Great dirhombicosidodecahedron

From Wikipedia, the free encyclopedia
Revision as of 12:50, 2 July 2024 by imported>Mennotk (Cartesian coordinates: Cleaned up coordinates, added metric data)
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description

Great dirhombicosidodecahedron
File:Great dirhombicosidodecahedron.png
Type Uniform star polyhedron
Elements F = 124, E = 240
V = 60 (χ = −56)
Faces by sides 40{3}+60{4}+24{5/2}
Coxeter diagram
Wythoff symbol 3/2 5/3 3 5/2
Symmetry group Ih, [5,3], *532
Index references U75, C92, W119
Dual polyhedron Great dirhombicosidodecacron
Vertex figure File:Great dirhombicosidodecahedron vertfig.png
4.5/3.4.3.4.5/2.4.3/2
Bowers acronym Gidrid
File:Great dirhombicosidodecahedron.stl
3D model of a great dirhombicosidodecahedron.

In geometry, the great dirhombicosidodecahedron (or great snub disicosidisdodecahedron) is a nonconvex uniform polyhedron, indexed last as Template:Math. It has 124 faces (40 triangles, 60 squares, and 24 pentagrams), 240 edges, and 60 vertices.[1]

This is the only non-degenerate uniform polyhedron with more than six faces meeting at a vertex. Each vertex has 4 squares which pass through the vertex central axis (and thus through the centre of the figure), alternating with two triangles and two pentagrams. Another unusual feature is that the faces all occur in coplanar pairs.

This is also the only uniform polyhedron that cannot be made by the Wythoff construction from a spherical triangle. It has a special Wythoff symbol Template:Math relating it to a spherical quadrilateral. This symbol suggests that it is a sort of snub polyhedron, except that instead of the non-snub faces being surrounded by snub triangles as in most snub polyhedra, they are surrounded by snub squares.

It has been nicknamed "Miller's monster" (after J. C. P. Miller, who with H. S. M. Coxeter and M. S. Longuet-Higgins enumerated the uniform polyhedra in 1954).

Related polyhedra

If the definition of a uniform polyhedron is relaxed to allow any even number of faces adjacent to an edge, then this definition gives rise to one further polyhedron: the great disnub dirhombidodecahedron which has the same vertices and edges but with a different arrangement of triangular faces.

The vertices and edges are also shared with the uniform compounds of 20 octahedra or 20 tetrahemihexahedra. 180 of the 240 edges are shared with the great snub dodecicosidodecahedron.

File:Nonuniform2-rhombicosidodecahedron.png
Convex hull
File:Great snub dodecicosidodecahedron.png
Great snub dodecicosidodecahedron
File:Great dirhombicosidodecahedron.png
Great dirhombicosidodecahedron
File:Great disnub dirhombidodecahedron.png
Great disnub dirhombidodecahedron
File:UC14-20 octahedra.png
Compound of twenty octahedra
File:UC19-20 tetrahemihexahedron.png
Compound of twenty tetrahemihexahedra

This polyhedron is related to the nonconvex great rhombicosidodecahedron (quasirhombicosidodecahedron) by a branched cover: there is a function from the great dirhombicosidodecahedron to the quasirhombicosidodecahedron that is 2-to-1 everywhere, except for the vertices.[2]

Cartesian coordinates

Let the point p be given by

p=(ϕ120ϕ1),

where ϕ is the golden ratio. Let the matrix M be given by

M=(1/2ϕ/21/(2ϕ)ϕ/21/(2ϕ)1/21/(2ϕ)1/2ϕ/2).

M is the rotation around the axis (1,0,ϕ) by an angle of 2π/5, counterclockwise. Let the linear transformations T0,,T11 be the transformations which send a point (x,y,z) to the even permutations of (±x,±y,±z) with an even number of minus signs. The transformations Ti constitute the group of rotational symmetries of a regular tetrahedron. The transformations TiMj (i=0,,11, j=0,,4) constitute the group of rotational symmetries of a regular icosahedron. Then the 60 points TiMjp are the vertices of a great dirhombicosidodecahedron. The edge length equals 2, the circumradius equals 1, and the midradius equals 122.

For a great dirhombicosidodecahedron whose edge length is 1, the circumradius is

R=122.

Its midradius is

r=12.

Gallery


File:Great dirhombicosidodecahedron.png
Traditional filling
File:Great dirhombicosidodecahedron 2.png
Modulo-2 filling
File:Great dirhombicosidodecahedron interior.png
Interior view, modulo-2 filling

References

Template:Reflist

External links

  1. Script error: No such module "citation/CS1".
  2. Script error: No such module "citation/CS1".