Rain shadow

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Template:Short description Script error: No such module "For".

File:Rain shadow effect.jpg
Effect of a rain shadow
File:Himalaya composite.jpg
The Tibetan Plateau (center), perhaps the best example of a rain shadow. Rainfalls from the southern South Asian monsoon do not make it far past the Himalayas (seen by the snow line at the bottom), leading to an arid climate on the leeward (north) side of the mountain range and the desertification of the Tarim Basin (top).

A rain shadow is an area of significantly reduced rainfall behind a mountainous region, on the side facing away from prevailing winds, known as its leeward side.

Evaporated moisture from bodies of water (such as oceans and large lakes) is carried by the prevailing onshore breezes towards the drier and hotter inland areas. When encountering elevated landforms, the moist air is driven upslope towards the peak, where it expands, cools, and its moisture condenses and starts to precipitate. If the landforms are tall and wide enough, most of the humidity will be lost to precipitation over the windward side (also known as the rainward side) before ever making it past the top. As the air descends the leeward side of the landforms, it is compressed and heated, producing Foehn winds that absorb moisture downslope and cast a broad "shadow" of dry climate region behind the mountain crests. This climate typically takes the form of shrub–steppe, xeric shrublands, or deserts.

The condition exists because warm moist air rises by orographic lifting to the top of a mountain range. As atmospheric pressure decreases with increasing altitude, the air has expanded and adiabatically cooled to the point that the air reaches its adiabatic dew point (which is not the same as its constant pressure dew point commonly reported in weather forecasts). At the adiabatic dew point, moisture condenses onto the mountain and it precipitates on the top and windward sides of the mountain. The air descends on the leeward side, but due to the precipitation it has lost much of its moisture. Typically, descending air also gets warmer because of adiabatic compression (as with foehn winds) down the leeward side of the mountain, which increases the amount of moisture that it can absorb and creates an arid region.[1]

Notably affected regions

There are regular patterns of prevailing winds found in bands round Earth's equatorial region. The zone designated the trade winds is the zone between about 30° N and 30° S, blowing predominantly from the northeast in the Northern Hemisphere and from the southeast in the Southern Hemisphere.[2] The westerlies are the prevailing winds in the middle latitudes between 30 and 60 degrees latitude, blowing predominantly from the southwest in the Northern Hemisphere and from the northwest in the Southern Hemisphere.[3] Some of the strongest westerly winds in the middle latitudes can come in the Roaring Forties of the Southern Hemisphere, between 30 and 50 degrees latitude.[4]

Examples of notable rain shadowing include:

Africa

Northern Africa

File:Algeria.A2002118.1040.250m.jpg
The Atlas Mountains' (top) rain shadow effect makes the Sahara even drier.
  • The Sahara is made even drier because of a strong rain shadow effects caused by major mountain ranges (whose highest points can culminate up to more than 4,000 meters; 2½ miles high). To the northwest, the Atlas Mountains, covering the Mediterranean coast for Morocco, Algeria and Tunisia. On the windward side of the Atlas Mountains, the warm, moist winds blowing from the northwest off the Atlantic Ocean, which contain a lot of water vapor, are forced to rise, lift up and expand over the mountain range. This causes them to cool down, which causes an excess of moisture to condense into high clouds and results in heavy precipitation over the mountain range. This is known as orographic rainfall and after this process, the air is dry because it has lost most of its moisture over the Atlas Mountains. On the leeward side, the cold, dry air starts to descend and to sink and compress, making the winds warm up. This warming causes the moisture to evaporate, making clouds disappear. This prevents rainfall formation and creates desert conditions in the Sahara.
  • Desert regions in the Horn of Africa (Ethiopia, Eritrea, Somalia and Djibouti) such as the Danakil Desert are all influenced by the air heating and drying produced by rain shadow effect of the Ethiopian Highlands.

Southern Africa

File:A virtually cloudless image of Madagascar ESA230211.jpg
The mountain ranges on the eastern side of Madagascar provide a rain shadow for the country's western portion.

Asia

Central and Northern Asia

  • The Himalayas and connecting ranges also contribute to arid conditions in Central Asia including Mongolia's Gobi desert, as well as the semi-arid steppes of Mongolia and north-central to north western China.Script error: No such module "Unsubst".

Eastern Asia

Southern Asia

File:Ghat satellite view.jpg
The eastern regions of the Western Ghats lie in a rain shadow, receiving far less rainfall.

