Pauli matrices: Difference between revisions

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
 
Corrected typo and added an extra backslash to render the correct line break in the matrix for the rotation matrix of exp(i a \sigma_1)
 
Line 1: Line 1:
{{Short description|Matrices important in quantum mechanics and the study of spin}}
{{Short description|Matrices important in quantum mechanics and the study of spin}}
{{Use American English|date=March 2019}}
{{Use American English|date=March 2019}}
{{MOS|article|date=July 2025| [[MOS:FORMULA]] - avoid mixing {{tag|math}} and {{tl|math}} in the same expression}}
[[File:Wolfgang Pauli.jpg|thumb|right|[[Wolfgang Pauli]] (1900–1958), c. 1924. Pauli received the [[Nobel Prize in Physics]] in 1945, nominated by [[Albert Einstein]], for the [[Pauli exclusion principle]].]]
[[File:Wolfgang Pauli.jpg|thumb|right|[[Wolfgang Pauli]] (1900–1958), c. 1924. Pauli received the [[Nobel Prize in Physics]] in 1945, nominated by [[Albert Einstein]], for the [[Pauli exclusion principle]].]]
In [[mathematical physics]] and [[mathematics]], the '''Pauli matrices''' are a set of three {{math|2 × 2}} [[complex number|complex]] [[matrix (mathematics)|matrices]] that are [[traceless]], [[Hermitian matrix|Hermitian]], [[Involutory matrix|involutory]] and [[Unitary matrix|unitary]]. Usually indicated by the [[Greek (alphabet)|Greek]] letter [[sigma]] ({{mvar|σ}}), they are occasionally denoted by [[tau]] ({{mvar|τ}}) when used in connection with [[isospin]] symmetries.
In [[mathematical physics]] and [[mathematics]], the '''Pauli matrices''' are a set of three {{math|2 × 2}} [[complex number|complex]] [[matrix (mathematics)|matrices]] that are [[traceless]], [[Hermitian matrix|Hermitian]], [[Involutory matrix|involutory]] and [[Unitary matrix|unitary]]. Usually indicated by the [[Greek (alphabet)|Greek]] letter [[sigma]] ({{mvar|σ}}), they are occasionally denoted by [[tau]] ({{mvar|τ}}) when used in connection with [[isospin]] symmetries.
Line 27: Line 28:
Each Pauli matrix is [[Hermitian matrix|Hermitian]], and together with the identity matrix {{mvar|I}} (sometimes considered as the zeroth Pauli matrix {{math|''σ''{{sub|0}} }}), the Pauli matrices form a [[Basis (linear algebra)|basis]] of the [[vector space]] of {{math|2 × 2}} Hermitian matrices over the [[real number|real numbers]], under addition. This means that any {{math|2 × 2}} [[Hermitian matrix]] can be written in a unique way as a [[linear combination]] of Pauli matrices, with all coefficients being real numbers.
Each Pauli matrix is [[Hermitian matrix|Hermitian]], and together with the identity matrix {{mvar|I}} (sometimes considered as the zeroth Pauli matrix {{math|''σ''{{sub|0}} }}), the Pauli matrices form a [[Basis (linear algebra)|basis]] of the [[vector space]] of {{math|2 × 2}} Hermitian matrices over the [[real number|real numbers]], under addition. This means that any {{math|2 × 2}} [[Hermitian matrix]] can be written in a unique way as a [[linear combination]] of Pauli matrices, with all coefficients being real numbers.


The Pauli matrices satisfy the useful product relation:<math display="block">\begin{align}
The Pauli matrices satisfy the useful product relation:
  \sigma_i \sigma_j = \delta_{ij}+i\epsilon_{ijk}\sigma_k.
:<math display="block">\begin{align}
  \sigma_i\ \sigma_j = \delta_{ij}\ I + i\ \varepsilon_{ijk}\ \sigma_k\ ,
\end{align}</math>
\end{align}</math>
where {{mvar|δ{{sub|ij}} }} is the [[Kronecker delta]], which equals {{math|+1}} if {{nobr| {{math|''i'' {{=}} ''j''}} ,}} otherwise {{math|0}}, and the [[Levi-Civita symbol]] {{math|''ε{{sub|ijk}}''}} is used.


[[Hermitian operator]]s represent [[observable]]s in quantum mechanics, so the Pauli matrices span the space of observables of the [[complex number|complex]] two-dimensional [[Hilbert space]]. In the context of Pauli's work, {{mvar|σ{{sub|k}}}} represents the observable corresponding to spin along the {{mvar|k}}th coordinate axis in three-dimensional [[Euclidean space]] <math>\mathbb{R}^3 .</math>
[[Hermitian operator]]s represent [[observable]]s in quantum mechanics, so the Pauli matrices span the space of observables of the [[complex number|complex]] two-dimensional [[Hilbert space]]. In the context of Pauli's work, {{mvar|σ{{sub|k}}}} represents the observable corresponding to spin along the {{mvar|k}}th coordinate axis in three-dimensional [[Euclidean space]] <math>\mathbb{R}^3 ~.</math>


The Pauli matrices (after multiplication by {{mvar|i}} to make them [[skew-Hermitian|anti-Hermitian]]) also generate transformations in the sense of [[Lie algebra]]s: the matrices {{math|''''{{sub|1}}, ''''{{sub|2}}, ''''{{sub|3}} }} form a basis for the real Lie algebra <math>\mathfrak{su}(2)</math>, which [[Exponential map (Lie theory)|exponentiates]] to the special unitary group [[SU(2)#n = 2|SU(2)]].{{efn|
The Pauli matrices (after multiplication by {{mvar|i}} to make them [[skew-Hermitian|anti-Hermitian]]) also generate transformations in the sense of [[Lie algebra]]s: The matrices {{math|{{nobr|''i σ''{{sub|1}},}} {{nobr|''i σ''{{sub|2}},}} {{nobr|''i σ''{{sub|3}}}} }} form a basis for the real Lie algebra <math>\ \mathfrak{su}(2)\ ,</math> which [[Exponential map (Lie theory)|exponentiates]] to the special unitary group [[SU(2)#n = 2|SU(2)]].{{efn|
This conforms to the convention ''in mathematics'' for the [[matrix exponential]], {{math|'''' ⟼ exp('''')}}. In the convention ''in physics'', {{math|''σ'' ⟼ exp(−'''')}}, hence in it no pre-multiplication by {{mvar|i}} is necessary to land in {{math|SU(2)}}.
This conforms to the convention ''in mathematics'' for the [[matrix exponential]], {{nobr|{{math|''i σ'' ⟼ exp(''i σ'')}} .}} In the convention ''in physics'', {{nobr| {{math|''σ'' ⟼ exp(−''i σ'')}} ,}} hence in it no pre-multiplication by {{mvar|i}} is necessary to land in {{nobr|{{math|SU(2)}} .}}
}} The [[Algebra over a field|algebra]] generated by the three matrices {{math|''σ''{{sub|1}}, ''σ''{{sub|2}}, ''σ''{{sub|3}} }} is [[isomorphic]] to the [[Clifford algebra]] of <math> \mathbb{R}^3,</math><ref>
}} The [[Algebra over a field|algebra]] generated by the three matrices {{math|''σ''{{sub|1}}, ''σ''{{sub|2}}, ''σ''{{sub|3}} }} is [[isomorphic]] to the [[Clifford algebra]] of <math>\ \mathbb{R}^3\ ,</math><ref>{{cite journal |last1=Gull |first1=S.F. |last2=Lasenby |first2=A.N. |last3=Doran |first3=C.J.L. |date=January 1993 |title=Imaginary numbers are not Real – the geometric algebra of spacetime |journal=[[Foundations of Physics]] |volume=23 |issue=9 |pages=1175–1201 |doi=10.1007/BF01883676 |bibcode=1993FoPh...23.1175G |s2cid=14670523 |url=http://geometry.mrao.cam.ac.uk/wp-content/uploads/2015/02/ImagNumbersArentReal.pdf |via=geometry.mrao.cam.ac.uk |url-status=dead |access-date=2023-05-05 |df=dmy-all |archive-url=https://web.archive.org/web/20231009095333/http://geometry.mrao.cam.ac.uk/wp-content/uploads/2015/02/ImagNumbersArentReal.pdf |archive-date=2023-10-09 }}</ref> and the (unital) [[associative algebra]] generated by {{math|''iσ''{{sub|1}}, ''iσ''{{sub|2}}, ''iσ''{{sub|3}} }} functions identically ([[isomorphism|is isomorphic]]) to that of [[quaternion]]s (<math>\mathbb{H}</math>).
{{cite journal |author1=Gull, S. F. |author2=Lasenby, A. N. |author3=Doran, C. J. L. |date=January 1993 |title=Imaginary numbers are not Real – the geometric algebra of spacetime |via=geometry.mrao.cam.ac.uk |journal=Found. Phys. |volume=23 |issue=9 |pages=1175–1201 |doi=10.1007/BF01883676 |bibcode=1993FoPh...23.1175G |s2cid=14670523 |url=http://geometry.mrao.cam.ac.uk/wp-content/uploads/2015/02/ImagNumbersArentReal.pdf |access-date=2023-05-05 |df=dmy-all}}
</ref> and the (unital) [[associative algebra]] generated by {{math|''iσ''{{sub|1}}, ''iσ''{{sub|2}}, ''iσ''{{sub|3}} }} functions identically ([[isomorphism|is isomorphic]]) to that of [[quaternion]]s (<math>\mathbb{H}</math>).


