214/http://www.dse.ufpb.br/alexandre/Redford%201992%20-The%20empty%20forest.pdf |url-status=live }}</ref> especially those located near villages,<ref name=peres2006>{{cite book| vauthors = Peres CA, Nascimento HS |title=Human Exploitation and Biodiversity Conservation |chapter=Impact of game hunting by the Kayapó of south-eastern Amazonia: implications for wildlife conservation in tropical forest indigenous reserves |volume=3 |issue=8 |year=2006 |pages=287–313 |publisher=Springer |isbn=978-1-4020-5283-5 |oclc=207259298}}</ref> as in the case of [[peccary|peccaries]].<ref>{{cite journal | vauthors = Altrichter M, Boaglio G |title=Distribution and Relative Abundance of Peccaries in the Argentine Chaco: Associations with Human Factors | journal=Biological Conservation |volume=116 |issue=2 |year=2004 |pages=217–225 |doi=10.1016/S0006-3207(03)00192-7|bibcode=2004BCons.116..217A }}</ref> The effects of poaching can especially be seen in the [[ivory trade]] with African elephants.<ref>{{cite web |vauthors=Gobush K |title=Effects of Poaching on African elephants |url=https://conservationbiology.uw.edu/research-programs/effects-of-poaching-on-african-elephants/ |website=Center For Conservation Biology |publisher=University of Washington |access-date=12 May 2021 |archive-date=8 December 2021 |archive-url=https://web.archive.org/web/20211208132610/https://conservationbiology.uw.edu/research-programs/effects-of-poaching-on-african-elephants/ |url-status=live }}</ref> Marine mammals are at risk from entanglement from fishing gear, notably [[Cetacean bycatch|cetaceans]], with discard mortalities ranging from 65,000 to 86,000 individuals annually.<ref>{{cite book |chapter-url=https://www.fao.org/docrep/003/t4890e/T4890E03.htm#ch1.1.10 |chapter=Bycatch of Marine Mammals |title=A global assessment of fisheries bycatch and discards |vauthors=Alverson DL, Freeburg MH, Murawski SA, Pope JG |year=1996 |orig-date=1994 |publisher=Food and Agriculture Organization of the United Nations |location=Rome |isbn=978-92-5-103555-9 |oclc=31424005 |access-date=25 January 2024 |archive-date=17 February 2019 |archive-url=https://web.archive.org/web/20190217074707/http://www.fao.org/docrep/003/T4890E/T4890E03.htm#ch1.1.10 |url-status=live }}</ref> | ||
Attention is being given to endangered species globally, notably through the [[Convention on Biological Diversity]], otherwise known as the Rio Accord, which includes 189 signatory countries that are focused on identifying endangered species and habitats.<ref>{{cite book | vauthors = Glowka L, Burhenne-Guilmin F, Synge HM, McNeely JA, Gündling L |title=IUCN environmental policy and law paper |series=Guide to the Convention on Biodiversity |year=1994 |publisher=International Union for Conservation of Nature |isbn=978-2-8317-0222-3 |oclc=32201845}}</ref> Another notable conservation organisation is the IUCN, which has a membership of over 1,200 governmental and [[Non-governmental organization|non-governmental]] organisations.<ref>{{cite web |url=https://www.iucn.org/about |title=About IUCN |publisher=International Union for Conservation of Nature |access-date=3 February 2017 |date=3 December 2014 |archive-date=15 April 2020 |archive-url=https://web.archive.org/web/20200415031632/https://www.iucn.org/about/ |url-status=live }}</ref> | Attention is being given to endangered species globally, notably through the [[Convention on Biological Diversity]], otherwise known as the Rio Accord, which includes 189 signatory countries that are focused on identifying endangered species and habitats.<ref>{{cite book | vauthors = Glowka L, Burhenne-Guilmin F, Synge HM, McNeely JA, Gündling L |title=IUCN environmental policy and law paper |series=Guide to the Convention on Biodiversity |year=1994 |publisher=International Union for Conservation of Nature |isbn=978-2-8317-0222-3 |oclc=32201845}}</ref> Another notable conservation organisation is the IUCN, which has a membership of over 1,200 governmental and [[Non-governmental organization|non-governmental]] organisations.<ref>{{cite web |url=https://www.iucn.org/about |title=About IUCN |publisher=International Union for Conservation of Nature |access-date=3 February 2017 |date=3 December 2014 |archive-date=15 April 2020 |archive-url=https://web.archive.org/web/20200415031632/https://www.iucn.org/about/ |url-status=live }}</ref> | ||
[[List of recently extinct mammals|Recent extinctions]] can be directly attributed to human influences.<ref name=ceballos>{{cite journal | vauthors = Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM | title = Accelerated modern human-induced species losses: Entering the sixth mass extinction | journal = Science Advances | volume = 1 | issue = 5 | | [[List of recently extinct mammals|Recent extinctions]] can be directly attributed to human influences.<ref name=ceballos>{{cite journal | vauthors = Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM | title = Accelerated modern human-induced species losses: Entering the sixth mass extinction | journal = Science Advances | volume = 1 | issue = 5 | article-number = e1400253 | date = June 2015 | pmid = 26601195 | pmc = 4640606 | doi = 10.1126/sciadv.1400253 | bibcode = 2015SciA....1E0253C }}</ref><ref name=dirzo>{{cite journal | vauthors = Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJ, Collen B | title = Defaunation in the Anthropocene | journal = Science | volume = 345 | issue = 6195 | pages = 401–406 | date = July 2014 | pmid = 25061202 | doi = 10.1126/science.1251817 | url = https://www.uv.mx/personal/tcarmona/files/2010/08/Science-2014-Dirzo-401-6-2.pdf | bibcode = 2014Sci...345..401D | s2cid = 206555761 | access-date = 25 January 2024 | archive-date = 7 August 2019 | archive-url = https://web.archive.org/web/20190807115621/https://www.uv.mx/personal/tcarmona/files/2010/08/Science-2014-Dirzo-401-6-2.pdf | url-status = live }}</ref> The IUCN characterises 'recent' extinction as those that have occurred past the cut-off point of 1500,<ref>{{cite journal | vauthors = Fisher DO, Blomberg SP | title = Correlates of rediscovery and the detectability of extinction in mammals | journal = Proceedings. Biological Sciences | volume = 278 | issue = 1708 | pages = 1090–1097 | date = April 2011 | pmid = 20880890 | pmc = 3049027 | doi = 10.1098/rspb.2010.1579 }}</ref> and around 80 mammal species have gone extinct since that time and 2015.<ref>{{cite book| vauthors = Ceballos G, Ehrlich AH, Ehrlich PR |year=2015|title=The Annihilation of Nature: Human Extinction of Birds and Mammals |location=Baltimore |publisher=Johns Hopkins University Press |isbn=978-1-4214-1718-9 |page=69}}</ref> Some species, such as the [[Père David's deer]]<ref>{{cite iucn |author=Jiang, Z. |author2=Harris, R.B. |date=2016 |title=''Elaphurus davidianus'' |volume=2016 |article-number=e.T7121A22159785 |doi=10.2305/IUCN.UK.2016-2.RLTS.T7121A22159785.en |access-date=12 November 2021}}</ref> are [[extinct in the wild]], and survive solely in captive populations. Other species, such as the [[Florida panther]], are [[Ecological extinction|ecologically extinct]], surviving in such low numbers that they essentially have no impact on the ecosystem.<ref name=mckinney2013>{{cite book |chapter-url={{Google books|plainurl=yes |id=hBntufCOxAsC |page=318}} | vauthors = McKinney ML, Schoch R, Yonavjak L |year=2013 |title=Environmental Science: Systems and Solutions|edition=5th|chapter=Conserving Biological Resources |publisher=Jones & Bartlett Learning|isbn=978-1-4496-6139-7|oclc=777948078}}</ref>{{rp|318}} Other populations are only [[Local extinction|locally extinct]] (extirpated), still existing elsewhere, but reduced in distribution,<ref name=mckinney2013/>{{rp|75–77}} as with the extinction of [[grey whale]]s in the [[Atlantic Ocean|Atlantic]].<ref>{{Cite book |title=Encyclopedia of marine mammals |page=404 |year=2009 |publisher=Academic Press |isbn=978-0-12-373553-9 | vauthors = Perrin WF, Würsig BF, Thewissen JG | author-link3 = Hans Thewissen |oclc=455328678}}</ref> | ||
==See also== | ==See also== | ||
{{ | {{Div col|colwidth=18em}} | ||
* [[List of mammal genera]] – living mammals | * [[List of mammal genera]] – living mammals | ||
* [[List of mammalogists]] | * [[List of mammalogists]] | ||
| Line 584: | Line 591: | ||
* [[Mammals in culture]] | * [[Mammals in culture]] | ||
* [[Small mammal]] | * [[Small mammal]] | ||
{{ | {{Div col end}} | ||
==Notes== | ==Notes== | ||
| Line 600: | Line 607: | ||
* {{Cite journal | vauthors = Simpson GG | year = 1945 | title = The principles of classification and a classification of mammals | journal = Bulletin of the American Museum of Natural History | volume = 85 | pages = 1–350 }} | * {{Cite journal | vauthors = Simpson GG | year = 1945 | title = The principles of classification and a classification of mammals | journal = Bulletin of the American Museum of Natural History | volume = 85 | pages = 1–350 }} | ||
* {{cite journal | vauthors = Murphy WJ, Eizirik E, O'Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS | display-authors = 6 | title = Resolution of the early placental mammal radiation using Bayesian phylogenetics | journal = Science | volume = 294 | issue = 5550 | pages = 2348–2351 | date = December 2001 | pmid = 11743200 | doi = 10.1126/science.1067179 | bibcode = 2001Sci...294.2348M | s2cid = 34367609 }} | * {{cite journal | vauthors = Murphy WJ, Eizirik E, O'Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS | display-authors = 6 | title = Resolution of the early placental mammal radiation using Bayesian phylogenetics | journal = Science | volume = 294 | issue = 5550 | pages = 2348–2351 | date = December 2001 | pmid = 11743200 | doi = 10.1126/science.1067179 | bibcode = 2001Sci...294.2348M | s2cid = 34367609 }} | ||
