Structure theorem for Gaussian measures

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Template:Short description In mathematics, the structure theorem for Gaussian measures shows that the abstract Wiener space construction is essentially the only way to obtain a strictly positive Gaussian measure on a separable Banach space. It was proved in the 1970s by Kallianpur–Satô–Stefan and DudleyFeldmanle Cam.

There is the earlier result due to H. Satô (1969) [1] which proves that "any Gaussian measure on a separable Banach space is an abstract Wiener measure in the sense of L. Gross". The result by Dudley et al. generalizes this result to the setting of Gaussian measures on a general topological vector space.

Statement of the theorem

Let γ be a strictly positive Gaussian measure on a separable Banach space (E, || ||). Then there exists a separable Hilbert space (H, ⟨ , ⟩) and a map i : H → E such that i : H → E is an abstract Wiener space with γ = i(γH), where γH is the canonical Gaussian cylinder set measure on H.

References

Template:Reflist

  • Script error: No such module "Citation/CS1".

Template:Analysis in topological vector spaces Template:Measure theory Template:Banach spaces