Split exact sequence

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Template:Short description

The term split exact sequence is used in two different ways by different people. Some people mean a short exact sequence that right-splits (thus corresponding to a semidirect product) and some people mean a short exact sequence that left-splits (which implies it right-splits, and corresponds to a direct product). This article takes the latter approach, but both are in common use. When reading a book or paper, it is important to note precisely which of the two meanings is in use.

In mathematics, a split exact sequence is a short exact sequence in which the middle term is built out of the two outer terms in the simplest possible way.

Equivalent characterizations

A short exact sequence of abelian groups or of modules over a fixed ring, or more generally of objects in an abelian category

0AaBbC0

is called split exact if it is isomorphic to the exact sequence where the middle term is the direct sum of the outer ones:

0AiACpC0

The requirement that the sequence is isomorphic means that there is an isomorphism f:BAC such that the composite fa is the natural inclusion i:AAC and such that the composite pf equals b. This can be summarized by a commutative diagram as:

File:Commutative diagram for split exact sequence - fixed.svg

The splitting lemma provides further equivalent characterizations of split exact sequences.

Examples

A trivial example of a split short exact sequence is

0M1qM1M2pM20

where M1,M2 are R-modules, q is the canonical injection and p is the canonical projection.

Any short exact sequence of vector spaces is split exact. This is a rephrasing of the fact that any set of linearly independent vectors in a vector space can be extended to a basis.

The exact sequence 0𝐙2𝐙𝐙/2𝐙0 (where the first map is multiplication by 2) is not split exact.

Related notions

Pure exact sequences can be characterized as the filtered colimits of split exact sequences.[1]

References

Template:Reflist

Sources

  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".