* {{cite journal | vauthors = Springer MS, Stanhope MJ, Madsen O, de Jong WW | title = Molecules consolidate the placental mammal tree | journal = Trends in Ecology & Evolution | volume = 19 | issue = 8 | pages = 430–438 | date = August 2004 | pmid = 16701301 | doi = 10.1016/j.tree.2004.05.006 | s2cid = 1508898 | url = https://www.zi.ku.dk/evolbiology/courses/ME04/7_9/springer200-phyl.pdf | access-date = 21 January 2005 | archive-date = 29 July 2016 | archive-url = https://web.archive.org/web/20160729033207/http://www.zi.ku.dk/evolbiology/courses/ME04/7_9/springer200-phyl.pdf | * {{cite journal | vauthors = Springer MS, Stanhope MJ, Madsen O, de Jong WW | title = Molecules consolidate the placental mammal tree | journal = Trends in Ecology & Evolution | volume = 19 | issue = 8 | pages = 430–438 | date = August 2004 | pmid = 16701301 | doi = 10.1016/j.tree.2004.05.006 | s2cid = 1508898 | url = https://www.zi.ku.dk/evolbiology/courses/ME04/7_9/springer200-phyl.pdf | access-date = 21 January 2005 | archive-date = 29 July 2016 | archive-url = https://web.archive.org/web/20160729033207/http://www.zi.ku.dk/evolbiology/courses/ME04/7_9/springer200-phyl.pdf }} | ||
* {{cite book| vauthors = Vaughan TA, Ryan JM, Capzaplewski NJ |year=2000|title=Mammalogy|edition=4th|publisher=Saunders College Publishing|location=Fort Worth, Texas|isbn=978-0-03-025034-7|oclc=42285340}} | * {{cite book| vauthors = Vaughan TA, Ryan JM, Capzaplewski NJ |year=2000|title=Mammalogy|edition=4th|publisher=Saunders College Publishing|location=Fort Worth, Texas|isbn=978-0-03-025034-7|oclc=42285340}} | ||
* {{cite journal | vauthors = Kriegs JO, Churakov G, Kiefmann M, Jordan U, Brosius J, Schmitz J | title = Retroposed elements as archives for the evolutionary history of placental mammals | journal = PLOS Biology | volume = 4 | issue = 4 | | * {{cite journal | vauthors = Kriegs JO, Churakov G, Kiefmann M, Jordan U, Brosius J, Schmitz J | title = Retroposed elements as archives for the evolutionary history of placental mammals | journal = PLOS Biology | volume = 4 | issue = 4 | article-number = e91 | date = April 2006 | pmid = 16515367 | pmc = 1395351 | doi = 10.1371/journal.pbio.0040091 | doi-access = free }} | ||
* {{cite book| vauthors = MacDonald DW, Norris S |year=2006|title=The Encyclopedia of Mammals|edition=3rd|publisher=Brown Reference Group|location=London|isbn=978-0-681-45659-4|oclc=74900519}} | * {{cite book| vauthors = MacDonald DW, Norris S |year=2006|title=The Encyclopedia of Mammals|edition=3rd|publisher=Brown Reference Group|location=London|isbn=978-0-681-45659-4|oclc=74900519}} | ||
{{Refend}} | {{Refend}} | ||
| Line 626: | Line 633: | ||
[[Category:Mammals| ]] | [[Category:Mammals| ]] | ||
[[Category:Animal taxa named by Carl Linnaeus]] | |||
<!-- [[Category:Therapsids]] is a container of the previous | <!-- [[Category:Therapsids]] is a container of the previous | ||
[[Category:Synapsids]] is a container of the previous | [[Category:Synapsids]] is a container of the previous | ||
| Line 631: | Line 639: | ||
[[Category:Bathonian first appearances]] | [[Category:Bathonian first appearances]] | ||
[[Category:Extant Middle Jurassic first appearances]] | [[Category:Extant Middle Jurassic first appearances]] | ||
Latest revision as of 07:19, 31 October 2025
Template:Short description Script error: No such module "other uses". Template:Redirect-several Template:Good article Template:Pp-semi-indef Template:Pp-move Template:Use British English Template:Use dmy dates Template:Automatic taxobox
A mammal (Template:Etymology)[1] is a vertebrate animal of the class Mammalia (Template:IPAc-en). Mammals are characterised by the presence of milk-producing mammary glands for feeding their young, a broad neocortex region of the brain, fur or hair, and three middle ear bones. These characteristics distinguish them from reptiles and birds, from which their ancestors diverged in the Carboniferous Period over 300 million years ago. Around 6,640 extant species of mammals have been described and divided into 27 orders.[2] The study of mammals is called mammalogy.
The largest orders of mammals, by number of species, are the rodents, bats, and eulipotyphlans (including hedgehogs, moles and shrews). The next three are the primates (including humans, monkeys and lemurs), the even-toed ungulates (including pigs, bovids and whales), and the Carnivora (including cats, dogs, and seals).
Mammals are the only living members of Synapsida; this clade, together with Sauropsida (reptiles and birds), constitutes the larger Amniota clade. Early synapsids are referred to as "pelycosaurs." The more advanced therapsids became dominant during the Guadalupian. Mammals originated from cynodonts, an advanced group of therapsids, during the Late Triassic to Early Jurassic. Mammals achieved their modern diversity in the Paleogene and Neogene periods of the Cenozoic era, after the extinction of non-avian dinosaurs, and have been the dominant terrestrial animal group from 66 million years ago to the present.
The basic mammalian body type is quadrupedal, with most mammals using four limbs for terrestrial locomotion; but in some, the limbs are adapted for life at sea, in the air, in trees or underground. The bipeds have adapted to move using only the two lower limbs, while the rear limbs of cetaceans and the sea cows are mere internal vestiges. Mammals range in size from the Template:Convert bumblebee bat to the Template:Convert blue whale—possibly the largest animal to have ever lived. Maximum lifespan varies from two years for the shrew to 211 years for the bowhead whale. All modern mammals give birth to live young, except the five species of monotremes, which lay eggs. The most species-rich group is the viviparous placental mammals, so named for the temporary organ (placenta) used by offspring to draw nutrition from the mother during gestation.
Most mammals are intelligent, with some possessing large brains, self-awareness, and tool use. Mammals can communicate and vocalise in several ways, including the production of ultrasound, scent marking, alarm signals, singing, echolocation; and, in the case of humans, complex language. Mammals can organise themselves into fission–fusion societies, harems, and hierarchies—but can also be solitary and territorial. Most mammals are polygynous, but some can be monogamous or polyandrous.
Domestication of many types of mammals by humans played a major role in the Neolithic Revolution, and resulted in farming replacing hunting and gathering as the primary source of food for humans. This led to a major restructuring of human societies from nomadic to sedentary, with more co-operation among larger and larger groups, and ultimately the development of the first civilisations. Domesticated mammals provided, and continue to provide, power for transport and agriculture, as well as food (meat and dairy products), fur, and leather. Mammals are also hunted and raced for sport, kept as pets and working animals of various types, and are used as model organisms in science. Mammals have been depicted in art since Paleolithic times, and appear in literature, film, mythology, and religion. Decline in numbers and extinction of many mammals is primarily driven by human poaching and habitat destruction, primarily deforestation. Template:TOC limit
Classification
Script error: No such module "Labelled list hatnote". Script error: No such module "Labelled list hatnote". Template:Pie chart
Mammal classification has been through several revisions since Carl Linnaeus initially defined the class, and at presentTemplate:When, no classification system is universally accepted. McKenna & Bell (1997) and Wilson & Reeder (2005) provide useful recent compendiums.[3] Simpson (1945)[4] provides systematics of mammal origins and relationships that had been taught universally until the end of the 20th century. However, since 1945, a large amount of new and more detailed information has gradually been found: The paleontological record has been recalibrated, and the intervening years have seen much debate and progress concerning the theoretical underpinnings of systematisation itself, partly through the new concept of cladistics. Though fieldwork and lab work progressively outdated Simpson's classification, it remains the closest thing to an official classification of mammals, despite its known issues.[5]
Most mammals, including the six most species-rich orders, belong to the placental group. The three largest orders in numbers of species are Rodentia: mice, rats, porcupines, beavers, capybaras, and other gnawing mammals; Chiroptera: bats; and Eulipotyphla: shrews, moles, and solenodons. The next three biggest orders, depending on the biological classification scheme used, are the primates: apes, monkeys, and lemurs; Cetartiodactyla: whales and even-toed ungulates; and Carnivora which includes cats, dogs, weasels, bears, seals, and allies.[6] According to Mammal Species of the World, 5,416 species were identified in 2006. These were grouped into 1,229 genera, 153 families and 29 orders.[6] In 2008, the International Union for Conservation of Nature (IUCN) completed a five-year Global Mammal Assessment for its IUCN Red List, which counted 5,488 species.[7] According to research published in the Journal of Mammalogy in 2018, the number of recognised mammal species is 6,495, including 96 recently extinct.[8]
Definitions Script error: No such module "anchor".
