Round function

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Script error: No such module "about". Template:No footnotes In topology and in calculus, a round function is a scalar function M, over a manifold M, whose critical points form one or several connected components, each homeomorphic to the circle S1, also called critical loops. They are special cases of Morse-Bott functions.

File:Critical-loop.PNG
The black circle in one of this critical loops.

For instance

For example, let M be the torus. Let

K=(0,2π)×(0,2π).

Then we know that a map

X:K3

given by

X(θ,ϕ)=((2+cosθ)cosϕ,(2+cosθ)sinϕ,sinθ)

is a parametrization for almost all of M. Now, via the projection π3:3 we get the restriction

G=π3|M:M,(θ,ϕ)sinθ

G=G(θ,ϕ)=sinθ is a function whose critical sets are determined by

grad G(θ,ϕ)=(Gθ,Gϕ)(θ,ϕ)=(0,0),

this is if and only if θ=π2, 3π2.

These two values for θ give the critical sets

X(π/2,ϕ)=(2cosϕ,2sinϕ,1)
X(3π/2,ϕ)=(2cosϕ,2sinϕ,1)

which represent two extremal circles over the torus M.

Observe that the Hessian for this function is

hess(G)=[sinθ000]

which clearly it reveals itself as rank of hess(G) equal to one at the tagged circles, making the critical point degenerate, that is, showing that the critical points are not isolated.

Round complexity

Mimicking the L–S category theory one can define the round complexity asking for whether or not exist round functions on manifolds and/or for the minimum number of critical loops.

References

  • Siersma and Khimshiasvili, On minimal round functions, Preprint 1118, Department of Mathematics, Utrecht University, 1999, pp. 18.[1]. An update at [2]