== Algebraic properties ==
== Algebraic properties ==
Line 49: Line 50:
|-
|-
! <math>\sigma_x</math>
! <math>\sigma_x</math>
| <math>I</math> || <math>i \sigma_z</math> || <math>-i \sigma_y</math>
| <math>I</math> || <math>i\ \sigma_z</math> || <math>-i\ \sigma_y</math>
|-
|-
! <math>\sigma_y</math>
! <math>\sigma_y</math>
| <math>-i \sigma_z</math> || <math>I</math> || <math>i \sigma_x</math>
| <math>-i\ \sigma_z</math> || <math>I</math> || <math>i\ \sigma_x</math>
|-
|-
! <math>\sigma_z</math>
! <math>\sigma_z</math>
| <math>i \sigma_y</math> || <math>-i \sigma_x</math> || <math>I</math>
| <math>i \sigma_y</math> || <math>-i\ \sigma_x</math> || <math>I</math>
|}
|}


Line 62: Line 63:
   \sigma_j =  
   \sigma_j =  
     \begin{pmatrix}
     \begin{pmatrix}
       \delta_{j3}                  &  \delta_{j1} - i\,\delta_{j2}\\
       \delta_{j3}                  &  \delta_{j1} - i\ \delta_{j2}\\
       \delta_{j1} + i\,\delta_{j2}  & -\delta_{j3}
       \delta_{j1} + i\ \delta_{j2}  & -\delta_{j3}
     \end{pmatrix},
     \end{pmatrix} ~.
</math>
</math>
where  {{mvar|δ{{sub|jk}} }} is the [[Kronecker delta]], which equals {{math|+1}} if {{math|''j'' {{=}} ''k''}} and 0 otherwise. This expression is useful for "selecting" any one of the matrices numerically by substituting values of {{math|''j'' {{=}} 1, 2, 3,}} in turn useful when any of the matrices (but no particular one) is to be used in algebraic manipulations.
This expression is useful for "selecting" any one of the matrices numerically by substituting values of {{nobr| {{math|''j'' {{=}} 1, 2, 3,}} }} in turn useful when any of the matrices (but no particular one) is to be used in algebraic manipulations.


The matrices are [[Involutory matrix|''involutory'']]:
The matrices are [[Involutory matrix|''involutory'']]:
:<math>\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = -i\,\sigma_1 \sigma_2 \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I,</math>
:<math>\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = -i\ \sigma_1\ \sigma_2\ \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I\ ,</math>
where {{mvar|I}} is the [[identity matrix]].
where {{mvar|I}} is the [[identity matrix]].


The [[determinant]]s and [[trace of a matrix|trace]]s of the Pauli matrices are
The [[determinant]]s and [[trace of a matrix|trace]]s of the Pauli matrices are
:<math>\begin{align}
:<math>\begin{align}
               \det \sigma_j &= -1, \\
               \det \sigma_j &= -1\ , \\
   \operatorname{tr} \sigma_j &= 0,
   \operatorname{tr} \sigma_j &= 0\ ,
\end{align}</math>
\end{align}</math>
from which we can deduce that each matrix {{mvar|σ{{sub|j}} }} has [[eigenvalues]] +1 and −1.
from which we can deduce that each matrix {{mvar|σ{{sub|j}} }} has [[eigenvalues]] {{math|+1}} and {{nobr|{{math|−1}} .}}


With the inclusion of the identity matrix {{mvar|I}} (sometimes denoted {{math|''σ''{{sub|0}}}}), the Pauli matrices form an orthogonal basis (in the sense of [[Hilbert–Schmidt operator|Hilbert–Schmidt]]) of the [[Hilbert space]] <math>\mathcal{H}_2</math> of {{math|2 × 2}} Hermitian matrices over <math>\mathbb{R}</math>, and the Hilbert space <math>\mathcal{M}_{2,2}(\mathbb{C})</math> of all [[complex number|complex]] {{math|2 × 2}} matrices over <math>\mathbb{C}</math>.
With the inclusion of the identity matrix {{mvar|I}} (sometimes denoted {{math|''σ''{{sub|0}}}}), the Pauli matrices form an orthogonal basis (in the sense of [[Hilbert–Schmidt operator|Hilbert–Schmidt]]) of the [[Hilbert space]] <math>\ \mathcal{H}_2\ </math> of {{math|2 × 2}} Hermitian matrices over <math>\ \mathbb{R}\ ,</math> and the Hilbert space <math>\mathcal{M}_{2,2}(\mathbb{C})</math> of all [[complex number|complex]] {{math|2 × 2}} matrices over <math>\ \mathbb{C} ~.</math>


=== Commutation and anti-commutation relations ===
=== Commutation and anti-commutation relations ===
==== Commutation relations====
==== Commutation relations====
The Pauli matrices obey the following [[commutator|commutation]] relations:
The Pauli matrices obey the following [[commutator|commutation]] relations:
:<math>[\sigma_j, \sigma_k] = 2 i \varepsilon_{j k l}\,\sigma_l, </math>
:<math>[\sigma_j, \sigma_k] = 2\ i\ \varepsilon_{j k l}\ \sigma_l ~. </math>
where the [[Levi-Civita symbol]] {{math|''ε{{sub|jkl}}''}} is used.


