Schwinger parametrization

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Template:Short description Template:More citations needed Schwinger parametrization is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops. It is named after Julian Schwinger,[1] who introduced the method in 1951 for quantum electrodynamics.[2]

Description

Using the observation that

1An=1(n1)!0duun1euA,

one may simplify the integral:

dpA(p)n=1Γ(n)dp0duun1euA(p)=1Γ(n)0duun1dpeuA(p),

for Re(n)>0.

Alternative parametrization

Another version of Schwinger parametrization is:

iA+iϵ=0dueiu(A+iϵ),

which is convergent as long as ϵ>0 and A.[3] It is easy to generalize this identity to n denominators.

See also

References

Template:Reflist


Template:Asbox Template:Asbox

  1. Script error: No such module "Citation/CS1".
  2. Script error: No such module "Citation/CS1".
  3. Script error: No such module "citation/CS1".