The word "mammal" is modern, from the scientific name Mammalia coined by Carl Linnaeus in 1758, derived from the Latin mamma ("teat, pap"). In an influential 1988 paper, Timothy Rowe defined Mammalia phylogenetically as the crown group of mammals, the clade consisting of the most recent common ancestor of living monotremes (echidnas and platypuses) and therians (marsupials and placentals) and all descendants of that ancestor.[9] Since this ancestor lived in the Jurassic Period, Rowe's definition excludes all animals from the earlier Triassic, despite the fact that Triassic fossils in the Haramiyida have been referred to the Mammalia since the mid-19th century.[10] If Mammalia is considered as the crown group, its origin can be roughly dated as the first known appearance of animals more closely related to some extant mammals than to others. Ambondro is more closely related to monotremes than to therian mammals while Amphilestes and Amphitherium are more closely related to the therians; as fossils of all three genera are dated about Template:Ma in the Middle Jurassic, this is a reasonable estimate for the appearance of the crown group.Template:CN
T. S. Kemp has provided a more traditional definition: "Synapsids that possess a dentary–squamosal jaw articulation and occlusion between upper and lower molars with a transverse component to the movement" or, equivalently in Kemp's view, the clade originating with the last common ancestor of Sinoconodon and living mammals.[11] The earliest-known synapsid satisfying Kemp's definitions is Tikitherium, dated Template:Ma, so the appearance of mammals in this broader sense can be given this Late Triassic date.[12][13] However, this animal may have actually evolved during the Neogene.[14]
Molecular classification of placentals
As of the early 21st century, molecular studies based on DNA analysis have suggested new relationships among mammal families. Most of these findings have been independently validated by retrotransposon presence/absence data.[16] Classification systems based on molecular studies reveal three major groups or lineages of placentals—Afrotheria, Xenarthra and Boreoeutheria—which diverged in the Cretaceous. The relationships between these three lineages is contentious, and all three possible hypotheses have been proposed with respect to which group is basal. These hypotheses are Atlantogenata (basal Boreoeutheria), Epitheria (basal Xenarthra) and Exafroplacentalia (basal Afrotheria).[17] Boreoeutheria in turn contains two major lineages—Euarchontoglires and Laurasiatheria.
Estimates for the divergence times between these three placental groups range from 105 to 120 million years ago, depending on the type of DNA used (such as nuclear or mitochondrial)[18] and varying interpretations of paleogeographic data.[17]
Mammal phylogeny according to Álvarez-Carretero et al., 2022:[19]
Evolution
Script error: No such module "Labelled list hatnote".
Origins
Synapsida, a clade that contains mammals and their extinct relatives, originated during the Pennsylvanian subperiod (~323 million to ~300 million years ago), when they split from the reptile lineage. Crown group mammals evolved from earlier mammaliaforms during the Early Jurassic. The cladogram takes Mammalia to be the crown group.[20]
Evolution from older amniotes
The first fully terrestrial vertebrates were amniotes. Like their amphibious early tetrapod predecessors, they had lungs and limbs. Amniotic eggs, however, have internal membranes that allow the developing embryo to breathe but keep water in. Hence, amniotes can lay eggs on dry land, while amphibians generally need to lay their eggs in water.
The first amniotes apparently arose in the Pennsylvanian subperiod of the Carboniferous. They descended from earlier reptiliomorph amphibious tetrapods,[21] which lived on land that was already inhabited by insects and other invertebrates as well as ferns, mosses and other plants. Within a few million years, two important amniote lineages became distinct: the synapsids, which would later include the common ancestor of the mammals; and the sauropsids, which now include turtles, lizards, snakes, crocodilians and dinosaurs (including birds).[22] Synapsids have a single hole (temporal fenestra) low on each side of the skull. Primitive synapsids included the largest and fiercest animals of the early Permian such as Dimetrodon.[23] Nonmammalian synapsids were traditionally—and incorrectly—called "mammal-like reptiles" or pelycosaurs; we now know they were neither reptiles nor part of reptile lineage.[24][25]
Therapsids, a group of synapsids, evolved in the Middle Permian, about 265 million years ago, and became the dominant land vertebrates.[24] They differ from basal eupelycosaurs in several features of the skull and jaws, including: larger skulls and incisors which are equal in size in therapsids, but not for eupelycosaurs.[24] The therapsid lineage leading to mammals went through a series of stages, beginning with animals that were very similar to their early synapsid ancestors and ending with probainognathian cynodonts, some of which could easily be mistaken for mammals. Those stages were characterised by:[26]
- The gradual development of a bony secondary palate.
- Abrupt acquisition of endothermy among Mammaliamorpha, thus prior to the origin of mammals by 30–50 millions of years [27].
- Progression towards an erect limb posture, which would increase the animals' stamina by avoiding Carrier's constraint. But this process was slow and erratic: for example, all herbivorous nonmammaliaform therapsids retained sprawling limbs (some late forms may have had semierect hind limbs); Permian carnivorous therapsids had sprawling forelimbs, and some late Permian ones also had semisprawling hindlimbs. In fact, modern monotremes still have semisprawling limbs.
- The dentary gradually became the main bone of the lower jaw which, by the Triassic, progressed towards the fully mammalian jaw (the lower consisting only of the dentary) and middle ear (which is constructed by the bones that were previously used to construct the jaws of reptiles).
First mammals
The Permian–Triassic extinction event about 252 million years ago, which was a prolonged event due to the accumulation of several extinction pulses, ended the dominance of carnivorous therapsids.[28] In the early Triassic, most medium to large land carnivore niches were taken over by archosaurs[29] which, over an extended period (35 million years), came to include the crocodylomorphs,[30] the pterosaurs and the dinosaurs;[31] however, large cynodonts like Trucidocynodon and traversodontids still occupied large sized carnivorous and herbivorous niches respectively. By the Jurassic, the dinosaurs had come to dominate the large terrestrial herbivore niches as well.[32]
The first mammals (in Kemp's sense) appeared in the Late Triassic epoch (about 225 million years ago), 40 million years after the first therapsids. They expanded out of their nocturnal insectivore niche from the mid-Jurassic onwards;[33] the Jurassic Castorocauda, for example, was a close relative of true mammals that had adaptations for swimming, digging and catching fish.[34] Most, if not all, are thought to have remained nocturnal (the nocturnal bottleneck), accounting for much of the typical mammalian traits.[35] The majority of the mammal species that existed in the Mesozoic Era were multituberculates, eutriconodonts and spalacotheriids.[36] The earliest-known fossil of the Metatheria ("changed beasts") is Sinodelphys, found in 125-million-year-old Early Cretaceous shale in China's northeastern Liaoning Province. The fossil is nearly complete and includes tufts of fur and imprints of soft tissues.[37]
The oldest-known fossil among the Eutheria ("true beasts") is the small shrewlike Juramaia sinensis, or "Jurassic mother from China", dated to 160 million years ago in the late Jurassic.[38] A later eutherian relative, Eomaia, dated to 125 million years ago in the early Cretaceous, possessed some features in common with the marsupials but not with the placentals, evidence that these features were present in the last common ancestor of the two groups but were later lost in the placental lineage.[39] In particular, the epipubic bones extend forwards from the pelvis. These are not found in any modern placental, but they are found in marsupials, monotremes, other nontherian mammals and Ukhaatherium, an early Cretaceous animal in the eutherian order Asioryctitheria. This also applies to the multituberculates.[40] They are apparently an ancestral feature, which subsequently disappeared in the placental lineage. These epipubic bones seem to function by stiffening the muscles during locomotion, reducing the amount of space being presented, which placentals require to contain their fetus during gestation periods. A narrow pelvic outlet indicates that the young were very small at birth and therefore pregnancy was short, as in modern marsupials. This suggests that the placenta was a later development.[41]
One of the earliest-known monotremes was Teinolophos, which lived about 120 million years ago in Australia.[42] Monotremes have some features which may be inherited from the original amniotes such as the same orifice to urinate, defecate and reproduce (cloaca)—as reptiles and birds also do—[43] and they lay eggs which are leathery and uncalcified.[44]
Earliest appearances of features
Hadrocodium, whose fossils date from approximately 195 million years ago, in the early Jurassic, provides the first clear evidence of a jaw joint formed solely by the squamosal and dentary bones; there is no space in the jaw for the articular, a bone involved in the jaws of all early synapsids.[45]
The earliest clear evidence of hair or fur is in fossils of Castorocauda and Megaconus, from 164 million years ago in the mid-Jurassic. In the 1950s, it was suggested that the foramina (passages) in the maxillae and premaxillae (bones in the front of the upper jaw) of cynodonts were channels which supplied blood vessels and nerves to vibrissae (whiskers) and so were evidence of hair or fur;[46][47] it was soon pointed out, however, that foramina do not necessarily show that an animal had vibrissae, as the modern lizard Tupinambis has foramina that are almost identical to those found in the nonmammalian cynodont Thrinaxodon.[25][48] Popular sources, nevertheless, continue to attribute whiskers to Thrinaxodon.[49] Studies on Permian coprolites suggest that non-mammalian synapsids of the epoch already had fur, setting the evolution of hairs possibly as far back as dicynodonts.[50]
When endothermy first appeared in the evolution of mammals is uncertain, though it is generally agreed to have first evolved in non-mammalian therapsids.[50][51] Modern monotremes have lower body temperatures and more variable metabolic rates than marsupials and placentals,[52] but there is evidence that some of their ancestors, perhaps including ancestors of the therians, may have had body temperatures like those of modern therians.[53] Likewise, some modern therians like afrotheres and xenarthrans have secondarily developed lower body temperatures.[54]
The evolution of erect limbs in mammals is incomplete—living and fossil monotremes have sprawling limbs. The parasagittal (nonsprawling) limb posture appeared sometime in the late Jurassic or early Cretaceous; it is found in the eutherian Eomaia and the metatherian Sinodelphys, both dated to 125 million years ago.[55] Epipubic bones, a feature that strongly influenced the reproduction of most mammal clades, are first found in Tritylodontidae, suggesting that it is a synapomorphy between them and Mammaliaformes. They are omnipresent in non-placental Mammaliaformes, though Megazostrodon and Erythrotherium appear to have lacked them.[56]
It has been suggested that the original function of lactation (milk production) was to keep eggs moist. Much of the argument is based on monotremes, the egg-laying mammals.[57][58] In human females, mammary glands become fully developed during puberty, regardless of pregnancy.[59]
Rise of the mammals
Therians took over the medium- to large-sized ecological niches in the Cenozoic, after the Cretaceous–Paleogene extinction event approximately 66 million years ago emptied ecological space once filled by non-avian dinosaurs and other groups of reptiles, as well as various other mammal groups,[61] and underwent an exponential increase in body size (megafauna).[62] The increase in mammalian diversity was not, however, solely because of expansion into large-bodied niches.[63] Mammals diversified very quickly, displaying an exponential rise in diversity.[61] For example, the earliest-known bat dates from about 50 million years ago, only 16 million years after the extinction of the non-avian dinosaurs.[64]
Molecular phylogenetic studies initially suggested that most placental orders diverged about 100 to 85 million years ago and that modern families appeared in the period from the late Eocene through the Miocene.[65] However, no placental fossils have been found from before the end of the Cretaceous.[66] The earliest undisputed fossils of placentals come from the early Paleocene, after the extinction of the non-avian dinosaurs.[66] (Scientists identified an early Paleocene animal named Protungulatum donnae as one of the first placental mammals,[67] but it has since been reclassified as a non-placental eutherian.)[68] Recalibrations of genetic and morphological diversity rates have suggested a Late Cretaceous origin for placentals, and a Paleocene origin for most modern clades.[69]
The earliest-known ancestor of primates is Archicebus achilles[70] from around 55 million years ago.[70] This tiny primate weighed 20–30 grams (0.7–1.1 ounce) and could fit within a human palm.[70]
Script error: No such module "anchor".