These commutation relations make the Pauli matrices the generators of a representation of the Lie algebra <math>(\mathbb{R}^3, \times) \cong \mathfrak{su}(2) \cong \mathfrak{so}(3) .</math>
These commutation relations make the Pauli matrices the generators of a representation of the Lie algebra <math>(\mathbb{R}^3, \times)\ \cong\ \mathfrak{su}(2)\ \cong\ \mathfrak{so}(3) ~.</math>


==== Anticommutation relations====
==== Anticommutation relations====
They also satisfy the [[anticommutator|anticommutation]] relations:
They also satisfy the [[anticommutator|anticommutation]] relations:
:<math>\{\sigma_j, \sigma_k\} = 2 \delta_{j k}\,I,</math>
:<math>\{\sigma_j, \sigma_k\} = 2\ \delta_{j k}\ I\ ,</math>


where <math>\{\sigma_j, \sigma_k\}</math> is defined as <math>\sigma_j \sigma_k + \sigma_k \sigma_j,</math> and {{math|''δ{{sub|jk}}''}} is the [[Kronecker delta]]. {{mvar|I}} denotes the {{math|2 × 2}} identity matrix.
where <math>\{\sigma_j, \sigma_k\}</math> is defined as <math>\ \sigma_j\ \sigma_k + \sigma_k\ \sigma_j\ ,</math> and {{math|''δ{{sub|jk}}''}} is the [[Kronecker delta]]. {{mvar|I}} denotes the {{math|2 × 2}} identity matrix.


These anti-commutation relations make the Pauli matrices the generators of a representation of the [[Clifford algebra]] for <math>\mathbb{R}^3,</math> denoted <math>\mathrm{Cl}_3(\mathbb{R}) .</math>
These anti-commutation relations make the Pauli matrices the generators of a representation of the [[Clifford algebra]] for <math>\ \mathbb{R}^3\ ,</math> denoted <math>\ \mathrm{Cl}_3(\mathbb{R}) ~.</math>


The usual construction of generators <math>\sigma_{jk} = \tfrac{1}{4} [\sigma_j, \sigma_k]</math> of <math>\mathfrak{so}(3)</math> using the Clifford algebra recovers the commutation relations above, up to unimportant numerical factors.
The usual construction of generators <math>\ \sigma_{jk} = \tfrac{1}{4} [\sigma_j, \sigma_k]\ </math> of <math>\ \mathfrak{so}(3)\ </math> using the Clifford algebra recovers the commutation relations above, up to unimportant numerical factors.


A few explicit commutators and anti-commutators are given below as examples:
A few explicit commutators and anti-commutators are given below as examples:
Line 105: Line 105:
|-
|-
| <math>\begin{align}
| <math>\begin{align}
\left[\sigma_1, \sigma_1\right] &= 0 \\
\bigl[\ \sigma_1, \sigma_1\ \bigr] &= ~~~ 0 \\
\left[\sigma_1, \sigma_2\right] &= 2i\sigma_3 \\
\bigl[\ \sigma_1, \sigma_2\ \bigr] &= 2\ i\ \sigma_3 \\
\left[\sigma_2, \sigma_3\right] &= 2i\sigma_1 \\
\bigl[\ \sigma_2, \sigma_3\ \bigr] &= 2\ i\ \sigma_1 \\
\left[\sigma_3, \sigma_1\right] &= 2i\sigma_2  
\bigl[\ \sigma_3, \sigma_1\ \bigr] &= 2\ i\ \sigma_2  
\end{align}</math>{{quad}}
\end{align}</math>{{quad}}
| <math>\begin{align}
| <math>\begin{align}
\left\{\sigma_1, \sigma_1\right\} &= 2I \\
\bigl\{\ \sigma_1, \sigma_1\ \bigr\} &= 2\ I \\
\left\{\sigma_1, \sigma_2\right\} &= 0  \\
\bigl\{\ \sigma_1, \sigma_2\ \bigr\} &= ~ 0  \\
\left\{\sigma_2, \sigma_3\right\} &= 0  \\
\bigl\{\ \sigma_2, \sigma_3\ \bigr\} &= ~ 0  \\
\left\{\sigma_3, \sigma_1\right\} &= 0
\bigl\{\ \sigma_3, \sigma_1\ \bigr\} &= ~ 0
\end{align}</math>
\end{align}</math>
|}
|}
Line 126: Line 126:
   \psi_{y-} &= \frac{1}\sqrt{2} \begin{bmatrix} 1 \\ -i \end{bmatrix}, \\
   \psi_{y-} &= \frac{1}\sqrt{2} \begin{bmatrix} 1 \\ -i \end{bmatrix}, \\
   \psi_{z+} &=                  \begin{bmatrix} 1 \\  0 \end{bmatrix}, &
   \psi_{z+} &=                  \begin{bmatrix} 1 \\  0 \end{bmatrix}, &
   \psi_{z-} &=                  \begin{bmatrix} 0 \\  1 \end{bmatrix}.
   \psi_{z-} &=                  \begin{bmatrix} 0 \\  1 \end{bmatrix} ~.
\end{align}</math>
\end{align}</math>


== Pauli vectors ==
== Pauli vectors ==
The Pauli vector is defined by{{efn|
The Pauli vector is defined by{{efn|
The Pauli vector is a formal device. It may be thought of as an element of <math>\mathcal M_2(\Complex) \otimes \R^3</math>, where the [[Tensor product|tensor product space]] is endowed with a mapping <math>\cdot : \mathbb{R}^3 \times (\mathcal M_2(\Complex) \otimes \R^3) \to \mathcal M_2(\Complex)</math> induced by the [[dot product]] on <math>\mathbb{R}^3.</math>
The Pauli vector is a formal device. It may be thought of as an element of <math>\ \mathcal M_2(\Complex) \otimes \R^3\ ,</math> where the [[Tensor product|tensor product space]] is endowed with a mapping <math>\ \cdot : \mathbb{R}^3 \times (\mathcal M_2(\Complex) \otimes \R^3) \to \mathcal M_2(\Complex)\ </math> induced by the [[dot product]] on <math>\ \mathbb{R}^3 ~.</math>
}}
}}
<math display="block">
<math display="block">
\vec{\sigma} = \sigma_1 \hat{x}_1 + \sigma_2 \hat{x}_2 + \sigma_3 \hat{x}_3,
\vec{\sigma} = \sigma_1 \hat{x}_1 + \sigma_2 \hat{x}_2 + \sigma_3 \hat{x}_3\ ,
</math>
</math>
where <math>\hat{x}_1</math>, <math>\hat{x}_2</math>, and <math>\hat{x}_3</math> are an equivalent notation for the more familiar <math>\hat{x}</math>, <math>\hat{y}</math>, and <math>\hat{z}</math>.
where <math>\ \hat{x}_1\ ,</math> <math>\ \hat{x}_2\ ,</math> and <math>\ \hat{x}_3\ </math> are an equivalent notation for the more familiar <math>\ \hat{x}\ ,</math> <math>\ \hat{y}\ ,</math> and <math>\ \hat{z} ~.</math>


The Pauli vector provides a mapping mechanism from a vector basis to a Pauli matrix basis<ref>See the [[Lorentz group#Relation to the Möbius group|spinor map]].</ref> as follows:
The Pauli vector provides a mapping mechanism from a vector basis to a Pauli matrix basis<ref>See the [[Lorentz group#Relation to the Möbius group|spinor map]].</ref> as follows:
Line 146: Line 146:
                     a_3 &  a_1 - i a_2 \\
                     a_3 &  a_1 - i a_2 \\
             a_1 + i a_2 & -a_3
             a_1 + i a_2 & -a_3
         \end{pmatrix}.
         \end{pmatrix} ~.
\end{align} </math>
\end{align} </math>


More formally, this defines a map from <math>\mathbb{R}^3</math> to the vector space of traceless Hermitian <math>2\times 2</math> matrices. This map encodes structures of <math>\mathbb{R}^3</math> as a normed vector space and as a Lie algebra (with the [[cross-product]] as its Lie bracket) via functions of matrices, making the map an isomorphism of Lie algebras. This makes the Pauli matrices intertwiners from the point of view of representation theory.
More formally, this defines a map from <math>\mathbb{R}^3</math> to the vector space of traceless Hermitian <math>2\times 2</math> matrices. This map encodes structures of <math>\mathbb{R}^3</math> as a normed vector space and as a Lie algebra (with the [[cross-product]] as its Lie bracket) via functions of matrices, making the map an isomorphism of Lie algebras. This makes the Pauli matrices intertwiners from the point of view of representation theory.


