Ramanujan tau function

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Template:Short description

File:Absolute Tau function for x up to 16,000 with logarithmic scale.JPG
Values of |τ(n)| for n<16,000 with a logarithmic scale. The blue line picks only the values of n that are multiples of 121.

The Ramanujan tau function, studied by Template:Harvs, is the function τ: defined by the following identity:

n1τ(n)qn=qn1(1qn)24=qϕ(q)24=η(z)24=Δ(z),

where q=exp(2πiz) with Im(z)>0, ϕ is the Euler function, η is the Dedekind eta function, and the function Δ(z) is a holomorphic cusp form of weight 12 and level 1, known as the discriminant modular form (some authors, notably Apostol, write Δ/(2π)12 instead of Δ). It appears in connection to an "error term" involved in counting the number of ways of expressing an integer as a sum of 24 squares. A formula due to Ian G. Macdonald was given in Template:Harvtxt.

Values

The first few values of the tau function are given in the following table (sequence A000594 in the OEIS):

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
τ(n) 1 −24 252 −1472 4830 −6048 −16744 84480 −113643 −115920 534612 −370944 −577738 401856 1217160 987136

Calculating this function on an odd square number (i.e. a centered octagonal number) yields an odd number, whereas for any other number the function yields an even number.[1]

Ramanujan's conjectures

Template:Harvtxt observed, but did not prove, the following three properties of τ(n):

  • τ(mn)=τ(m)τ(n) if gcd(m,n)=1 (meaning that τ(n) is a multiplicative function)
  • τ(pr+1)=τ(p)τ(pr)p11τ(pr1) for p prime and r>0.
  • |τ(p)|2p11/2 for all primes p.

The first two properties were proved by Template:Harvtxt and the third one, called the Ramanujan conjecture, was proved by Deligne in 1974 as a consequence of his proof of the Weil conjectures (specifically, he deduced it by applying them to a Kuga-Sato variety).

Congruences for the tau function

For k and n, the Divisor function σk(n) is the sum of the kth powers of the divisors of n. The tau function satisfies several congruence relations; many of them can be expressed in terms of σk(n). Here are some:[2]

  1. τ(n)σ11(n) mod 211 for n1 mod 8[3]
  2. τ(n)1217σ11(n) mod 213 for n3 mod 8[3]
  3. τ(n)1537σ11(n) mod 212 for n5 mod 8[3]
  4. τ(n)705σ11(n) mod 214 for n7 mod 8[3]
  5. τ(n)n610σ1231(n) mod 36 for n1 mod 3[4]
  6. τ(n)n610σ1231(n) mod 37 for n2 mod 3[4]
  7. τ(n)n30σ71(n) mod 53 for n≢0 mod 5[5]
  8. τ(n)nσ9(n) mod 7[6]
  9. τ(n)nσ9(n) mod 72 for n3,5,6 mod 7[6]
  10. τ(n)σ11(n) mod 691.[7]

For p23 prime, we have[2][8]

  1. τ(p)0 mod 23 if (p23)=1
  2. τ(p)σ11(p) mod 232 if p is of the form a2+23b2[9]
  3. τ(p)1 mod 23 otherwise.

Explicit formula

In 1975 Douglas Niebur proved an explicit formula for the Ramanujan tau function:[10]

τ(n)=n4σ(n)24i=1n1i2(35i252in+18n2)σ(i)σ(ni).

where σ(n) is the sum of the positive divisors of n.

Conjectures on the tau function

Suppose that f is a weight-k integer newform and the Fourier coefficients a(n) are integers. Consider the problem:

Given that f does not have complex multiplication, do almost all primes p have the property that a(p)≢0(modp) ?

Indeed, most primes should have this property, and hence they are called ordinary. Despite the big advances by Deligne and Serre on Galois representations, which determine a(n)(modp) for n coprime to p, it is unclear how to compute a(p)(modp). The only theorem in this regard is Elkies' famous result for modular elliptic curves, which guarantees that there are infinitely many primes p such that a(p)=0, which thus are congruent to 0 modulo p. There are no known examples of non-CM f with weight greater than 2 for which a(p)≢0(modp) for infinitely many primes p (although it should be true for almost all p. There are also no known examples with a(p)0(modp) for infinitely many p. Some researchers had begun to doubt whether a(p)0(modp) for infinitely many p. As evidence, many provided Ramanujan's τ(p) (case of weight 12). The only solutions up to 1010 to the equation τ(p)0(modp) are 2, 3, 5, 7, 2411, and Template:Val (sequence A007659 in the OEIS).[11]

Template:Harvtxt conjectured that τ(n)0 for all n, an assertion sometimes known as Lehmer's conjecture. Lehmer verified the conjecture for n up to Template:Val (Apostol 1997, p. 22). The following table summarizes progress on finding successively larger values of N for which this condition holds for all nN.

N reference
Template:Val Lehmer (1947)
Template:Val Lehmer (1949)
Template:Val Serre (1973, p. 98), Serre (1985)
Template:Val Jennings (1993)
Template:Val Jordan and Kelly (1999)
Template:Val Bosman (2007)
Template:Val Zeng and Yin (2013)
Template:Val Derickx, van Hoeij, and Zeng (2013)

Ramanujan's L-function

Ramanujan's L-function is defined by

L(s)=n1τ(n)ns

if Re(s)>6 and by analytic continuation otherwise. It satisfies the functional equation

L(s)Γ(s)(2π)s=L(12s)Γ(12s)(2π)12s,s0,12s0

and has the Euler product

L(s)=pprime11τ(p)ps+p112s,Re(s)>7.

Ramanujan conjectured that all nontrivial zeros of L have real part equal to 6.

Notes

Template:Reflist

References

  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  1. Template:Cite OEIS
  2. a b Page 4 of Script error: No such module "Footnotes".
  3. a b c d Due to Script error: No such module "Footnotes".
  4. a b Due to Script error: No such module "Footnotes".
  5. Due to Lahivi
  6. a b Due to D. H. Lehmer
  7. Due to Script error: No such module "Footnotes".
  8. Due to Script error: No such module "Footnotes".
  9. Due to J.-P. Serre 1968, Section 4.5
  10. Script error: No such module "Citation/CS1".
  11. Script error: No such module "Citation/CS1".