Anatomy
Distinguishing features
Living mammal species can be identified by the presence of sweat glands, including those that are specialised to produce milk to nourish their young.[71] In classifying fossils, however, other features must be used, since soft tissue glands and many other features are not visible in fossils.[72]
Many traits shared by all living mammals appeared among the earliest members of the group:
- Jaw joint – The dentary (the lower jaw bone, which carries the teeth) and the squamosal (a small cranial bone) meet to form the joint. In most gnathostomes, including early therapsids, the joint consists of the articular (a small bone at the back of the lower jaw) and quadrate (a small bone at the back of the upper jaw).[45]
- Middle ear – In crown-group mammals, sound is carried from the eardrum by a chain of three bones, the malleus, the incus and the stapes. Ancestrally, the malleus and the incus are derived from the articular and the quadrate bones that constituted the jaw joint of early therapsids.[73]
- Tooth replacement – Teeth can be replaced once (diphyodonty) or (as in toothed whales and murid rodents) not at all (monophyodonty).[74] Elephants, manatees, and kangaroos continually grow new teeth throughout their life (polyphyodonty).[75]
- Prismatic enamel – The enamel coating on the surface of a tooth consists of prisms, solid, rod-like structures extending from the dentin to the tooth's surface.[76]
- Occipital condyles – Two knobs at the base of the skull fit into the topmost neck vertebra; most other tetrapods, in contrast, have only one such knob.[77]
For the most part, these characteristics were not present in the Triassic ancestors of the mammals.[78] Nearly all mammaliaforms possess an epipubic bone, the exception being modern placentals.[79]
Sexual dimorphism
On average, male mammals are larger than females, with males being at least 10% larger than females in over 45% of investigated species. Most mammalian orders also exhibit male-biased sexual dimorphism, although some orders do not show any bias or are significantly female-biased (Lagomorpha). Sexual size dimorphism increases with body size across mammals (Rensch's rule), suggesting that there are parallel selection pressures on both male and female size. Male-biased dimorphism relates to sexual selection on males through male–male competition for females, as there is a positive correlation between the degree of sexual selection, as indicated by mating systems, and the degree of male-biased size dimorphism. The degree of sexual selection is also positively correlated with male and female size across mammals. Further, parallel selection pressure on female mass is identified in that age at weaning is significantly higher in more polygynous species, even when correcting for body mass. Also, the reproductive rate is lower for larger females, indicating that fecundity selection selects for smaller females in mammals. Although these patterns hold across mammals as a whole, there is considerable variation across orders.[80]
Biological systems
Script error: No such module "Labelled list hatnote". The majority of mammals have seven cervical vertebrae (bones in the neck). The exceptions are the manatee and the two-toed sloth, which have six, and the three-toed sloth which has nine.[81] All mammalian brains possess a neocortex, a brain region unique to mammals.[82] Placental brains have a corpus callosum, unlike monotremes and marsupials.[83] Template:Multiple image
Circulatory systems
The mammalian heart has four chambers, two upper atria, the receiving chambers, and two lower ventricles, the discharging chambers.[84] The heart has four valves, which separate its chambers and ensures blood flows in the correct direction through the heart (preventing backflow). After gas exchange in the pulmonary capillaries (blood vessels in the lungs), oxygen-rich blood returns to the left atrium via one of the four pulmonary veins. Blood flows nearly continuously back into the atrium, which acts as the receiving chamber, and from here through an opening into the left ventricle. Most blood flows passively into the heart while both the atria and ventricles are relaxed, but toward the end of the ventricular relaxation period, the left atrium will contract, pumping blood into the ventricle. The heart also requires nutrients and oxygen found in blood like other muscles, and is supplied via coronary arteries.[85] The red blood cells of mammals also lack a nucleus to make space for more haemoglobin, which significantly increases the cell's oxygen-carrying capacity.[86]
Respiratory systems
Script error: No such module "Labelled list hatnote". The lungs of mammals are spongy and honeycombed. Breathing is mainly achieved with the diaphragm, which divides the thorax from the abdominal cavity, forming a dome convex to the thorax. Contraction of the diaphragm flattens the dome, increasing the volume of the lung cavity. Air enters through the oral and nasal cavities, and travels through the larynx, trachea and bronchi, and expands the alveoli. Relaxing the diaphragm has the opposite effect, decreasing the volume of the lung cavity, causing air to be pushed out of the lungs. During exercise, the abdominal wall contracts, increasing pressure on the diaphragm, which forces air out quicker and more forcefully. The rib cage is able to expand and contract the chest cavity through the action of other respiratory muscles. Consequently, air is sucked into or expelled out of the lungs, always moving down its pressure gradient.[87][88] This type of lung is known as a bellows lung due to its resemblance to blacksmith bellows.[88] Template:Break
Integumentary systems
The integumentary system (skin) is made up of three layers: the outermost epidermis, the dermis and the hypodermis. The epidermis is typically 10 to 30 cells thick; its main function is to provide a waterproof layer. Its outermost cells are constantly lost; its bottommost cells are constantly dividing and pushing upward. The middle layer, the dermis, is 15 to 40 times thicker than the epidermis. The dermis is made up of many components, such as bony structures and blood vessels. The hypodermis is made up of adipose tissue, which stores lipids and provides cushioning and insulation. The thickness of this layer varies widely from species to species;[89]Template:Rp marine mammals require a thick hypodermis (blubber) for insulation, and right whales have the thickest blubber at Template:Convert.[90] Although other animals have features such as whiskers, feathers, setae, or cilia that superficially resemble it, no animals other than mammals have hair. It is a definitive characteristic of the class, though some mammals have very little.[89]Template:Rp
Digestive systems
Herbivores have developed a diverse range of physical structures to facilitate the consumption of plant material. To break up intact plant tissues, mammals have developed teeth structures that reflect their feeding preferences. For instance, frugivores (animals that feed primarily on fruit) and herbivores that feed on soft foliage have low-crowned teeth specialised for grinding foliage and seeds. Grazing animals that tend to eat hard, silica-rich grasses, have high-crowned teeth, which are capable of grinding tough plant tissues and do not wear down as quickly as low-crowned teeth.[91] Most carnivorous mammals have carnassial teeth (of varying length depending on diet), long canines and similar tooth replacement patterns.[92]
The stomach of even-toed ungulates (Artiodactyla) is divided into four sections: the rumen, the reticulum, the omasum and the abomasum (only ruminants have a rumen). After the plant material is consumed, it is mixed with saliva in the rumen and reticulum and separates into solid and liquid material. The solids lump together to form a bolus (or cud), and is regurgitated. When the bolus enters the mouth, the fluid is squeezed out with the tongue and swallowed again. Ingested food passes to the rumen and reticulum where cellulolytic microbes (bacteria, protozoa and fungi) produce cellulase, which is needed to break down the cellulose in plants.[93] Perissodactyls, in contrast to the ruminants, store digested food that has left the stomach in an enlarged cecum, where it is fermented by bacteria.[94] Carnivora have a simple stomach adapted to digest primarily meat, as compared to the elaborate digestive systems of herbivorous animals, which are necessary to break down tough, complex plant fibres. The cecum is either absent or short and simple, and the large intestine is not sacculated or much wider than the small intestine.[95]
Excretory and genitourinary systems
The mammalian excretory system involves many components. Like amphibians, mammals are ureotelic, and convert ammonia into urea, which is done by the liver as part of the urea cycle.[96] Bilirubin, a waste product derived from blood cells, is passed through bile and urine with the help of enzymes excreted by the liver.[97] The passing of bilirubin via bile through the intestinal tract gives mammalian feces a distinctive brown coloration.[98] Distinctive features of the mammalian kidney include the presence of the renal pelvis and renal pyramids, and of a clearly distinguishable cortex and medulla, which is due to the presence of elongated loops of Henle. Only the mammalian kidney has a bean shape, although there are some exceptions, such as the multilobed reniculate kidneys of pinnipeds, cetaceans and bears.[99][100] Most adult placentals have no remaining trace of the cloaca. In the embryo, the embryonic cloaca divides into a posterior region that becomes part of the anus, and an anterior region that has different fates depending on the sex of the individual: in females, it develops into the vestibule or urogenital sinus that receives the urethra and vagina, while in males it forms the entirety of the penile urethra.[100][101] However, the afrosoricids and some shrews retain a cloaca as adults.[102] In marsupials, the genital tract is separate from the anus, but a trace of the original cloaca does remain externally.[100] Monotremes, which translates from Greek into "single hole", have a true cloaca.[103] Urine flows from the ureters into the cloaca in monotremes and into the bladder in placentals.[100]
Sound production
As in all other tetrapods, mammals have a larynx that can quickly open and close to produce sounds, and a supralaryngeal vocal tract which filters this sound. The lungs and surrounding musculature provide the air stream and pressure required to phonate. The larynx controls the pitch and volume of sound, but the strength the lungs exert to exhale also contributes to volume. More primitive mammals, such as the echidna, can only hiss, as sound is achieved solely through exhaling through a partially closed larynx. Other mammals phonate using vocal folds. The movement or tenseness of the vocal folds can result in many sounds such as purring and screaming. Mammals can change the position of the larynx, allowing them to breathe through the nose while swallowing through the mouth, and to form both oral and nasal sounds; nasal sounds, such as a dog whine, are generally soft sounds, and oral sounds, such as a dog bark, are generally loud.[104]
Some mammals have a large larynx and thus a low-pitched voice, namely the hammer-headed bat (Hypsignathus monstrosus) where the larynx can take up the entirety of the thoracic cavity while pushing the lungs, heart, and trachea into the abdomen.[105] Large vocal pads can also lower the pitch, as in the low-pitched roars of big cats.[106] The production of infrasound is possible in some mammals such as the African elephant (Loxodonta spp.) and baleen whales.[107][108] Small mammals with small larynxes have the ability to produce ultrasound, which can be detected by modifications to the middle ear and cochlea. Ultrasound is inaudible to birds and reptiles, which might have been important during the Mesozoic, when birds and reptiles were the dominant predators. This private channel is used by some rodents in, for example, mother-to-pup communication, and by bats when echolocating. Toothed whales also use echolocation, but, as opposed to the vocal membrane that extends upward from the vocal folds, they have a melon to manipulate sounds. Some mammals, namely the primates, have air sacs attached to the larynx, which may function to lower the resonances or increase the volume of sound.[104]
The vocal production system is controlled by the cranial nerve nuclei in the brain, and supplied by the recurrent laryngeal nerve and the superior laryngeal nerve, branches of the vagus nerve. The vocal tract is supplied by the hypoglossal nerve and facial nerves. Electrical stimulation of the periaqueductal grey (PEG) region of the mammalian midbrain elicit vocalisations. The ability to learn new vocalisations is only exemplified in humans, seals, cetaceans, elephants and possibly bats; in humans, this is the result of a direct connection between the motor cortex, which controls movement, and the motor neurons in the spinal cord.[104]
Fur
Script error: No such module "Labelled list hatnote".