Another way to view the Pauli vector is as a <math>2\times 2</math> Hermitian traceless matrix-valued dual vector, that is, an element of <math>\text{Mat}_{2\times 2}(\mathbb{C}) \otimes (\mathbb{R}^3)^*</math> that maps <math>\vec a \mapsto \vec a \cdot \vec \sigma.</math>
Another way to view the Pauli vector is as a <math>\ 2 \times 2\ </math> Hermitian traceless matrix-valued dual vector, that is, an element of <math>\ \mathrm{Mat}_{2\times 2}(\mathbb{C}) \otimes (\mathbb{R}^3)^*\ </math> that maps <math>\ \vec a \mapsto \vec a \cdot \vec \sigma ~.</math>


=== Completeness relation ===
=== Completeness relation ===
Line 157: Line 157:
Each component of <math>\vec a</math> can be recovered from the matrix (see [[#completeness anchor|completeness relation]] below)  
Each component of <math>\vec a</math> can be recovered from the matrix (see [[#completeness anchor|completeness relation]] below)  
<math display="block">
<math display="block">
  \frac{1}{2} \operatorname{tr} \Bigl( \bigl( \vec{a} \cdot \vec{\sigma} \bigr) \vec{\sigma} \Bigr) = \vec{a}.
  \frac{1}{2} \operatorname{tr} \Bigl(\ \bigl(\ \vec{a} \cdot \vec{\sigma}\ \bigr)\ \vec{\sigma}\ \Bigr) = \vec{a} ~.
</math>
</math>
This constitutes an inverse to the map <math>\vec a \mapsto \vec a \cdot \vec \sigma</math>, making it manifest that the map is a bijection.
This constitutes an inverse to the map <math>\ \vec a\ \mapsto\ \vec a \cdot \vec \sigma\ ,</math> making it manifest that the map is a bijection.


=== Determinant ===
=== Determinant ===
Line 165: Line 165:
The norm is given by the determinant (up to a minus sign)
The norm is given by the determinant (up to a minus sign)
<math display="block">
<math display="block">
\det \bigl( \vec{a} \cdot \vec{\sigma} \bigr) = -\vec{a} \cdot \vec{a} = -|\vec{a}|^2.
\det\!\bigl(\ \vec{a} \cdot \vec{\sigma}\ \bigr)\ =\ -\vec{a} \cdot \vec{a}\ =\ -\left|\ \vec{a}\ \right|^2 ~.
</math>
</math>
Then, considering the conjugation action of an <math>\text{SU}(2)</math> matrix <math>U</math> on this space of matrices,
Then, considering the conjugation action of an <math>\ \mathrm{SU}(2)\ </math> matrix <math>U</math> on this space of matrices,
: <math>U * \vec a \cdot \vec \sigma := U \, \vec a \cdot \vec \sigma \, U^{-1},</math>
: <math>\ U * \vec a \cdot \vec \sigma\ :=\ U\ \vec a \cdot \vec \sigma\ U^{-1}\ ,</math>
we find <math>\det(U * \vec a \cdot \vec\sigma) = \det(\vec a \cdot \vec \sigma),</math> and that <math>U * \vec a \cdot \vec \sigma</math> is Hermitian and traceless. It then makes sense to define <math>U * \vec a \cdot \vec\sigma = \vec a' \cdot \vec\sigma,</math> where <math>\vec a'</math> has the same norm as <math>\vec a,</math> and therefore interpret <math>U</math> as a rotation of three-dimensional space. In fact, it turns out that the ''special'' restriction on <math>U</math> implies that the rotation is orientation preserving. This allows the definition of a map <math>R: \mathrm{SU}(2) \to \mathrm{SO}(3)</math> given by
we find <math>\ \det(U * \vec a \cdot \vec\sigma)\ =\ \det(\vec a \cdot \vec \sigma)\ ,</math> and that <math>\ U * \vec a \cdot \vec \sigma\ </math> is Hermitian and traceless. It then makes sense to define <math>\ U * \vec a \cdot \vec\sigma\ =\ \vec a' \cdot \vec\sigma\ ,</math> where <math>\ \vec a'\ </math> has the same norm as <math>\vec a,</math> and therefore interpret <math>U</math> as a rotation of three-dimensional space. In fact, it turns out that the ''special'' restriction on <math>U</math> implies that the rotation is orientation preserving. This allows the definition of a map <math>\ R: \mathrm{SU}(2) \to \mathrm{SO}(3)\ </math> given by
: <math>U * \vec a \cdot \vec \sigma = \vec a' \cdot \vec \sigma =: (R(U)\ \vec a) \cdot \vec \sigma,</math>
: <math>\ U * \vec a \cdot \vec \sigma\ =\ \vec a' \cdot \vec \sigma\ =:\ (R(U)\ \vec a) \cdot \vec \sigma\ ,</math>
where <math>R(U) \in \mathrm{SO}(3).</math> This map is the concrete realization of the double cover of <math>\mathrm{SO}(3)</math> by <math>\mathrm{SU}(2),</math> and therefore shows that <math>\text{SU}(2) \cong \mathrm{Spin}(3).</math> The components of <math>R(U)</math> can be recovered using the tracing process above:
where <math>\ R(U)\ \in\ \mathrm{SO}(3) ~.</math> This map is the concrete realization of the double cover of <math>\mathrm{SO}(3)\ </math> by <math>\ \mathrm{SU}(2)\ ,</math> and therefore shows that <math>\ \mathrm{SU}(2)\ \cong\mathrm{Spin}(3) ~.</math> The components of <math>R(U)</math> can be recovered using the tracing process above:
: <math>R(U)_{ij} = \frac{1}{2} \operatorname{tr} \left( \sigma_i U \sigma_j U^{-1} \right).</math>
: <math>\ R(U)_{ij} = \frac{1}{2}\ \operatorname{tr}\!\left(\ \sigma_i U \sigma_j U^{-1}\ \right) ~.</math>


=== Cross-product ===
=== Cross-product ===


The cross-product is given by the matrix commutator (up to a factor of <math>2i</math>)
The cross-product is given by the matrix commutator (up to a factor of <math>\ 2\ i\ </math>)
<math display="block">
<math display="block">
  [\vec a \cdot \vec \sigma, \vec b \cdot \vec \sigma] = 2i\,(\vec a \times \vec b) \cdot \vec \sigma.
  \left[\ \vec a \cdot \vec \sigma,\ \vec b \cdot \vec \sigma\ \right] = 2\ i\ \left( \vec a \times \vec b \right) \cdot \vec \sigma ~.
</math>
</math>
In fact, the existence of a norm follows from the fact that <math>\mathbb{R}^3</math> is a Lie algebra (see [[Killing form]]).
In fact, the existence of a norm follows from the fact that <math>\ \mathbb{R}^3\ </math> is a Lie algebra (see [[Killing form]]).


