Banach–Alaoglu theorem
Template:Short description In functional analysis and related branches of mathematics, the Banach–Alaoglu theorem (also known as Alaoglu's theorem) states that the closed unit ball of the dual space of a normed vector space is compact in the weak* topology.[1] A common proof identifies the unit ball with the weak-* topology as a closed subset of a product of compact sets with the product topology. As a consequence of Tychonoff's theorem, this product, and hence the unit ball within, is compact.
This theorem has applications in physics when one describes the set of states of an algebra of observables, namely that any state can be written as a convex linear combination of so-called pure states.
History
According to Lawrence Narici and Edward Beckenstein, the Alaoglu theorem is a “very important result—maybe Template:Em most important fact about the weak-* topology—[that] echos throughout functional analysis.”Template:Sfn In 1912, Helly proved that the unit ball of the continuous dual space of is countably weak-* compact.Template:Sfn In 1932, Stefan Banach proved that the closed unit ball in the continuous dual space of any separable normed space is sequentially weak-* compact (Banach only considered sequential compactness).Template:Sfn The proof for the general case was published in 1940 by the mathematician Leonidas Alaoglu. According to Pietsch [2007], there are at least twelve mathematicians who can lay claim to this theorem or an important predecessor to it.Template:Sfn
The Bourbaki–Alaoglu theorem is a generalization[2][3] of the original theorem by Bourbaki to dual topologies on locally convex spaces. This theorem is also called the Banach–Alaoglu theorem or the weak-* compactness theorem and it is commonly called simply the Alaoglu theorem.Template:Sfn
Statement
Script error: No such module "Labelled list hatnote".
If is a vector space over the field then will denote the algebraic dual space of and these two spaces are henceforth associated with the bilinear Template:Em defined by where the triple forms a dual system called the Template:Em.
If is a topological vector space (TVS) then its continuous dual space will be denoted by where always holds. Denote the weak-* topology on by and denote the weak-* topology on by The weak-* topology is also called the topology of pointwise convergence because given a map and a net of maps the net converges to in this topology if and only if for every point in the domain, the net of values converges to the value
Proof involving duality theory
If is a normed vector space, then the polar of a neighborhood is closed and norm-bounded in the dual space. In particular, if is the open (or closed) unit ball in then the polar of is the closed unit ball in the continuous dual space of (with the usual dual norm). Consequently, this theorem can be specialized to:
When the continuous dual space of is an infinite dimensional normed space then it is Template:Em for the closed unit ball in to be a compact subset when has its usual norm topology. This is because the unit ball in the norm topology is compact if and only if the space is finite-dimensional (cf. F. Riesz theorem). This theorem is one example of the utility of having different topologies on the same vector space.
It should be cautioned that despite appearances, the Banach–Alaoglu theorem does Template:Em imply that the weak-* topology is locally compact. This is because the closed unit ball is only a neighborhood of the origin in the strong topology, but is usually not a neighborhood of the origin in the weak-* topology, as it has empty interior in the weak* topology, unless the space is finite-dimensional. In fact, it is a result of Weil that all locally compact Hausdorff topological vector spaces must be finite-dimensional.
Elementary proof
The following elementary proof does not utilize duality theory and requires only basic concepts from set theory, topology, and functional analysis. What is needed from topology is a working knowledge of net convergence in topological spaces and familiarity with the fact that a linear functional is continuous if and only if it is bounded on a neighborhood of the origin (see the articles on continuous linear functionals and sublinear functionals for details). Also required is a proper understanding of the technical details of how the space of all functions of the form is identified as the Cartesian product and the relationship between pointwise convergence, the product topology, and subspace topologies they induce on subsets such as the algebraic dual space and products of subspaces such as An explanation of these details is now given for readers who are interested.
For every real will denote the closed ball of radius centered at and for any
Identification of functions with tuples
The Cartesian product is usually thought of as the set of all -indexed tuples but, since tuples are technically just functions from an indexing set, it can also be identified with the space of all functions having prototype as is now described:
- Template:Em: A function belonging to is identified with its (-indexed) "Template:Em"
- Template:Em: A tuple in is identified with the function defined by ; this function's "tuple of values" is the original tuple
This is the reason why many authors write, often without comment, the equality and why the Cartesian product is sometimes taken as the definition of the set of maps (or conversely). However, the Cartesian product, being the (categorical) product in the category of sets (which is a type of inverse limit), also comes equipped with associated maps that are known as its (coordinate) Template:Em.
The Template:Visible anchor at a given point is the function where under the above identification, sends a function to Stated in words, for a point and function "plugging into " is the same as "plugging into ".