The primary function of the fur of mammals is thermoregulation. Others include protection, sensory purposes, waterproofing, and camouflage.[109] Different types of fur serve different purposes:[89]Template:Rp
- Definitive – which may be shed after reaching a certain length
- Vibrissae – sensory hairs, most commonly whiskers
- Pelage – guard hairs, under-fur, and awn hair
- Spines – stiff guard hair used for defence (such as in porcupines)
- Bristles – long hairs usually used in visual signals. (such as a lion's mane)
- Velli – often called "down fur" which insulates newborn mammals
- Wool – long, soft and often curly
Thermoregulation
Hair length is not a factor in thermoregulation: for example, some tropical mammals such as sloths have the same length of fur length as some arctic mammals but with less insulation; and, conversely, other tropical mammals with short hair have the same insulating value as arctic mammals. The denseness of fur can increase an animal's insulation value, and arctic mammals especially have dense fur; for example, the musk ox has guard hairs measuring Template:Cvt as well as a dense underfur, which forms an airtight coat, allowing them to survive in temperatures of Template:Cvt.[89]Template:Rp Some desert mammals, such as camels, use dense fur to prevent solar heat from reaching their skin, allowing the animal to stay cool; a camel's fur may reach Template:Cvt in the summer, but the skin stays at Template:Cvt.[89]Template:Rp Aquatic mammals, conversely, trap air in their fur to conserve heat by keeping the skin dry.[89]Template:Rp
Coloration
Mammalian coats are coloured for a variety of reasons, the major selective pressures including camouflage, sexual selection, communication, and thermoregulation. Coloration in both the hair and skin of mammals is mainly determined by the type and amount of melanin; eumelanins for brown and black colours and pheomelanin for a range of yellowish to reddish colours, giving mammals an earth tone.[110][111] Some mammals have more vibrant colours; certain monkeys such mandrills and vervet monkeys, and opossums such as the Mexican mouse opossums and Derby's woolly opossums, have blue skin due to light diffraction in collagen fibres.[112] Many sloths appear green because their fur hosts green algae; this may be a symbiotic relation that affords camouflage to the sloths.[113]
Camouflage is a powerful influence in a large number of mammals, as it helps to conceal individuals from predators or prey.[114] In arctic and subarctic mammals such as the arctic fox (Alopex lagopus), collared lemming (Dicrostonyx groenlandicus), stoat (Mustela erminea), and snowshoe hare (Lepus americanus), seasonal color change between brown in summer and white in winter is driven largely by camouflage.[115] Some arboreal mammals, notably primates and marsupials, have shades of violet, green, or blue skin on parts of their bodies, indicating some distinct advantage in their largely arboreal habitat due to convergent evolution.[112]
Aposematism, warning off possible predators, is the most likely explanation of the black-and-white pelage of many mammals which are able to defend themselves, such as in the foul-smelling skunk and the powerful and aggressive honey badger.[116] Coat color is sometimes sexually dimorphic, as in many primate species.[117] Differences in female and male coat color may indicate nutrition and hormone levels, important in mate selection.[118] Coat color may influence the ability to retain heat, depending on how much light is reflected. Mammals with a darker coloured coat can absorb more heat from solar radiation, and stay warmer, and some smaller mammals, such as voles, have darker fur in the winter. The white, pigmentless fur of arctic mammals, such as the polar bear, may reflect more solar radiation directly onto the skin.[89]Template:Rp[109] The dazzling black-and-white striping of zebras appear to provide some protection from biting flies.[119]
Reproductive system
Script error: No such module "Labelled list hatnote".
Mammals reproduce by internal fertilisation[120] and are solely gonochoric (an animal is born with either male or female genitalia, as opposed to hermaphrodites where there is no such schism).[121] Male mammals ejaculate semen during copulation through a penis, which may be contained in a prepuce when not erect. Male placentals also urinate through a penis, and some placentals also have a penis bone (baculum).[122][123][120] Marsupials typically have forked penises,[124] while the echidna penis generally has four heads with only two functioning.[125] Depending on the species, an erection may be fuelled by blood flow into vascular, spongy tissue or by muscular action.[122] The testicles of most mammals descend into the scrotum which is typically posterior to the penis but is often anterior in marsupials. Female mammals generally have a vulva (clitoris and labia) on the outside, while the internal system contains paired oviducts, one or two uteri, one or two cervices and a vagina.[126][127] Marsupials have two lateral vaginas and a medial vagina. The "vagina" of monotremes is better understood as a "urogenital sinus". The uterine systems of placentals can vary between a duplex, where there are two uteri and cervices which open into the vagina, a bipartite, where two uterine horns have a single cervix that connects to the vagina, a bicornuate, which consists where two uterine horns that are connected distally but separate medially creating a Y-shape, and a simplex, which has a single uterus.[128][129][89]Template:Rp
The ancestral condition for mammal reproduction is the birthing of relatively undeveloped young, either through direct vivipary or a short period as soft-shelled eggs. This is likely due to the fact that the torso could not expand due to the presence of epipubic bones. The oldest demonstration of this reproductive style is with Kayentatherium, which produced undeveloped perinates, but at much higher litter sizes than any modern mammal, 38 specimens.[130] Most modern mammals are viviparous, giving birth to live young. However, the five species of monotreme, the platypus and the four species of echidna, lay eggs. The monotremes have a sex-determination system different from that of most other mammals.[131] In particular, the sex chromosomes of a platypus are more like those of a chicken than those of a therian mammal.[132]
Viviparous mammals are in the subclass Theria; those living today are in the marsupial and placental infraclasses. Marsupials have a short gestation period, typically shorter than its estrous cycle and generally giving birth to a number of undeveloped newborns that then undergo further development; in many species, this takes place within a pouch-like sac, the marsupium, located in the front of the mother's abdomen. This is the plesiomorphic condition among viviparous mammals; the presence of epipubic bones in all non-placentals prevents the expansion of the torso needed for full pregnancy.[79] Even non-placental eutherians probably reproduced this way.[40] The placentals give birth to relatively complete and developed young, usually after long gestation periods.[133] They get their name from the placenta, which connects the developing fetus to the uterine wall to allow nutrient uptake.[134] In placentals, the epipubic is either completely lost or converted into the baculum; allowing the torso to be able to expand and thus birth developed offspring.[130] The great majority of mammals give birth multiple times during their lifespan, but a few species are semelparous.Script error: No such module "Unsubst".
The mammary glands of mammals are specialised to produce milk, the primary source of nutrition for newborns. The monotremes branched early from other mammals and do not have the teats seen in most mammals, but they do have mammary glands. The young lick the milk from a mammary patch on the mother's belly.[135] Compared to placental mammals, the milk of marsupials changes greatly in both production rate and in nutrient composition, due to the underdeveloped young. In addition, the mammary glands have more autonomy allowing them to supply separate milks to young at different development stages.[136] Lactose is the main sugar in placental milk while monotreme and marsupial milk is dominated by oligosaccharides.[137] Weaning is the process in which a mammal becomes less dependent on their mother's milk and more on solid food.[138]
Endothermy
Nearly all mammals are endothermic ("warm-blooded"). Most mammals also have hair to help keep them warm. Like birds, mammals can forage or hunt in weather and climates too cold for ectothermic ("cold-blooded") reptiles and insects. Endothermy requires plenty of food energy, so mammals eat more food per unit of body weight than most reptiles.[139] Small insectivorous mammals eat prodigious amounts for their size. A rare exception, the naked mole-rat produces little metabolic heat, so it is considered an operational poikilotherm.[140] Birds are also endothermic, so endothermy is not unique to mammals.[141]
Species lifespan
Script error: No such module "Labelled list hatnote". Among mammals, species maximum lifespan varies significantly from one year in the yellow-sided opossumScript error: No such module "Unsubst". to 211 years in the oldest bowhead whale recorded.[142] Although the underlying basis for these lifespan differences is still uncertain, numerous studies indicate that the ability to repair DNA damage is an important determinant of mammalian lifespan. In a 1974 study by Hart and Setlow,[143] it was found that DNA excision repair capability increased systematically with species lifespan among seven mammalian species. Species lifespan was observed to be robustly correlated with the capacity to recognise DNA double-strand breaks as well as the level of the DNA repair protein Ku80.[142] In a study of the cells from sixteen mammalian species, genes employed in DNA repair were found to be up-regulated in the longer-lived species.[144] The cellular level of the DNA repair enzyme poly ADP ribose polymerase was found to correlate with species lifespan in a study of 13 mammalian species.[145] Three additional studies of a variety of mammalian species also reported a correlation between species lifespan and DNA repair capability.[146][147][148]
Locomotion
Script error: No such module "Labelled list hatnote".