This cross-product can be used to prove the orientation-preserving property of the map above.
This cross-product can be used to prove the orientation-preserving property of the map above.
Line 186: Line 186:
=== Eigenvalues and eigenvectors ===
=== Eigenvalues and eigenvectors ===


The eigenvalues of <math>\ \vec a \cdot \vec \sigma\ </math> are <math>\ \pm |\vec{a}|.</math> This follows immediately from tracelessness and explicitly computing the determinant.
The eigenvalues of <math>\ \vec a \cdot \vec \sigma\ </math> are <math>\ \pm |\vec{a}| ~.</math> This follows immediately from tracelessness and explicitly computing the determinant.


More abstractly, without computing the determinant, which requires explicit properties of the Pauli matrices, this follows from <math>\ (\vec a \cdot \vec \sigma)^2 - |\vec a|^2 = 0\ ,</math> since this can be factorised into <math>\ (\vec a \cdot \vec \sigma - |\vec a|)(\vec a \cdot \vec \sigma + |\vec a|)= 0.</math> A standard result in linear algebra (a linear map that satisfies a polynomial equation written in distinct linear factors is diagonal) means this implies <math>\ \vec a \cdot \vec \sigma\ </math> is diagonal with possible eigenvalues <math>\ \pm |\vec a|.</math> The tracelessness of <math>\ \vec a \cdot \vec \sigma\ </math> means it has exactly one of each eigenvalue.
More abstractly, without computing the determinant, which requires explicit properties of the Pauli matrices, this follows from <math>\ (\vec a \cdot \vec \sigma)^2 - |\vec a|^2 = 0\ ,</math> since this can be factorised into <math>\ (\vec a \cdot \vec \sigma - |\vec a|)(\vec a \cdot \vec \sigma + |\vec a|)= 0 ~.</math> A standard result in linear algebra (a linear map that satisfies a polynomial equation written in distinct linear factors is [[Diagonalizable_matrix|diagonalizable]]) means this implies <math>\ \vec a \cdot \vec \sigma\ </math> is diagonalizable with possible eigenvalues <math>\ \pm |\vec a| ~.</math> The tracelessness of <math>\ \vec a \cdot \vec \sigma\ </math> means it has exactly one of each eigenvalue.


Its normalized eigenvectors are  
Its normalized eigenvectors are  
<math display="block">
<math display="block">
   \psi_+ = \frac{1}{\sqrt{2 \left|\vec{a} \right|\ (a_3+\left|\vec{a}\right|)\ }\ } \begin{bmatrix} a_3 + \left|\vec{a}\right| \\ a_1 + ia_2 \end{bmatrix}; \qquad
   \psi_+ = \frac{1}{\sqrt{2 \left|\vec{a} \right|\ (a_3+\left|\vec{a}\right|)\ }\ } \begin{bmatrix} a_3 + \left|\vec{a}\right| \\ a_1 + ia_2 \end{bmatrix}\ ; \qquad
   \psi_- = \frac{1}{\sqrt{2|\vec{a}|(a_3+|\vec{a}|)}} \begin{bmatrix} ia_2 - a_1 \\  a_3 + |\vec{a}| \end{bmatrix} ~ .
   \psi_- = \frac{1}{\sqrt{2|\vec{a}|(a_3+|\vec{a}|)}} \begin{bmatrix} ia_2 - a_1 \\  a_3 + |\vec{a}| \end{bmatrix} ~.
</math>
</math>
These expressions become singular for <math>a_3\to  
These expressions become singular for <math>\ a_3 \to -\left|\ \vec{a}\ \right| ~.</math> They can be rescued by letting <math>\vec{a} = \left|\ \vec{a}\ \right| \left( \epsilon,\ 0,\ -\left( 1 - \tfrac{\epsilon^2}{2} \right) \right)\ </math> and taking the limit <math>\ \epsilon \to 0\ ,</math> which yields the correct eigenvectors {{nobr| {{math|(0,1) }} }} and {{nobr|{{math| (1,0) }} }} of <math>\ \sigma_z ~.</math>
-\left|\vec{a} \right|</math>. They can be rescued by letting <math>\vec{a}=\left|\vec{a} \right|(\epsilon,0,-(1-\epsilon^2/2))</math> and taking the limit <math>\epsilon\to0</math>, which yields the correct eigenvectors (0,1) and (1,0) of <math>\sigma_z</math>.


Alternatively, one may use spherical coordinates <math>\vec{a}=a(\sin\vartheta\cos\varphi, \sin\vartheta\sin\varphi, \cos\vartheta)</math> to obtain the eigenvectors <math>\psi_+=(\cos(\vartheta/2), \sin(\vartheta/2)\exp(i\varphi))</math> and <math>\psi_-=(-\sin(\vartheta/2)\exp(-i\varphi), \cos(\vartheta/2))</math>.
Alternatively, one may use spherical coordinates <math>\ \vec{a} = a\ \bigl(\ \sin \vartheta\ \cos \varphi,\ \sin \vartheta\ \sin \varphi,\ \cos\vartheta\ \bigr)\ </math> to obtain the eigenvectors <math>\ \psi_{+} = \left(\ \cos \tfrac{\vartheta}{2}, \; \sin \tfrac{\vartheta}{2}\ e^{+i\varphi}\ \right)\ </math> and <math>\ \psi_{-} = \left(\ -\sin \tfrac{\vartheta}{2}\ e^{-i\varphi}, \; \cos \tfrac{\vartheta}{2}\ \right) ~.</math>


=== Pauli 4-vector ===
=== Pauli 4-vector ===


The Pauli 4-vector, used in spinor theory, is written <math>\ \sigma^\mu\ </math> with components
The Pauli 4-vector, used in spinor theory, is written <math>\ \sigma^\mu\ </math> with components
:<math>\sigma^\mu = (I, \vec\sigma).</math>
:<math>\ \sigma^\mu = \bigl(\ I,\ \vec\sigma\ \bigr) ~.</math>
This defines a map from <math>\mathbb{R}^{1,3}</math> to the vector space of Hermitian matrices,
This defines a map from <math>\ \mathbb{R}^{1,3}\ </math> to the vector space of Hermitian matrices,
:<math>x_\mu \mapsto x_\mu\sigma^\mu\ ,</math>
:<math>\ x_\mu \mapsto x_\mu\sigma^\mu\ ,</math>
which also encodes the [[Minkowski metric]] (with ''mostly minus'' convention) in its determinant:
which also encodes the [[Minkowski metric]] (with ''mostly minus'' convention) in its determinant:
:<math>\det (x_\mu\sigma^\mu) = \eta(x,x).</math>
:<math>\ \det\bigl(\ x_\mu\sigma^\mu\ \bigr) = \eta(x,x) ~.</math>


