Almost perfect number

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Template:Short description

File:Deficient number Cuisenaire rods 8.png
Demonstration, with Cuisenaire rods, that the number 8 is almost perfect, and deficient.

In mathematics, an almost perfect number (sometimes also called slightly defective or least deficient number) is a natural number n such that the sum of all divisors of n (the sum-of-divisors function σ(n)) is equal to 2n − 1, the sum of all proper divisors of n, s(n) = σ(n) − n, then being equal to n − 1. The only known almost perfect numbers are powers of 2 with non-negative exponents (sequence A000079 in the OEIS). Therefore the only known odd almost perfect number is 20 = 1, and the only known even almost perfect numbers are those of the form 2k for some positive integer k; however, it has not been shown that all almost perfect numbers are of this form. It is known that an odd almost perfect number greater than 1 would have at least six prime factors.[1][2]

If m is an odd almost perfect number then m(2m − 1) is a Descartes number.[3] Moreover if a and b are positive odd integers such that b+3<a<m/2 and such that 4ma and 4m + b are both primes, then m(4ma)(4m + b) would be an odd weird number.[4]

See also

References

Template:Reflist

Further reading

  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".

External links

  • Script error: No such module "Template wrapper".

Template:Divisor classes Template:Classes of natural numbers

Template:Asbox

  1. Script error: No such module "Citation/CS1".
  2. Script error: No such module "Citation/CS1".
  3. Script error: No such module "citation/CS1".
  4. Script error: No such module "Citation/CS1".