Terrestrial
Script error: No such module "Labelled list hatnote".
Most vertebrates are plantigrade, walking on the whole of the underside of the foot. Many mammals, such as cats and dogs, are digitigrade, walking on their toes, the greater stride length allowing more speed. Some animals such as horses are unguligrade, walking on the tips of their toes. This even further increases their stride length and thus their speed.[149] A few mammals, namely the great apes, are also known to walk on their knuckles, at least for their front legs. Giant anteaters[150] and platypuses[151] are also knuckle-walkers. Some mammals are bipeds, using only two limbs for locomotion, which can be seen in, for example, humans and the great apes. Bipedal species have a larger field of vision than quadrupeds, conserve more energy and have the ability to manipulate objects with their hands, which aids in foraging. Instead of walking, some bipeds hop, such as kangaroos and kangaroo rats.[152][153]
Animals will use different gaits for different speeds, terrain and situations. For example, horses show four natural gaits, the slowest horse gait is the walk, then there are three faster gaits which, from slowest to fastest, are the trot, the canter and the gallop. Animals may also have unusual gaits that are used occasionally, such as for moving sideways or backwards. For example, the main human gaits are bipedal walking and running, but they employ many other gaits occasionally, including a four-legged crawl in tight spaces.[154] Mammals show a vast range of gaits, the order that they place and lift their appendages in locomotion. Gaits can be grouped into categories according to their patterns of support sequence. For quadrupeds, there are three main categories: walking gaits, running gaits and leaping gaits.[155] Walking is the most common gait, where some feet are on the ground at any given time, and found in almost all legged animals. Running is considered to occur when at some points in the stride all feet are off the ground in a moment of suspension.[154]
Arboreal
Script error: No such module "Labelled list hatnote".
Arboreal animals frequently have elongated limbs that help them cross gaps, reach fruit or other resources, test the firmness of support ahead and, in some cases, to brachiate (swing between trees).[156] Many arboreal species, such as tree porcupines, silky anteaters, spider monkeys, and possums, use prehensile tails to grasp branches. In the spider monkey, the tip of the tail has either a bare patch or adhesive pad, which provides increased friction. Claws can be used to interact with rough substrates and reorient the direction of forces the animal applies. This is what allows squirrels to climb tree trunks that are so large to be essentially flat from the perspective of such a small animal. However, claws can interfere with an animal's ability to grasp very small branches, as they may wrap too far around and prick the animal's own paw. Frictional gripping is used by primates, relying upon hairless fingertips. Squeezing the branch between the fingertips generates frictional force that holds the animal's hand to the branch. However, this type of grip depends upon the angle of the frictional force, thus upon the diameter of the branch, with larger branches resulting in reduced gripping ability. To control descent, especially down large diameter branches, some arboreal animals such as squirrels have evolved highly mobile ankle joints that permit rotating the foot into a 'reversed' posture. This allows the claws to hook into the rough surface of the bark, opposing the force of gravity. Small size provides many advantages to arboreal species: such as increasing the relative size of branches to the animal, lower center of mass, increased stability, lower mass (allowing movement on smaller branches) and the ability to move through more cluttered habitat.[156] Size relating to weight affects gliding animals such as the sugar glider.[157] Some species of primate, bat and all species of sloth achieve passive stability by hanging beneath the branch. Both pitching and tipping become irrelevant, as the only method of failure would be losing their grip.[156]
Aerial
Script error: No such module "Labelled list hatnote".
Bats are the only mammals that can truly fly. They fly through the air at a constant speed by moving their wings up and down (usually with some fore-aft movement as well). Because the animal is in motion, there is some airflow relative to its body which, combined with the velocity of the wings, generates a faster airflow moving over the wing. This generates a lift force vector pointing forwards and upwards, and a drag force vector pointing rearwards and upwards. The upwards components of these counteract gravity, keeping the body in the air, while the forward component provides thrust to counteract both the drag from the wing and from the body as a whole.[158]
The wings of bats are much thinner and consist of more bones than those of birds, allowing bats to manoeuvre more accurately and fly with more lift and less drag.[159][160] By folding the wings inwards towards their body on the upstroke, they use 35% less energy during flight than birds.[161] The membranes are delicate, ripping easily; however, the tissue of the bat's membrane is able to regrow, such that small tears can heal quickly.[162] The surface of their wings is equipped with touch-sensitive receptors on small bumps called Merkel cells, also found on human fingertips. These sensitive areas are different in bats, as each bump has a tiny hair in the center, making it even more sensitive and allowing the bat to detect and collect information about the air flowing over its wings, and to fly more efficiently by changing the shape of its wings in response.[163]
Fossorial and subterranean
Script error: No such module "Labelled list hatnote". Template:Multiple image
A fossorial (from Latin fossor, meaning "digger") is an animal adapted to digging which lives primarily, but not solely, underground. Some examples are badgers, and naked mole-rats. Many rodent species are also considered fossorial because they live in burrows for most but not all of the day. Species that live exclusively underground are subterranean, and those with limited adaptations to a fossorial lifestyle sub-fossorial. Some organisms are fossorial to aid in temperature regulation while others use the underground habitat for protection from predators or for food storage.[164]
Fossorial mammals have a fusiform body, thickest at the shoulders and tapering off at the tail and nose. Unable to see in the dark burrows, most have degenerated eyes, but degeneration varies between species; pocket gophers, for example, are only semi-fossorial and have very small yet functional eyes, in the fully fossorial marsupial mole, the eyes are degenerated and useless, Talpa moles have vestigial eyes and the Cape golden mole has a layer of skin covering the eyes. External ears flaps are also very small or absent. Truly fossorial mammals have short, stout legs as strength is more important than speed to a burrowing mammal, but semi-fossorial mammals have cursorial legs. The front paws are broad and have strong claws to help in loosening dirt while excavating burrows, and the back paws have webbing, as well as claws, which aids in throwing loosened dirt backwards. Most have large incisors to prevent dirt from flying into their mouth.[165]
Many fossorial mammals such as shrews, hedgehogs, and moles were classified under the now obsolete order Insectivora.[166]
Aquatic
Script error: No such module "Labelled list hatnote".
Fully aquatic mammals, the cetaceans and sirenians, have lost their legs and have a tail fin to propel themselves through the water. Flipper movement is continuous. Whales swim by moving their tail fin and lower body up and down, propelling themselves through vertical movement, while their flippers are mainly used for steering. Their skeletal anatomy allows them to be fast swimmers. Most species have a dorsal fin to prevent themselves from turning upside-down in the water.[167][168] The flukes of sirenians are raised up and down in long strokes to move the animal forward, and can be twisted to turn. The forelimbs are paddle-like flippers which aid in turning and slowing.[169]
Semi-aquatic mammals, like pinnipeds, have two pairs of flippers on the front and back, the fore-flippers and hind-flippers. The elbows and ankles are enclosed within the body.[170][171] Pinnipeds have several adaptions for reducing drag. In addition to their streamlined bodies, they have smooth networks of muscle bundles in their skin that may increase laminar flow and make it easier for them to slip through water. They also lack arrector pili, so their fur can be streamlined as they swim.[172] They rely on their fore-flippers for locomotion in a wing-like manner similar to penguins and sea turtles.[173] Fore-flipper movement is not continuous, and the animal glides between each stroke.[171] Compared to terrestrial carnivorans, the fore-limbs are reduced in length, which gives the locomotor muscles at the shoulder and elbow joints greater mechanical advantage;[170] the hind-flippers serve as stabilizers.[172] Other semi-aquatic mammals include beavers, hippopotamuses, otters and platypuses.[174] Hippos are very large semi-aquatic mammals, and their barrel-shaped bodies have graviportal skeletal structures,[175] adapted to carrying their enormous weight, and their specific gravity allows them to sink and move along the bottom of a river.[176]
Behavior
Communication and vocalisation
Script error: No such module "labelled list hatnote".
