Complemented group
In mathematics, in the realm of group theory, the term complemented group is used in two distinct, but similar ways.
In Script error: No such module "Footnotes"., a complemented group is one in which every subgroup has a group-theoretic complement. Such groups are called completely factorizable groups in the Russian literature, following Script error: No such module "Footnotes". and Script error: No such module "Footnotes"..
The following are equivalent for any finite group G:
- G is complemented
- G is a subgroup of a direct product of groups of square-free order (a special type of Z-group)
- G is a supersolvable group with elementary abelian Sylow subgroups (a special type of A-group), Script error: No such module "Footnotes"..
Later, in Script error: No such module "Footnotes"., a group is said to be complemented if the lattice of subgroups is a complemented lattice, that is, if for every subgroup H there is a subgroup K such that H ∩ K = 1 and ⟨H, KTemplate:Hairsp⟩ is the whole group. Hall's definition required in addition that H and K permute, that is, that HK = { hk : h in H, k in K } form a subgroup. Such groups are also called K-groups in the Italian and lattice theoretic literature, such as Script error: No such module "Footnotes".. The Frattini subgroup of a K-group is trivial; if a group has a core-free maximal subgroup that is a K-group, then it itself is a K-group; hence subgroups of K-groups need not be K-groups, but quotient groups and direct products of K-groups are K-groups, Script error: No such module "Footnotes".. In Script error: No such module "Footnotes". it is shown that every finite simple group is a complemented group. Note that in the classification of finite simple groups, K-group is more used to mean a group whose proper subgroups only have composition factors amongst the known finite simple groups.
An example of a group that is not complemented (in either sense) is the cyclic group of order p2, where p is a prime number. This group only has one nontrivial subgroup H, the cyclic group of order p, so there can be no other subgroup L to be the complement of H.
References
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".