HOMO and LUMO

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Template:Short description Script error: No such module "Redirect hatnote".

File:Molecule HOMO-LUMO diagram.svg
Diagram of the HOMO and LUMO of a molecule. Each circle represents an electron in an orbital; when light of a high enough frequency is absorbed by an electron in the HOMO, it jumps to the LUMO.
File:CO2 HOMO.gif
3D model of the highest occupied molecular orbital in CO2
File:CO2 LUMO.gif
3D model of the lowest unoccupied molecular orbital in CO2

In chemistry, HOMO and LUMO are types of molecular orbitals. The acronyms stand for highest occupied molecular orbital and lowest unoccupied molecular orbital, respectively. HOMO and LUMO are sometimes collectively called the frontier orbitals, such as in the frontier molecular orbital theory.

Gap

The energy difference between the HOMO and LUMO is the HOMO–LUMO gap. Its size can be used to predict the strength and stability of transition metal complexes, as well as the colors they produce in solution.[1] As a rule of thumb, the smaller a compound's HOMO–LUMO gap, the less stable the compound.[2] Recent quantum‐chemical analyses of over 700 compounds demonstrated that terrestrial secondary metabolites exhibit HOMO–LUMO gaps on average about 2 eV narrower than organic molecules found in carbonaceous meteorites, and that combining gap width with hydrophilicity creates a robust discriminator between biotic and abiotic chemistries.[3] This suggests that the HOMO–LUMO gap may serve as a useful biosignature in future life‐detection instruments, by highlighting aqueous, highly reactive compounds of biological origin.[3]

Semiconductors

The HOMO level is to organic semiconductors roughly what the maximum valence band is to inorganic semiconductors and quantum dots. The same analogy can be made between the LUMO level and the conduction band minimum.[4]

Organometallic chemistry

In organometallic chemistry, the size of the LUMO lobe can help predict where addition to pi ligands will occur.

SOMO

A SOMO is a singly occupied molecular orbital such as half-filled HOMO of a radical.[5] This abbreviation may also be extended to semi occupied molecular orbital.

Subadjacent orbitals: NHOMO and SLUMO

If existent, the molecular orbitals at one energy level below the HOMO and one energy level above the LUMO are also found to play a role in frontier molecular orbital theory. They are named NHOMO for next-to-highest occupied molecular orbital and SLUMO for second lowest unoccupied molecular orbital.[6] These are also commonly referred to as HOMO−1 and LUMO+1 respectively.Template:Fact

See also

References

Template:Reflist

Further reading

  • Script error: No such module "citation/CS1".

External links


Template:Quantum-chemistry-stub

  1. Script error: No such module "Citation/CS1".
  2. Script error: No such module "Citation/CS1".
  3. a b Script error: No such module "Citation/CS1".
  4. Script error: No such module "Citation/CS1".
  5. Template:GoldBookRef.
  6. Template:GoldBookRef.