Many mammals communicate by vocalising. Vocal communication serves many purposes, including in mating rituals, as warning calls,[178] to indicate food sources, and for social purposes. Males often call during mating rituals to ward off other males and to attract females, as in the roaring of lions and red deer.[179] The songs of the humpback whale may be signals to females;[180] they have different dialects in different regions of the ocean.[181] Social vocalisations include the territorial calls of gibbons, and the use of frequency in greater spear-nosed bats to distinguish between groups.[182] The vervet monkey gives a distinct alarm call for each of at least four different predators, and the reactions of other monkeys vary according to the call. For example, if an alarm call signals a python, the monkeys climb into the trees, whereas the eagle alarm causes monkeys to seek a hiding place on the ground.[177] Prairie dogs similarly have complex calls that signal the type, size, and speed of an approaching predator.[183] Elephants communicate socially with a variety of sounds including snorting, screaming, trumpeting, roaring and rumbling. Some of the rumbling calls are infrasonic, below the hearing range of humans, and can be heard by other elephants up to Template:Convert away at still times near sunrise and sunset.[184]
Mammals signal by a variety of means. Many give visual anti-predator signals, as when deer and gazelle stot, honestly indicating their fit condition and their ability to escape,[185][186] or when white-tailed deer and other prey mammals flag with conspicuous tail markings when alarmed, informing the predator that it has been detected.[187] Many mammals make use of scent-marking, sometimes possibly to help defend territory, but probably with a range of functions both within and between species.[188][189][190] Microbats and toothed whales including oceanic dolphins vocalise both socially and in echolocation.[191][192][193]
Feeding
To maintain a high constant body temperature is energy expensive—mammals therefore need a nutritious and plentiful diet. While the earliest mammals were probably predators, different species have since adapted to meet their dietary requirements in a variety of ways. Some eat other animals—this is a carnivorous diet (and includes insectivorous diets). Other mammals, called herbivores, eat plants, which contain complex carbohydrates such as cellulose. An herbivorous diet includes subtypes such as granivory (seed eating), folivory (leaf eating), frugivory (fruit eating), nectarivory (nectar eating), gummivory (gum eating) and mycophagy (fungus eating). The digestive tract of an herbivore is host to bacteria that ferment these complex substances, and make them available for digestion, which are either housed in the multichambered stomach or in a large cecum.[93] Some mammals are coprophagous, consuming feces to absorb the nutrients not digested when the food was first ingested.[89]Template:Rp An omnivore eats both prey and plants. Carnivorous mammals have a simple digestive tract because the proteins, lipids and minerals found in meat require little in the way of specialised digestion. Exceptions to this include baleen whales who also house gut flora in a multi-chambered stomach, like terrestrial herbivores.[194]
The size of an animal is also a factor in determining diet type (Allen's rule). Since small mammals have a high ratio of heat-losing surface area to heat-generating volume, they tend to have high energy requirements and a high metabolic rate. Mammals that weigh less than about Template:Convert are mostly insectivorous because they cannot tolerate the slow, complex digestive process of an herbivore. Larger animals, on the other hand, generate more heat and less of this heat is lost. They can therefore tolerate either a slower collection process (carnivores that feed on larger vertebrates) or a slower digestive process (herbivores).[195] Furthermore, mammals that weigh more than Template:Convert usually cannot collect enough insects during their waking hours to sustain themselves. The only large insectivorous mammals are those that feed on huge colonies of insects (ants or termites).[196]
Some mammals are omnivores and display varying degrees of carnivory and herbivory, generally leaning in favour of one more than the other. Since plants and meat are digested differently, there is a preference for one over the other, as in bears where some species may be mostly carnivorous and others mostly herbivorous.[197] They are grouped into three categories: mesocarnivory (50–70% meat), hypercarnivory (70% and greater of meat), and hypocarnivory (50% or less of meat). The dentition of hypocarnivores consists of dull, triangular carnassial teeth meant for grinding food. Hypercarnivores, however, have conical teeth and sharp carnassials meant for slashing, and in some cases strong jaws for bone-crushing, as in the case of hyenas, allowing them to consume bones; some extinct groups, notably the Machairodontinae, had sabre-shaped canines.[198]
Some physiological carnivores consume plant matter and some physiological herbivores consume meat. From a behavioural aspect, this would make them omnivores, but from the physiological standpoint, this may be due to zoopharmacognosy. Physiologically, animals must be able to obtain both energy and nutrients from plant and animal materials to be considered omnivorous. Thus, such animals are still able to be classified as carnivores and herbivores when they are just obtaining nutrients from materials originating from sources that do not seemingly complement their classification.[199] For example, it is well documented that some ungulates such as giraffes, camels, and cattle, will gnaw on bones to consume particular minerals and nutrients.[200] Also, cats, which are generally regarded as obligate carnivores, occasionally eat grass to regurgitate indigestible material (such as hairballs), aid with haemoglobin production, and as a laxative.[201]
Many mammals, in the absence of sufficient food requirements in an environment, suppress their metabolism and conserve energy in a process known as hibernation.[202] In the period preceding hibernation, larger mammals, such as bears, become polyphagic to increase fat stores, whereas smaller mammals prefer to collect and stash food.[203] The slowing of the metabolism is accompanied by a decreased heart and respiratory rate, as well as a drop in internal temperatures, which can be around ambient temperature in some cases. For example, the internal temperatures of hibernating Arctic ground squirrels can drop to Template:Cvt; however, the head and neck always stay above Template:Cvt.[204] A few mammals in hot environments aestivate in times of drought or extreme heat, for example the fat-tailed dwarf lemur (Cheirogaleus medius).[205]
Drinking
Intelligence
Script error: No such module "Labelled list hatnote". In intelligent mammals, such as primates, the cerebrum is larger relative to the rest of the brain. Intelligence itself is not easy to define, but indications of intelligence include the ability to learn, matched with behavioural flexibility. Rats, for example, are considered to be highly intelligent, as they can learn and perform new tasks, an ability that may be important when they first colonise a fresh habitat. In some mammals, food gathering appears to be related to intelligence: a deer feeding on plants has a brain smaller than a cat, which must think to outwit its prey.[196]
Tool use by animals may indicate different levels of learning and cognition. The sea otter uses rocks as essential and regular parts of its foraging behaviour (smashing abalone from rocks or breaking open shells), with some populations spending 21% of their time making tools.[206] Other tool use, such as chimpanzees using twigs to "fish" for termites, may be developed by watching others use tools and may even be a true example of animal teaching.[207] Tools may even be used in solving puzzles in which the animal appears to experience a "Eureka moment".[208] Other mammals that do not use tools, such as dogs, can also experience a Eureka moment.[209]
Brain size was previously considered a major indicator of the intelligence of an animal. Since most of the brain is used for maintaining bodily functions, greater ratios of brain to body mass may increase the amount of brain mass available for more complex cognitive tasks. Allometric analysis indicates that mammalian brain size scales at approximately the <templatestyles src="Fraction/styles.css" />2⁄3 or <templatestyles src="Fraction/styles.css" />3⁄4 exponent of the body mass. Comparison of a particular animal's brain size with the expected brain size based on such allometric analysis provides an encephalisation quotient that can be used as another indication of animal intelligence.[210] Sperm whales have the largest brain mass of any animal on earth, averaging Template:Convert and Template:Convert in mature males.[211]
Self-awareness appears to be a sign of abstract thinking. Self-awareness, although not well-defined, is believed to be a precursor to more advanced processes such as metacognitive reasoning. The traditional method for measuring this is the mirror test, which determines if an animal possesses the ability of self-recognition.[212] Mammals that have passed the mirror test include Asian elephants (some pass, some do not);[213] chimpanzees;[214] bonobos;[215] orangutans;[216] humans, from 18 months (mirror stage);[217] common bottlenose dolphins;Template:Efn[218] orcas;[219] and false killer whales.[219]
Social structure
Script error: No such module "Labelled list hatnote".
Eusociality is the highest level of social organisation. These societies have an overlap of adult generations, the division of reproductive labour and cooperative caring of young. Usually insects, such as bees, ants and termites, have eusocial behaviour, but it is demonstrated in two rodent species: the naked mole-rat[220] and the Damaraland mole-rat.[221]
Presociality is when animals exhibit more than just sexual interactions with members of the same species, but fall short of qualifying as eusocial. That is, presocial animals can display communal living, cooperative care of young, or primitive division of reproductive labour, but they do not display all of the three essential traits of eusocial animals. Humans and some species of Callitrichidae (marmosets and tamarins) are unique among primates in their degree of cooperative care of young.[222] Harry Harlow set up an experiment with rhesus monkeys, presocial primates, in 1958; the results from this study showed that social encounters are necessary in order for the young monkeys to develop both mentally and sexually.[223]
A fission–fusion society is a society that changes frequently in its size and composition, making up a permanent social group called the "parent group". Permanent social networks consist of all individual members of a community and often varies to track changes in their environment. In a fission–fusion society, the main parent group can fracture (fission) into smaller stable subgroups or individuals to adapt to environmental or social circumstances. For example, a number of males may break off from the main group in order to hunt or forage for food during the day, but at night they may return to join (fusion) the primary group to share food and partake in other activities. Many mammals exhibit this, such as primates (for example orangutans and spider monkeys),[224] elephants,[225] spotted hyenas,[226] lions,[227] and dolphins.[228]
Solitary animals defend a territory and avoid social interactions with the members of its species, except during breeding season. This is to avoid resource competition, as two individuals of the same species would occupy the same niche, and to prevent depletion of food.[229] A solitary animal, while foraging, can also be less conspicuous to predators or prey.[230]
In a hierarchy, individuals are either dominant or submissive. A despotic hierarchy is where one individual is dominant while the others are submissive, as in wolves and lemurs,[231] and a pecking order is a linear ranking of individuals where there is a top individual and a bottom individual. Pecking orders may also be ranked by sex, where the lowest individual of a sex has a higher ranking than the top individual of the other sex, as in hyenas.[232] Dominant individuals, or alphas, have a high chance of reproductive success, especially in harems where one or a few males (resident males) have exclusive breeding rights to females in a group.[233] Non-resident males can also be accepted in harems, but some species, such as the common vampire bat (Desmodus rotundus), may be more strict.[234]
Some mammals are perfectly monogamous, meaning that they mate for life and take no other partners (even after the original mate's death), as with wolves, Eurasian beavers, and otters.[235][236] There are three types of polygamy: either one or multiple dominant males have breeding rights (polygyny), multiple males that females mate with (polyandry), or multiple males have exclusive relations with multiple females (polygynandry). It is much more common for polygynous mating to happen, which, excluding leks, are estimated to occur in up to 90% of mammals.[237] Lek mating occurs when males congregate around females and try to attract them with various courtship displays and vocalisations, as in harbour seals.[238]
All higher mammals (excluding monotremes) share two major adaptations for care of the young: live birth and lactation. These imply a group-wide choice of a degree of parental care. They may build nests and dig burrows to raise their young in, or feed and guard them often for a prolonged period of time. Many mammals are K-selected, and invest more time and energy into their young than do r-selected animals. When two animals mate, they both share an interest in the success of the offspring, though often to different extremes. Mammalian females exhibit some degree of maternal aggression, another example of parental care, which may be targeted against other females of the species or the young of other females; however, some mammals may "aunt" the infants of other females, and care for them. Mammalian males may play a role in child rearing, as with tenrecs, however this varies species to species, even within the same genus. For example, the males of the southern pig-tailed macaque (Macaca nemestrina) do not participate in child care, whereas the males of the Japanese macaque (M. fuscata) do.[239]
Humans and other mammals
Script error: No such module "Labelled list hatnote".
