Prime reciprocal magic square

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Template:Short description

A prime reciprocal magic square is a magic square using the decimal digits of the reciprocal of a prime number.

Formulation

Basics

In decimal, unit fractions Template:Sfrac and Template:Sfrac have no repeating decimal, while Template:Sfrac repeats 0.3333 indefinitely. The remainder of Template:Sfrac, on the other hand, repeats over six digits as, 0.𝟏42857𝟏42857𝟏

Consequently, multiples of one-seventh exhibit cyclic permutations of these six digits:[1]

1/7=0.1428572/7=0.2857143/7=0.4285714/7=0.5714285/7=0.7142856/7=0.857142

If the digits are laid out as a square, each row and column sums to Template:Math This yields the smallest base-10 non-normal, prime reciprocal magic square

Template:Val Template:Val Template:Val Template:Val Template:Val Template:Val
Template:Val Template:Val Template:Val Template:Val Template:Val Template:Val
Template:Val Template:Val Template:Val Template:Val Template:Val Template:Val
Template:Val Template:Val Template:Val Template:Val Template:Val Template:Val
Template:Val Template:Val Template:Val Template:Val Template:Val Template:Val
Template:Val Template:Val Template:Val Template:Val Template:Val Template:Val

In contrast with its rows and columns, the diagonals of this square do not sum to Template:Val; however, their mean is Template:Val, as one diagonal adds to Template:Val while the other adds to Template:Val.

All prime reciprocals in any base with a p1 period will generate magic squares where all rows and columns produce a magic constant, and only a select few will be full, such that their diagonals, rows and columns collectively yield equal sums.

Decimal expansions

In a full, or otherwise prime reciprocal magic square with p1 period, the even number of Template:Mvar−th rows in the square are arranged by multiples of 1/p — not necessarily successively — where a magic constant can be obtained.

For instance, an even repeating cycle from an odd, prime reciprocal of Template:Mvar that is divided into Template:Mvar−digit strings creates pairs of complementary sequences of digits that yield strings of nines (Template:Val) when added together:

1/7= 0.142857+ 0.857142=6/7 0.9999991/13= 0.076923076923+ 0.923076923076=12/13 0.9999999999991/19= 0.052631578947368421+ 0.947368421052631578=18/19 0.999999999999999999

This is a result of Midy's theorem.[2][3] These complementary sequences are generated between multiples of prime reciprocals that add to 1.

More specifically, a factor Template:Mvar in the numerator of the reciprocal of a prime number Template:Mvar will shift the decimal places of its decimal expansion accordingly,

1/23=0.04347826086956521739132/23=0.08695652173913043478264/23=0.17391304347826086956528/23=0.347826086956521739130416/23=0.6956521739130434782608

In this case, a factor of Template:Val moves the repeating decimal of Template:Sfrac by eight places.

A uniform solution of a prime reciprocal magic square, whether full or not, will hold rows with successive multiples of 1/p. Other magic squares can be constructed whose rows do not represent consecutive multiples of 1/p, which nonetheless generate a magic sum.

Magic constant

some prime numbers that generate prime-reciprocal magic squares in given bases
Prime Base Magic sum
19 10 81
53 12 286
59 2 29
67 2 33
83 2 41
89 19 792
211 2 105
223 3 222
307 5 612
383 10 Template:Val
397 5 792
487 6 Template:Val
593 3 592
631 87 Template:Val
787 13 Template:Val
811 3 810
Template:Val 11 Template:Val
Template:Val 5 Template:Val
Template:Val 11 Template:Val
Template:Val 19 Template:Val
Template:Val 26 Template:Val
Template:Val 2 Template:Val

Magic squares based on reciprocals of primes Template:Mvar in bases Template:Mvar with periods p1 have magic sums equal to,Script error: No such module "Unsubst".

M=(b1)×p12.

Full magic squares

The 119 magic square with maximum period 18 contains a row-and-column total of 81, that is also obtained by both diagonals. This makes it the first full, non-normal base-10 prime reciprocal magic square whose multiples fit inside respective k−th rows:[4][5]

1/19=0.0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 12/19=0.1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 23/19=0.1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 34/19=0.2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 45/19=0.2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 56/19=0.3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 67/19=0.3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 78/19=0.4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 89/19=0.4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 910/19=0.5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 011/19=0.5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 112/19=0.6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 213/19=0.6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 314/19=0.7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 415/19=0.7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 516/19=0.8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 617/19=0.8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 718/19=0.9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8

The first few prime numbers in decimal whose reciprocals can be used to produce a non-normal, full prime reciprocal magic square of this type are[6]

{19, 383, 32327, 34061, 45341, 61967, 65699, 117541, 158771, 405817, ...} (sequence A072359 in the OEIS).

The smallest prime number to yield such magic square in binary is 59 (1110112), while in ternary it is 223 (220213); these are listed at A096339, and A096660.

Variations

A 117 prime reciprocal magic square with maximum period of 16 and magic constant of 72 can be constructed where its rows represent non-consecutive multiples of one-seventeenth:[7][8]

1/17=0.0 5882352941176475/17=0.29411764705882358/17=0.47058823529411766/17=0.352941176470588213/17=0.764705882352941114/17=0.82352941176470582/17=0.117647058823529410/17=0.588235294117647016/17=0.941176470588235212/17=0.70588235294117649/17=0.529411764705882311/17=0.64705882352941174/17=0.23529411764705883/17=0.176470588235294115/17=0.88235294117647057/17=0.4117647058823529

As such, this full magic square is the first of its kind in decimal that does not admit a uniform solution where consecutive multiples of 1/p fit in respective k−th rows.

See also

References

Template:Reflist Template:Magic polygons

  1. Script error: No such module "citation/CS1".
  2. Script error: No such module "citation/CS1".
  3. Script error: No such module "Citation/CS1".
  4. Script error: No such module "citation/CS1".
  5. Template:Cite OEIS
  6. Script error: No such module "Citation/CS1".
    "Fourteen primes less than 1000000 possess this required property [in decimal]".
    Solution to problem 2420, "Only 19?" by M. J. Zerger.
  7. Script error: No such module "Citation/CS1".
  8. Template:Cite OEIS