Killing form
Template:Short description Template:Sidebar with collapsible lists
In mathematics, the Killing form, named after Wilhelm Killing, is a symmetric bilinear form that plays a basic role in the theories of Lie groups and Lie algebras. Cartan's criteria (criterion of solvability and criterion of semisimplicity) show that Killing form has a close relationship to the semisimplicity of the Lie algebras.Template:Sfn
History and name
The Killing form was essentially introduced into Lie algebra theory by Template:Harvs in his thesis. In a historical survey of Lie theory, Template:Harvtxt has described how the term "Killing form" first occurred in 1951 during one of his own reports for the Séminaire Bourbaki; it arose as a misnomer, since the form had previously been used by Lie theorists, without a name attached.[1] Some other authors now employ the term "Cartan-Killing form".Script error: No such module "Unsubst". At the end of the 19th century, Killing had noted that the coefficients of the characteristic equation of a regular semisimple element of a Lie algebra are invariant under the adjoint group, from which it follows that the Killing form (i.e. the degree 2 coefficient) is invariant, but he did not make much use of the fact. A basic result that Cartan made use of was Cartan's criterion, which states that the Killing form is non-degenerate if and only if the Lie algebra is a direct sum of simple Lie algebras.[1]
Definition
Consider a Lie algebra over a field Template:Math. Every element Template:Math of defines the adjoint endomorphism Template:Math (also written as Template:Math) of with the help of the Lie bracket, as
Now, supposing is of finite dimension, the trace of the composition of two such endomorphisms defines a symmetric bilinear form
with values in Template:Math, the Killing form on .
Properties
The following properties follow as theorems from the above definition.
- The Killing form Template:Math is bilinear and symmetric.
- The Killing form is an invariant form, as are all other forms obtained from Casimir operators. The derivation of Casimir operators vanishes; for the Killing form, this vanishing can be written as
- where [ , ] is the Lie bracket.
- If is a complex simple Lie algebra then any invariant symmetric bilinear form on is a scalar multiple of the Killing form. This is no longer true if is simple but not complex; key concept: absolutely simple Lie algebra.
- The Killing form is also invariant under automorphisms Template:Math of the algebra , that is,
- for Template:Math in .
- The Cartan criterion states that a Lie algebra is semisimple if and only if the Killing form is non-degenerate.
- The Killing form of a nilpotent Lie algebra is identically zero.
- If Template:Math are two ideals in a Lie algebra with zero intersection, then Template:Math and Template:Math are orthogonal subspaces with respect to the Killing form.
- The orthogonal complement with respect to Template:Math of an ideal is again an ideal.[2]
- If a given Lie algebra is a direct sum of its ideals Template:Math, then the Killing form of is the direct sum of the Killing forms of the individual summands.
Matrix elements
Given a basis Template:Math of the Lie algebra , the matrix elements of the Killing form are given by
Here
in Einstein summation notation, where the Template:Math are the structure coefficients of the Lie algebra. The index Template:Math functions as column index and the index Template:Math as row index in the matrix Template:Math. Taking the trace amounts to putting Template:Math and summing, and so we can write
The Killing form is the simplest 2-tensor that can be formed from the structure constants. The form itself is then
In the above indexed definition, we are careful to distinguish upper and lower indices (co- and contra-variant indices). This is because, in many cases, the Killing form can be used as a metric tensor on a manifold, in which case the distinction becomes an important one for the transformation properties of tensors. When the Lie algebra is semisimple over a zero-characteristic field, its Killing form is nondegenerate, and hence can be used as a metric tensor to raise and lower indexes. In this case, it is always possible to choose a basis for such that the structure constants with all upper indices are completely antisymmetric.
The Killing form for some Lie algebras are (for Template:Math in viewed in their fundamental matrix representation):Script error: No such module "Unsubst".
| Classification | Dual coxeter number | ||
|---|---|---|---|
| - | - | ||
| for odd. for even. | |||
| for odd. for even. | |||
The table shows that the Dynkin index for the adjoint representation is equal to twice the dual Coxeter number.
Connection with real forms
Script error: No such module "Labelled list hatnote".
Suppose that is a semisimple Lie algebra over the field of real numbers . By Cartan's criterion, the Killing form is nondegenerate, and can be diagonalized in a suitable basis with the diagonal entries Template:Math. By Sylvester's law of inertia, the number of positive entries is an invariant of the bilinear form, i.e. it does not depend on the choice of the diagonalizing basis, and is called the index of the Lie algebra . This is a number between Template:Math and the dimension of which is an important invariant of the real Lie algebra. In particular, a real Lie algebra is called compact if the Killing form is negative definite (or negative semidefinite if the Lie algebra is not semisimple). Note that this is one of two inequivalent definitions commonly used for compactness of a Lie algebra; the other states that a Lie algebra is compact if it corresponds to a compact Lie group. The definition of compactness in terms of negative definiteness of the Killing form is more restrictive, since using this definition it can be shown that under the Lie correspondence, compact Lie algebras correspond to compact semisimple Lie groups.
If is a semisimple Lie algebra over the complex numbers, then there are several non-isomorphic real Lie algebras whose complexification is , which are called its real forms. It turns out that every complex semisimple Lie algebra admits a unique (up to isomorphism) compact real form . The real forms of a given complex semisimple Lie algebra are frequently labeled by the positive index of inertia of their Killing form.
For example, the complex special linear algebra has two real forms, the real special linear algebra, denoted , and the special unitary algebra, denoted . The first one is noncompact, the so-called split real form, and its Killing form has signature Template:Math. The second one is the compact real form and its Killing form is negative definite, i.e. has signature Template:Math. The corresponding Lie groups are the noncompact group of Template:Math real matrices with the unit determinant and the special unitary group , which is compact.
Trace forms
Let be a finite-dimensional Lie algebra over the field , and be a Lie algebra representation. Let be the trace functional on . Then we can define the trace form for the representation as
Then the Killing form is the special case that the representation is the adjoint representation, .
It is easy to show that this is symmetric, bilinear and invariant for any representation .
If furthermore is simple and is irreducible, then it can be shown where is the index of the representation.
See also
Citations
References
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
- Template:Fulton-Harris
- Template:Springer
- Script error: No such module "citation/CS1".
- ↑ a b Script error: No such module "Footnotes".
- ↑ Template:Fulton-Harris See page 207.