In human culture
Non-human mammals play a wide variety of roles in human culture. They are the most popular of pets, with tens of millions of dogs, cats and other animals including rabbits and mice kept by families around the world.[240][241][242] Mammals such as mammoths, horses and deer are among the earliest subjects of art, being found in Upper Paleolithic cave paintings such as at Lascaux.[243] Major artists such as Albrecht Dürer, George Stubbs and Edwin Landseer are known for their portraits of mammals.[244] Many species of mammals have been hunted for sport and for food; deer and wild boar are especially popular as game animals.[245][246][247] Mammals such as horses and dogs are widely raced for sport, often combined with betting on the outcome.[248][249] There is a tension between the role of animals as companions to humans, and their existence as individuals with rights of their own.[250] Mammals further play a wide variety of roles in literature,[251][252][253] film,[254] mythology, and religion.[255][256][257]
Uses and importance
Script error: No such module "Labelled list hatnote".
The domestication of mammals was instrumental in the Neolithic development of agriculture and of civilisation, causing farmers to replace hunter-gatherers around the world.Template:Efn[258] This transition from hunting and gathering to herding flocks and growing crops was a major step in human history. The new agricultural economies, based on domesticated mammals, caused "radical restructuring of human societies, worldwide alterations in biodiversity, and significant changes in the Earth's landforms and its atmosphere... momentous outcomes".[259]
Domestic mammals form a large part of the livestock raised for meat across the world. They include (2009) around 1.4 billion cattle, 1 billion sheep, 1 billion domestic pigs,[260][261] and (1985) over 700 million rabbits.[262] Working domestic animals including cattle and horses have been used for work and transport from the origins of agriculture, their numbers declining with the arrival of mechanised transport and agricultural machinery. In 2004 they still provided some 80% of the power for the mainly small farms in the third world, and some 20% of the world's transport, again mainly in rural areas. In mountainous regions unsuitable for wheeled vehicles, pack animals continue to transport goods.[263] Mammal skins provide leather for shoes, clothing and upholstery. Wool from mammals including sheep, goats and alpacas has been used for centuries for clothing.[264][265]
Mammals serve a major role in science as experimental animals, both in fundamental biological research, such as in genetics,[267] and in the development of new medicines, which must be tested exhaustively to demonstrate their safety.[268] Millions of mammals, especially mice and rats, are used in experiments each year.[269] A knockout mouse is a genetically modified mouse with an inactivated gene, replaced or disrupted with an artificial piece of DNA. They enable the study of sequenced genes whose functions are unknown.[270] A small percentage of the mammals are non-human primates, used in research for their similarity to humans.[271][272][273]
Despite the benefits domesticated mammals had for human development, humans have an increasingly detrimental effect on wild mammals across the world. It has been estimated that the mass of all wild mammals has declined to only 4% of all mammals, with 96% of mammals being humans and their livestock now (see figure). In fact, terrestrial wild mammals make up only 2% of all mammals.[274][275]
Hybrids
Script error: No such module "Labelled list hatnote". Script error: No such module "Gallery".
Hybrids are offspring resulting from the breeding of two genetically distinct individuals, which usually will result in a high degree of heterozygosity, though hybrid and heterozygous are not synonymous. The deliberate or accidental hybridising of two or more species of closely related animals through captive breeding is a human activity which has been in existence for millennia and has grown for economic purposes.[276] Hybrids between different subspecies within a species (such as between the Bengal tiger and Siberian tiger) are known as intra-specific hybrids. Hybrids between different species within the same genus (such as between lions and tigers) are known as interspecific hybrids or crosses. Hybrids between different genera (such as between sheep and goats) are known as intergeneric hybrids.[277] Natural hybrids will occur in hybrid zones, where two populations of species within the same genera or species living in the same or adjacent areas will interbreed with each other. Some hybrids have been recognised as species, such as the red wolf (though this is controversial).[278]
Artificial selection, the deliberate selective breeding of domestic animals, is being used to breed back recently extinct animals in an attempt to achieve an animal breed with a phenotype that resembles that extinct wildtype ancestor. A breeding-back (intraspecific) hybrid may be very similar to the extinct wildtype in appearance, ecological niche and to some extent genetics, but the initial gene pool of that wild type is lost forever with its extinction. As a result, bred-back breeds are at best vague look-alikes of extinct wildtypes, as Heck cattle are of the aurochs.[279]
Purebred wild species evolved to a specific ecology can be threatened with extinction[280] through the process of genetic pollution, the uncontrolled hybridisation, introgression genetic swamping which leads to homogenisation or out-competition from the heterosic hybrid species.[281] When new populations are imported or selectively bred by people, or when habitat modification brings previously isolated species into contact, extinction in some species, especially rare varieties, is possible.[282] Interbreeding can swamp the rarer gene pool and create hybrids, depleting the purebred gene pool. For example, the endangered wild water buffalo is most threatened with extinction by genetic pollution from the domestic water buffalo. Such extinctions are not always apparent from a morphological standpoint. Some degree of gene flow is a normal evolutionary process, nevertheless, hybridisation threatens the existence of rare species.[283][284]
Threats
Script error: No such module "Labelled list hatnote".
The loss of species from ecological communities, defaunation, is primarily driven by human activity.[285] This has resulted in empty forests, ecological communities depleted of large vertebrates.[286][287] In the Quaternary extinction event, the mass die-off of megafaunal variety coincided with the appearance of humans, suggesting a human influence. One hypothesis is that humans hunted large mammals, such as the woolly mammoth, into extinction.[288][289] The 2019 Global Assessment Report on Biodiversity and Ecosystem Services by IPBES states that the total biomass of wild mammals has declined by 82 per cent since the beginning of human civilisation.[290][291] Wild animals make up just 4% of mammalian biomass on earth, while humans and their domesticated animals make up 96%.[275]
Various species are predicted to become extinct in the near future,[292] among them the rhinoceros,[293] giraffes,[294] and species of primates[295] and pangolins.[296] According to the WWF's 2020 Living Planet Report, vertebrate wildlife populations have declined by 68% since 1970 as a result of human activities, particularly overconsumption, population growth and intensive farming, which is evidence that humans have triggered a sixth mass extinction event.[297][298] Hunting alone threatens hundreds of mammalian species around the world.[299][300] Scientists claim that the growing demand for meat is contributing to biodiversity loss as this is a significant driver of deforestation and habitat destruction; species-rich habitats, such as significant portions of the Amazon rainforest, are being converted to agricultural land for meat production.[301][302][303] Another influence is over-hunting and poaching, which can reduce the overall population of game animals,[304] especially those located near villages,[305] as in the case of peccaries.[306] The effects of poaching can especially be seen in the ivory trade with African elephants.[307] Marine mammals are at risk from entanglement from fishing gear, notably cetaceans, with discard mortalities ranging from 65,000 to 86,000 individuals annually.[308]
Attention is being given to endangered species globally, notably through the Convention on Biological Diversity, otherwise known as the Rio Accord, which includes 189 signatory countries that are focused on identifying endangered species and habitats.[309] Another notable conservation organisation is the IUCN, which has a membership of over 1,200 governmental and non-governmental organisations.[310]
Recent extinctions can be directly attributed to human influences.[311][285] The IUCN characterises 'recent' extinction as those that have occurred past the cut-off point of 1500,[312] and around 80 mammal species have gone extinct since that time and 2015.[313] Some species, such as the Père David's deer[314] are extinct in the wild, and survive solely in captive populations. Other species, such as the Florida panther, are ecologically extinct, surviving in such low numbers that they essentially have no impact on the ecosystem.[315]Template:Rp Other populations are only locally extinct (extirpated), still existing elsewhere, but reduced in distribution,[315]Template:Rp as with the extinction of grey whales in the Atlantic.[316]
See also
- List of mammal genera – living mammals
- List of mammalogists
- List of monotremes and marsupials
- List of placental mammals
- List of prehistoric mammals
- List of endangered mammals
- Lists of mammals by population size
- Lists of mammals by region
- Mammals described in the 2000s
- Mammals in culture
- Small mammal
Notes
References
Further reading
- Script error: No such module "Citation/CS1".
- Script error: No such module "citation/CS1".Template:Dead link
- Script error: No such module "citation/CS1".
- Script error: No such module "Citation/CS1".
- Script error: No such module "Citation/CS1".
- Script error: No such module "Citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "Citation/CS1".
- Script error: No such module "citation/CS1".
External links
Template:Sister project Template:Sister project
- ASM Mammal Diversity Database Template:Webarchive
- Biodiversitymapping.org – All mammal orders in the world with distribution maps Template:Webarchive
- Paleocene Mammals Template:Webarchive, a site covering the rise of the mammals, paleocene-mammals.de
- Evolution of Mammals Template:Webarchive, a brief introduction to early mammals, enchantedlearning.com
- European Mammal Atlas EMMA Template:Webarchive from Societas Europaea Mammalogica, European-mammals.org
- Marine Mammals of the World Template:Webarchive – An overview of all marine mammals, including descriptions, both fully aquatic and semi-aquatic, noaa.gov
- Mammalogy.org Template:Webarchive The American Society of Mammalogists was established in 1919 for the purpose of promoting the study of mammals, and this website includes a mammal image library
Template:Chordata Template:Cynodontia Template:Basal mammals Script error: No such module "navbox". Template:Portal bar Template:Taxonbar Template:Authority control
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1". Reprint: Template:ISBN.
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ a b c Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b c Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ a b Script error: No such module "citation/CS1".
- ↑ a b c d e f g h i Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b c d Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ a b c Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ a b Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ a b c Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Damiani, R, 2003, Earliest evidence of cynodont burrowing, The Royal Society Publishing, Volume 270, Issue 1525
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ a b Script error: No such module "citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Template:Cite magazine
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Template:Cite magazine
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1". Chapters on hunting deer, wild hog (boar), rabbit, and squirrel.
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Template:Cite report
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".Template:Cbignore
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Template:Cite iucn
- ↑ a b Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".