In particular, suppose that are non-negative real numbers. Then where under the above identification of tuples with functions, is the set of all functions such that for every
If a subset partitions into then the linear bijection canonically identifies these two Cartesian products; moreover, this map is a homeomorphism when these products are endowed with their product topologies. In terms of function spaces, this bijection could be expressed as
Notation for nets and function composition with nets
A net in is by definition a function from a non-empty directed set Every sequence in which by definition is just a function of the form is also a net. As with sequences, the value of a net at an index is denoted by ; however, for this proof, this value may also be denoted by the usual function parentheses notation Similarly for function composition, if is any function then the net (or sequence) that results from "plugging into " is just the function although this is typically denoted by (or by if is a sequence). In the proofs below, this resulting net may be denoted by any of the following notations depending on whichever notation is cleanest or most clearly communicates the intended information. In particular, if is continuous and in then the conclusion commonly written as may instead be written as or
Topology
The set is assumed to be endowed with the product topology. It is well known that the product topology is identical to the topology of pointwise convergence. This is because given and a net where and every is an element of then the net converges in the product topology if and only if
- for every the net converges in
where because and this happens if and only if
- for every the net converges in
Thus converges to in the product topology if and only if it converges to pointwise on
This proof will also use the fact that the topology of pointwise convergence is preserved when passing to topological subspaces. This means, for example, that if for every is some (topological) subspace of then the topology of pointwise convergence (or equivalently, the product topology) on is equal to the subspace topology that the set inherits from And if is closed in for every then is a closed subset of
Characterization of
An important fact used by the proof is that for any real where denotes the supremum and As a side note, this characterization does not hold if the closed ball is replaced with the open ball (and replacing with the strict inequality will not change this; for counter-examples, consider and the identity map on ). Template:Collapse bottom
The essence of the Banach–Alaoglu theorem can be found in the next proposition, from which the Banach–Alaoglu theorem follows. Unlike the Banach–Alaoglu theorem, this proposition does Template:Em require the vector space to endowed with any topology.
Before proving the proposition above, it is first shown how the Banach–Alaoglu theorem follows from it (unlike the proposition, Banach–Alaoglu assumes that is a topological vector space (TVS) and that is a neighborhood of the origin).
The conclusion that the set is closed can also be reached by applying the following more general result, this time proved using nets, to the special case and
- Observation: If is any set and if is a closed subset of a topological space then is a closed subset of in the topology of pointwise convergence.
- Proof of observation: Let and suppose that is a net in that converges pointwise to It remains to show that which by definition means For any because in and every value belongs to the closed (in ) subset so too must this net's limit belong to this closed set; thus which completes the proof.
Template:Collapse top Let and suppose that is a net in the converges to in To conclude that it must be shown that is a linear functional. So let be a scalar and let
For any let denote Template:Em Because in which has the topology of pointwise convergence, in for every By using in place of it follows that each of the following nets of scalars converges in
Proof that
Let be the "multiplication by " map defined by
Because is continuous and in it follows that where the right hand side is and the left hand side is
which proves that Because also and limits in are unique, it follows that as desired.
Proof that
Define a net by letting for every
Because and it follows that in
Let be the addition map defined by
The continuity of implies that in where the right hand side is and the left hand side is
which proves that Because also it follows that as desired.
The lemma above actually also follows from its corollary below since is a Hausdorff complete uniform space and any subset of such a space (in particular ) is closed if and only if it is complete.
Template:Collapse top Because the underlying field is a complete Hausdorff locally convex topological vector space, the same is true of the product space A closed subset of a complete space is complete, so by the lemma, the space is complete. Template:Collapse bottom
The above elementary proof of the Banach–Alaoglu theorem actually shows that if is any subset that satisfies (such as any absorbing subset of ), then is a weak-* compact subset of
As a side note, with the help of the above elementary proof, it may be shown (see this footnote)[proof 1] that there exist -indexed non-negative real numbers such that where these real numbers can also be chosen to be "minimal" in the following sense: using (so as in the proof) and defining the notation for any if then and for every which shows that these numbers are unique; indeed, this infimum formula can be used to define them.
In fact, if denotes the set of all such products of closed balls containing the polar set then where denotes the intersection of all sets belonging to
This implies (among other things[note 1]) that the unique least element of with respect to this may be used as an alternative definition of this (necessarily convex and balanced) set. The function is a seminorm and it is unchanged if is replaced by the convex balanced hull of (because ). Similarly, because is also unchanged if is replaced by its closure in
Sequential Banach–Alaoglu theorem
A special case of the Banach–Alaoglu theorem is the sequential version of the theorem, which asserts that the closed unit ball of the dual space of a separable normed vector space is sequentially compact in the weak-* topology. In fact, the weak* topology on the closed unit ball of the dual of a separable space is metrizable, and thus compactness and sequential compactness are equivalent.
Specifically, let be a separable normed space and the closed unit ball in Since is separable, let be a countable dense subset. Then the following defines a metric, where for any in which denotes the duality pairing of with Sequential compactness of in this metric can be shown by a diagonalization argument similar to the one employed in the proof of the Arzelà–Ascoli theorem.