Western Asia

File:Envisat image of the southern Caspian Sea ESA223952.tiff
Most of Iran is rain-shadowed by the Alborz mountains in the north (just south of the Caspian Sea), hence the country's mostly (semi) arid climate.
File:Reviving the Shriveled Lake Urmia.jpg
Lake Urmia (centre) and surrounds rain-shadowed by the snowy Zagros mountains to the west.

Europe

Central Europe

Northern Europe

Southern Europe

File:Vista satelital de la cordillera Cantábrica en toda su extensión, señalada mediante un recuadro rojo.jpg
Cantabrian Mountains in the north, which rain-shadow most of Spain

Caribbean

North American mainland

File:Great Basin map.gif
The Cascade Range to the north and the California Coast Ranges and the Sierra Nevada to the south provide a significant rain-shadow for the inland North American deserts.

On the largest scale, the entirety of the North American Interior Plains are shielded from the prevailing Westerlies carrying moist Pacific weather by the North American Cordillera. More pronounced effects are observed, however, in particular valley regions within the Cordillera, in the direct lee of specific mountain ranges.[11] This includes much of the Basin and Range Province in the United States and Mexico.

The Pacific Coast Ranges create rain shadows near the West Coast:

Most rain shadows in the western United States are due to the Sierra Nevada mountains in California and Cascade Mountains, mostly in Oregon and Washington.[11]

The Colorado Front Range is limited to precipitation that crosses over the Continental Divide. While many locations west of the Divide may receive as much as Template:Convert of precipitation per year, some places on the eastern side, notably the cities of Denver and Pueblo, Colorado, typically receive only about 12 to 19 inches. Thus, the Continental Divide acts as a barrier for precipitation. This effect applies only to storms traveling west-to-east. When low pressure systems skirt the Rocky Mountains and approach from the south, they can generate high precipitation on the eastern side and little or none on the western slope.

Further east:

Oceania

Australia

File:The Great Barrier Reef, Australia - Envisat.jpg
The Atherton Tableland rain-shadowing the dry Tablelands Region in Queensland (bottom-right).
File:New Zealand as seen by Envisat ESA217570.jpg
The Southern Alps in New Zealand rain shadow the eastern side of the South Island.

Pacific Islands

South America

File:Satellite image of Bolivia in June 2002.jpg
The Andes mountains block rain and moisture from the Amazon basin to the west (Bolivia).
  • The Atacama Desert in Chile is the driest non-polar desert on Earth because it is blocked from moisture by the Andes Mountains to the east while the Humboldt Current causes persistent atmospheric stability.
  • Cuyo and Eastern Patagonia is rain shadowed from the prevailing westerly winds by the Andes range and is arid. The aridity of the lands next to eastern piedmont of the Andes decreases to the south due to a decrease in the height of the Andes with the consequence that the Patagonian Desert develop more fully at the Atlantic coast contributing to shaping the climatic pattern known as the Arid Diagonal.[25] The Argentinian wine region of Cuyo and Northern Patagonia is almost completely dependent on irrigation, using water drawn from the many rivers that drain glacial ice from the Andes.
  • The Guajira Peninsula in northern Colombia is in the rain shadow of the Sierra Nevada de Santa Marta and despite its tropical latitude is almost arid, receiving almost no rainfall for seven to eight months of the year and being incapable of cultivation without irrigation.

See also

References

Template:Reflist

External links

  1. a b Script error: No such module "citation/CS1".
  2. Script error: No such module "citation/CS1".
  3. Script error: No such module "citation/CS1".
  4. Script error: No such module "citation/CS1".
  5. Script error: No such module "citation/CS1".
  6. Script error: No such module "citation/CS1".
  7. Script error: No such module "citation/CS1".
  8. Script error: No such module "citation/CS1".
  9. Script error: No such module "citation/CS1".
  10. Script error: No such module "citation/CS1".
  11. a b Script error: No such module "citation/CS1".
  12. Script error: No such module "citation/CS1".
  13. Script error: No such module "citation/CS1"..
  14. Script error: No such module "citation/CS1".
  15. Script error: No such module "citation/CS1".
  16. Script error: No such module "citation/CS1".
  17. Script error: No such module "citation/CS1".
  18. Script error: No such module "citation/CS1".
  19. Script error: No such module "citation/CS1".
  20. Script error: No such module "citation/CS1".
  21. Script error: No such module "citation/CS1".
  22. Rain Shadows by Don White. Australian Weather News. Willy Weather. Retrieved 24 May 2021.
  23. And the outlook for winter is … wet by Kate Doyle from The New Daily. Retrieved 24 May 2021.
  24. Script error: No such module "citation/CS1".
  25. Script error: No such module "Citation/CS1".