This 4-vector also has a completeness relation. It is convenient to define a second Pauli 4-vector
This 4-vector also has a completeness relation. It is convenient to define a second Pauli 4-vector
:<math>\bar\sigma^\mu = (I, -\vec\sigma).</math>
:<math>\ \bar\sigma^\mu = \bigl(\ I, -\vec\sigma\ \bigr) ~.</math>
and allow raising and lowering using the Minkowski metric tensor. The relation can then be written
and allow raising and lowering using the Minkowski metric tensor. The relation can then be written
<math display="block">x_\nu = \tfrac{1}{2} \operatorname{tr} \Bigl( \bar\sigma_\nu\bigl( x_\mu \sigma^\mu \bigr) \Bigr) .</math>
<math display="block">\ x_\nu = \tfrac{1}{2} \operatorname{tr}\!\Bigl(\ \bar\sigma_\nu\bigl( x_\mu \sigma^\mu \bigr)\Bigr) ~.</math>


Similarly to the Pauli 3-vector case, we can find a matrix group that acts as isometries on <math>\ \mathbb{R}^{1,3}\ ;</math> in this case the matrix group is <math>\ \mathrm{SL}(2,\mathbb{C})\ ,</math> and this shows <math>\ \mathrm{SL}(2,\mathbb{C}) \cong \mathrm{Spin}(1,3).</math> Similarly to above, this can be explicitly realized for <math>\ S \in \mathrm{SL}(2,\mathbb{C})\ </math> with components
Similarly to the Pauli 3-vector case, we can find a matrix group that acts as isometries on <math>\ \mathbb{R}^{1,3}\ ;</math> in this case the matrix group is <math>\ \mathrm{SL}( 2, \mathbb{C} )\ ,</math> and this shows <math>\ \mathrm{SL}(2,\mathbb{C})\ \cong\ \mathrm{Spin}(1,3) ~.</math> Similarly to above, this can be explicitly realized for <math>\ S \in \mathrm{SL}(2,\mathbb{C})\ </math> with components
:<math>\Lambda(S)^\mu{}_\nu = \tfrac{1}{2}\operatorname{tr} \left( \bar\sigma_\nu S \sigma^\mu S^{\dagger}\right).</math>
:<math>\ \Lambda(S)^\mu{}_\nu = \tfrac{1}{2}\operatorname{tr}\!\left(\ \bar\sigma_\nu\ S\ \sigma^\mu\ S^{\dagger}\ \right) ~.</math>


In fact, the determinant property follows abstractly from trace properties of the <math>\ \sigma^\mu.</math> For <math>\ 2\times 2\ </math> matrices, the following identity holds:
In fact, the determinant property follows abstractly from trace properties of the <math>\ \sigma^\mu ~.</math> For <math>\ 2\times 2\ </math> matrices, the following identity holds:
:<math>\det(A + B) = \det(A) + \det(B) + \operatorname{tr}(A)\operatorname{tr}(B) - \operatorname{tr}(AB).</math>
:<math>\ \det(\ A + B\ )\ =\ \det(A)\ +\ \det(B)\ +\ \operatorname{tr}(A)\ \operatorname{tr}(B)\ -\ \operatorname{tr}(\ A\ B\ ) ~.</math>
That is, the 'cross-terms' can be written as traces. When <math>\ A,B\ </math> are chosen to be different <math>\ \sigma^\mu\ ,</math> the cross-terms vanish. It then follows, now showing summation explicitly,
That is, the 'cross-terms' can be written as traces. When <math>\ A,B\ </math> are chosen to be different <math>\ \sigma^\mu\ ,</math> the cross-terms vanish. It then follows, now showing summation explicitly,
<math display="inline">\det\left(\sum_\mu x_\mu \sigma^\mu\right) = \sum_\mu \det\left(x_\mu\sigma^\mu\right).</math> Since the matrices are <math>\ 2 \times 2\ ,</math> this is equal to <math display="inline">\sum_\mu x_\mu^2 \det(\sigma^\mu) = \eta(x,x).</math>
<math display="inline">\det\left(\sum_\mu x_\mu \sigma^\mu\right) = \sum_\mu \det\left(x_\mu\sigma^\mu\right).</math> Since the matrices are <math>\ 2 \times 2\ ,</math> this is equal to <math display="inline">\ \sum_\mu x_\mu^2 \det(\sigma^\mu) = \eta(x,x) ~.</math>


===Relation to dot and cross product===
===Relation to dot and cross product===
Line 244: Line 243:
   a_j b_k \sigma_j \sigma_k & = a_j b_k \left(i\varepsilon_{jk\ell}\,\sigma_\ell + \delta_{jk}I\right) \\
   a_j b_k \sigma_j \sigma_k & = a_j b_k \left(i\varepsilon_{jk\ell}\,\sigma_\ell + \delta_{jk}I\right) \\
   a_j \sigma_j b_k \sigma_k & = i\varepsilon_{jk\ell}\,a_j b_k \sigma_\ell + a_j b_k \delta_{jk}I  
   a_j \sigma_j b_k \sigma_k & = i\varepsilon_{jk\ell}\,a_j b_k \sigma_\ell + a_j b_k \delta_{jk}I  
\end{align}.~</math>
\end{align} ~.</math>


Finally, translating the index notation for the [[dot product]] and [[cross product#Index notation for tensors|cross product]] results in  
Finally, translating the index notation for the [[dot product]] and [[cross product#Index notation for tensors|cross product]] results in  
Line 258: Line 257:
}}
}}


If {{mvar|i}} is identified with the pseudoscalar {{math|''σ{{sub|x}}σ{{sub|y}}σ{{sub|z}}''}} then the right hand side becomes <math> a \cdot b + a \wedge b </math>, which is also the definition for the product of two vectors in geometric algebra.
If {{mvar|i}} is identified with the pseudoscalar {{nobr| {{math|''σ{{sub|x}} σ{{sub|y}} σ{{sub|z}}''}} }} then the right hand side becomes <math>\ a \cdot b + a \wedge b\ ,</math> which is also the definition for the product of two vectors in geometric algebra.


If we define the spin operator as {{math|1='''''J''''' = {{sfrac|''ħ''|2}}'''''σ'''''}}, then {{math|1='''''J'''''}} satisfies the commutation relation:<math display="block">\mathbf{J} \times \mathbf{J} = i\hbar \mathbf{J}</math>Or equivalently, the Pauli vector satisfies:<math display="block">\frac{\vec{\sigma}}{2} \times \frac{\vec{\sigma}}{2} = i\frac{\vec{\sigma}}{2}</math>
If we define the spin operator as {{nobr| {{math| '''''J''''' {{=}} {{sfrac|''ħ''|2}}'''''σ'''''}} ,}} then {{math|1='''''J'''''}} satisfies the commutation relation:<math display="block">\ \mathbf{J} \times \mathbf{J} = i\ \hbar \mathbf{J}\ </math> Or equivalently, the Pauli vector satisfies:<math display="block">\ \frac{\vec{\sigma}}{2} \times \frac{\vec{\sigma}}{2} = i\ \frac{\vec{\sigma}}{2} ~.</math>


=== Some trace relations ===
=== Some trace relations ===
Line 270: Line 269:
   \operatorname{tr}\left(\sigma_j \sigma_k \sigma_\ell      \right) &= 2i\varepsilon_{jk\ell} \\
   \operatorname{tr}\left(\sigma_j \sigma_k \sigma_\ell      \right) &= 2i\varepsilon_{jk\ell} \\
   \operatorname{tr}\left(\sigma_j \sigma_k \sigma_\ell \sigma_m \right) &= 2\left(\delta_{jk}\delta_{\ell m} - \delta_{j\ell}\delta_{km} + \delta_{jm}\delta_{k\ell}\right)
   \operatorname{tr}\left(\sigma_j \sigma_k \sigma_\ell \sigma_m \right) &= 2\left(\delta_{jk}\delta_{\ell m} - \delta_{j\ell}\delta_{km} + \delta_{jm}\delta_{k\ell}\right)
\end{align}</math>
\end{align} ~.</math>