Due to the constructive nature of its proof (as opposed to the general case, which is based on the axiom of choice), the sequential Banach–Alaoglu theorem is often used in the field of partial differential equations to construct solutions to PDE or variational problems. For instance, if one wants to minimize a functional on the dual of a separable normed vector space one common strategy is to first construct a minimizing sequence which approaches the infimum of use the sequential Banach–Alaoglu theorem to extract a subsequence that converges in the weak* topology to a limit and then establish that is a minimizer of The last step often requires to obey a (sequential) lower semi-continuity property in the weak* topology.
When is the space of finite Radon measures on the real line (so that is the space of continuous functions vanishing at infinity, by the Riesz representation theorem), the sequential Banach–Alaoglu theorem is equivalent to the Helly selection theorem.
Consequences
Consequences for normed spaces
Assume that is a normed space and endow its continuous dual space with the usual dual norm.
- The closed unit ball in is weak-* compact.Template:Sfn So if is infinite dimensional then its closed unit ball is necessarily Template:Em compact in the norm topology by F. Riesz's theorem (despite it being weak-* compact).
- A Banach space is reflexive if and only if its closed unit ball is -compact; this is known as James' theorem.Template:Sfn
- If is a reflexive Banach space, then every bounded sequence in has a weakly convergent subsequence. (This follows by applying the Banach–Alaoglu theorem to a weakly metrizable subspace of ; or, more succinctly, by applying the Eberlein–Šmulian theorem.) For example, suppose that is the space Lp space where and let satisfy Let be a bounded sequence of functions in Then there exists a subsequence and an such that The corresponding result for is not true, as is not reflexive.
Consequences for Hilbert spaces
- In a Hilbert space, every bounded and closed set is weakly relatively compact, hence every bounded net has a weakly convergent subnet (Hilbert spaces are reflexive).
- As norm-closed, convex sets are weakly closed (Hahn–Banach theorem), norm-closures of convex bounded sets in Hilbert spaces or reflexive Banach spaces are weakly compact.
- Closed and bounded sets in are precompact with respect to the weak operator topology (the weak operator topology is weaker than the ultraweak topology which is in turn the weak-* topology with respect to the predual of the trace class operators). Hence bounded sequences of operators have a weak accumulation point. As a consequence, has the Heine–Borel property, if equipped with either the weak operator or the ultraweak topology.
Relation to the axiom of choice and other statements
Script error: No such module "Labelled list hatnote".
The Banach–Alaoglu may be proven by using Tychonoff's theorem, which under the Zermelo–Fraenkel set theory (ZF) axiomatic framework is equivalent to the axiom of choice. Most mainstream functional analysis relies on ZF + the axiom of choice, which is often denoted by ZFC. However, the theorem does Template:Em rely upon the axiom of choice in the separable case (see above): in this case there actually exists a constructive proof. In the general case of an arbitrary normed space, the ultrafilter Lemma, which is strictly weaker than the axiom of choice and equivalent to Tychonoff's theorem for compact Template:Em spaces, suffices for the proof of the Banach–Alaoglu theorem, and is in fact equivalent to it.
Script error: No such module "anchor".The Banach–Alaoglu theorem is equivalent to the ultrafilter lemma, which implies the Hahn–Banach theorem for real vector spaces (HB) but is not equivalent to it (said differently, Banach–Alaoglu is also strictly stronger than HB). However, the Hahn–Banach theorem is equivalent to the following weak version of the Banach–Alaoglu theorem for normed space[4] in which the conclusion of compactness (in the weak-* topology of the closed unit ball of the dual space) is replaced with the conclusion of Template:Em (also sometimes called Template:Em);
Compactness implies convex compactness because a topological space is compact if and only if every family of closed subsets having the finite intersection property (FIP) has non-empty intersection. The definition of convex compactness is similar to this characterization of compact spaces in terms of the FIP, except that it only involves those closed subsets that are also convex (rather than all closed subsets).
See also
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
Notes
Proofs
Citations
References
- Template:Köthe Topological Vector Spaces I
- Script error: No such module "citation/CS1".
- Template:Narici Beckenstein Topological Vector Spaces
- Template:Rudin Walter Functional Analysis See Theorem 3.15, p. 68.
- Template:Schaefer Wolff Topological Vector Spaces
- Template:Schechter Handbook of Analysis and Its Foundations
- Template:Trèves François Topological vector spaces, distributions and kernels
Further reading
Template:Duality and spaces of linear maps Template:Functional analysis Template:Topological vector spaces
Cite error: <ref> tags exist for a group named "proof", but no corresponding <references group="proof"/> tag was found
Cite error: <ref> tags exist for a group named "note", but no corresponding <references group="note"/> tag was found