If the matrix {{math|1=''σ''{{sub|0}} = ''I''}} is also considered, these relationships become
If the matrix {{math| ''σ''{{sub|0}} {{=}} ''I'' }} is also considered, these relationships become


<math display=block>\begin{align}
<math display=block>\begin{align}
Line 279: Line 278:
           \operatorname{tr}\left(\sigma_\alpha  \sigma_\beta  \sigma_\gamma  \right) &= 2 \sum_{(\alpha \beta \gamma)} \delta_{\alpha \beta} \delta_{0 \gamma} - 4 \delta_{0 \alpha} \delta_{0 \beta} \delta_{0 \gamma} + 2i\varepsilon_{0 \alpha \beta \gamma} \\
           \operatorname{tr}\left(\sigma_\alpha  \sigma_\beta  \sigma_\gamma  \right) &= 2 \sum_{(\alpha \beta \gamma)} \delta_{\alpha \beta} \delta_{0 \gamma} - 4 \delta_{0 \alpha} \delta_{0 \beta} \delta_{0 \gamma} + 2i\varepsilon_{0 \alpha \beta \gamma} \\
   \operatorname{tr}\left(\sigma_\alpha \sigma_\beta \sigma_\gamma \sigma_\mu \right)    &= 2\left(\delta_{\alpha \beta}\delta_{\gamma \mu} - \delta_{\alpha \gamma}\delta_{\beta \mu} + \delta_{\alpha \mu}\delta_{\beta \gamma}\right) + 4\left(\delta_{\alpha \gamma} \delta_{0 \beta} \delta_{0 \mu} + \delta_{\beta \mu} \delta_{0 \alpha} \delta_{0 \gamma}\right) - 8 \delta_{0 \alpha} \delta_{0 \beta} \delta_{0 \gamma} \delta_{0 \mu} + 2 i \sum_{(\alpha \beta \gamma \mu)} \varepsilon_{0 \alpha \beta \gamma} \delta_{0 \mu}
   \operatorname{tr}\left(\sigma_\alpha \sigma_\beta \sigma_\gamma \sigma_\mu \right)    &= 2\left(\delta_{\alpha \beta}\delta_{\gamma \mu} - \delta_{\alpha \gamma}\delta_{\beta \mu} + \delta_{\alpha \mu}\delta_{\beta \gamma}\right) + 4\left(\delta_{\alpha \gamma} \delta_{0 \beta} \delta_{0 \mu} + \delta_{\beta \mu} \delta_{0 \alpha} \delta_{0 \gamma}\right) - 8 \delta_{0 \alpha} \delta_{0 \beta} \delta_{0 \gamma} \delta_{0 \mu} + 2 i \sum_{(\alpha \beta \gamma \mu)} \varepsilon_{0 \alpha \beta \gamma} \delta_{0 \mu}
\end{align}</math>
\end{align} ~.</math>


where Greek indices {{math|''α'', ''β'', ''γ''}} and {{mvar|μ}} assume values from {{math|{0, ''x'', ''y'', ''z''}<nowiki/>}} and the notation <math display="inline">\sum_{(\alpha \ldots)}</math> is used to denote the sum over the [[cyclic permutation]] of the included indices.
where Greek indices {{math|''α'', ''β'', ''γ''}} and {{mvar|μ}} assume values from {{math|{0, ''x'', ''y'', ''z''}<nowiki/>}} and the notation <math display="inline">\sum_{(\alpha \ldots)}</math> is used to denote the sum over the [[cyclic permutation]] of the included indices.
Line 285: Line 284:
===Exponential of a Pauli vector===
===Exponential of a Pauli vector===
For  
For  
:<math>\vec{a} = a\hat{n}, \quad |\hat{n}| = 1,</math>
:<math>\vec{a} = a\ \hat{n}, \quad \left|\ \hat{n}\ \right| = 1\ ,</math>


one has, for even powers, {{math|1=2''p'', ''p'' = 0, 1, 2, 3, ...}}
one has, for even powers, {{math| 2 ''p'', ''p'' {{=}} 0, 1, 2, 3, ...}}
:<math>(\hat{n} \cdot \vec{\sigma})^{2p} = I ,</math>
:<math>\ (\hat{n} \cdot \vec{\sigma})^{2p} = I\ ,</math>


which can be shown first for the {{math|1=''p'' = 1}} case using the anticommutation relations. For convenience, the case {{math|1=''p'' = 0}} is taken to be {{mvar|I}} by convention.
which can be shown first for the {{math|1=''p'' = 1}} case using the anticommutation relations. For convenience, the case {{math| ''p'' {{=}} 0 }} is taken to be {{mvar|I}} by convention.


For odd powers, {{math|1=2''q'' + 1, ''q'' = 0, 1, 2, 3, ...}}
For odd powers, {{math| 2 ''q'' + 1, ''q'' {{=}} 0, 1, 2, 3, ...}}
:<math>\left(\hat{n} \cdot \vec{\sigma}\right)^{2q+1} = \hat{n} \cdot \vec{\sigma} \, .</math>
:<math>\ \left(\hat{n} \cdot \vec{\sigma}\right)^{2q+1} = \hat{n} \cdot \vec{\sigma} ~.</math>


[[Matrix exponential|Matrix exponentiating]], and using the [[Taylor series#List of Maclaurin series of some common functions|Taylor series for sine and cosine]],
[[Matrix exponential|Matrix exponentiating]], and using the [[Taylor series#List of Maclaurin series of some common functions|Taylor series for sine and cosine]],
Line 301: Line 300:
     &= \sum_{p=0}^\infty{\frac{(-1)^p (a\hat{n}\cdot \vec{\sigma})^{2p}}{(2p)!}} + i\sum_{q=0}^\infty{\frac{(-1)^q (a\hat{n}\cdot \vec{\sigma})^{2q + 1}}{(2q + 1)!}} \\
     &= \sum_{p=0}^\infty{\frac{(-1)^p (a\hat{n}\cdot \vec{\sigma})^{2p}}{(2p)!}} + i\sum_{q=0}^\infty{\frac{(-1)^q (a\hat{n}\cdot \vec{\sigma})^{2q + 1}}{(2q + 1)!}} \\
     &= I\sum_{p=0}^\infty{\frac{(-1)^p a^{2p}}{(2p)!}} + i (\hat{n}\cdot \vec{\sigma}) \sum_{q=0}^\infty{\frac{(-1)^q a^{2q+1}}{(2q + 1)!}}\\
     &= I\sum_{p=0}^\infty{\frac{(-1)^p a^{2p}}{(2p)!}} + i (\hat{n}\cdot \vec{\sigma}) \sum_{q=0}^\infty{\frac{(-1)^q a^{2q+1}}{(2q + 1)!}}\\
\end{align}</math>.
\end{align} ~.</math>


In the last line, the first sum is the cosine, while the second sum is the sine; so, finally,
In the last line, the first sum is the cosine, while the second sum is the sine; so, finally,
{{NumBlk||{{Equation box 1
{{NumBlk||{{Equation box 1
   |indent =:
   |indent =:
   |equation = <math>~~e^{i a\left(\hat{n} \cdot \vec{\sigma}\right)} = I\cos{a} + i (\hat{n} \cdot \vec{\sigma}) \sin{a} ~~</math>  
   |equation = <math>~~e^{i\ a\left(\hat{n} \cdot \vec{\sigma}\right)} = I\ \cos{a} + i\ (\hat{n} \cdot \vec{\sigma}) \sin{a} ~~</math>  
   |cellpadding= 6
   |cellpadding= 6
   |border
   |border
Line 317: Line 316:
which is [[quaternions and spatial rotation#Using quaternion as rotations|analogous]] to [[Euler's formula]], extended to [[quaternions]]. In particular,
which is [[quaternions and spatial rotation#Using quaternion as rotations|analogous]] to [[Euler's formula]], extended to [[quaternions]]. In particular,


<math>e^{i a \sigma_1} = \begin{pmatrix} \cos a & i \sin a \\ i \sin a & \cos a \end{pmatrix}, \quad
<math>e^{i\ a\ \sigma_1} = \begin{pmatrix} \cos a & i\ \sin a\\ i\ \sin a & \cos a \end{pmatrix} \ , \quad
e^{i a \sigma_2} = \begin{pmatrix} \cos a & \sin a \\ - \sin a & \cos a \end{pmatrix}, \quad
e^{i\ a\ \sigma_2} = \begin{pmatrix} \cos a & \sin a \\ - \sin a & \cos a \end{pmatrix} \ , \quad
e^{i a \sigma_3} = \begin{pmatrix} e^{ia} & 0  \\ 0 & e^{-ia} \end{pmatrix}.</math>
e^{i\ a\ \sigma_3} = \begin{pmatrix} e^{i\ a} & 0  \\ 0 & e^{-i\ a} \end{pmatrix} ~.</math>


Note that
Note that
:<math>\det[i a(\hat{n} \cdot \vec{\sigma})] = a^2</math>,
:<math>\det\!\left[\ i\ a\ \left(\hat{n} \cdot \vec{\sigma} \right)\ \right] = a^2\ ,</math>


while the determinant of the exponential itself is just {{math|1}}, which makes it the '''generic group element of [[SU(2)]]'''.
while the determinant of the exponential itself is just {{math|1}}, which makes it the '''generic group element of [[SU(2)]]'''.


A more abstract version of formula {{EquationNote|(2)}} for a general {{math|2 × 2}} matrix can be found in the article on [[Matrix exponential#Evaluation by Laurent series|matrix exponentials]]. A general version of {{EquationNote|(2)}} for an analytic (at ''a'' and −''a'') function  is provided by application of  [[Sylvester's formula]],<ref>
A more abstract version of formula {{EquationNote|(2)}} for a general {{math|2 × 2}} matrix can be found in the article on [[Matrix exponential#Evaluation by Laurent series|matrix exponentials]]. A general version of {{EquationNote|(2)}} for an analytic (at {{mvar|a}} and {{mvar|−a}}) function  is provided by application of  [[Sylvester's formula]],<ref>
{{cite book |title=Quantum Computation and Quantum Information |last1=Nielsen |first1=Michael A. |author-link1=Michael Nielsen |last2=Chuang |first2=Isaac L. |author-link2=Isaac Chuang |year=2000 |publisher=Cambridge University Press |location=Cambridge, UK |isbn=978-0-521-63235-5 |oclc=43641333}}
{{cite book |title=Quantum Computation and Quantum Information |last1=Nielsen |first1=Michael A. |author-link1=Michael Nielsen |last2=Chuang |first2=Isaac L. |author-link2=Isaac Chuang |year=2000 |publisher=Cambridge University Press |location=Cambridge, UK |isbn=978-0-521-63235-5 |oclc=43641333}}
</ref>
</ref>
:<math>f(a(\hat{n} \cdot \vec{\sigma})) = I\frac{f(a) + f(-a)}{2} + \hat{n} \cdot \vec{\sigma} \frac{f(a) - f(-a)}{2}.</math>
:<math>\ f(\ a(\hat{n} \cdot \vec{\sigma})\ )\ =\ I\ \frac{\ f(+a) + f(-a)\ }{2}\ +\ \hat{n} \cdot \vec{\sigma}\ \frac{\ f(+a) - f(-a)\ }{2} ~.</math>


====The group composition law of {{math|SU(2)}}====
====The group composition law of {{math|SU(2)}}====
A straightforward application of  formula {{EquationNote|(2)}}  provides a parameterization of the composition law of  the group {{math|SU(2)}}.{{efn|The relation among {{math|''a, b, c,'' ''' n, m, k '''}} derived here in the {{math|2 × 2}} representation holds for ''all representations'' of {{math|SU(2)}}, being a ''group identity''. Note that, by virtue of the standard normalization of that group's generators as ''half'' the Pauli matrices, the parameters ''a'',''b'',''c'' correspond to ''half'' the rotation angles of the rotation group. That is, the Gibbs formula linked amounts to <math>\hat k \tan c/2=  (\hat n \tan a/2+ \hat m \tan b/2 -\hat m \times \hat n \tan a/2 ~ \tan b/2 )/(1-\hat m\cdot \hat n \tan a/2 ~\tan b/2 )</math>.}} One may directly solve for {{mvar|c}} in  
A straightforward application of  formula {{EquationNote|(2)}}  provides a parameterization of the composition law of  the group {{math|SU(2)}}.{{efn|
The relation among {{math|''a, b, c,'' ''' n, m, k '''}} derived here in the {{math|2 × 2}} representation holds for ''all representations'' of {{math|SU(2)}}, being a ''group identity''. Note that, by virtue of the standard normalization of that group's generators as ''half'' the Pauli matrices, the parameters {{math|''a'',''b'',''c''}} correspond to ''half'' the rotation angles of the rotation group. That is, the Gibbs formula linked amounts to <math>\ \hat k \tan \tfrac{c}{2} =  (\hat n\ \tan \tfrac{a}{2} + \hat m\ \tan \tfrac{b}{2} - \hat m\ \times \hat n\ \tan \tfrac{a}{2} ~ \tan \tfrac{b}{2} )/(1 - \hat m\cdot \hat n\ \tan \tfrac{a}{2} ~ \tan \tfrac{b}{2} ) ~.</math>
}} One may directly solve for {{mvar|c}} in  
<math display=block>\begin{align}
<math display=block>\begin{align}
   e^{ia\left(\hat{n} \cdot \vec{\sigma}\right)} e^{ib\left(\hat{m} \cdot \vec{\sigma}\right)}
   e^{i\ a\left(\hat{n} \cdot \vec{\sigma}\right)}\ e^{i\ b\ \left( \hat{m} \cdot \vec{\sigma} \right)}
     &= I\left(\cos a \cos b - \hat{n} \cdot \hat{m} \sin a \sin b\right) + i\left(\hat{n} \sin a \cos b + \hat{m} \sin b \cos a - \hat{n} \times \hat{m} ~ \sin a \sin b \right) \cdot \vec{\sigma} \\
     &= I\ \left(\ \cos a\ \cos b\ -\ \hat{n} \cdot \hat{m}\ \sin a\ \sin b\ \right)\ +\ i\ \left(\ \hat{n}\ \sin a\ \cos b+\ \hat{m}\ \sin b\ \cos a\ -\ \hat{n} \times \hat{m} ~ \sin a\ \sin b\ \right) \cdot \vec{\sigma} \\
     &= I\cos{c} + i \left(\hat{k} \cdot \vec{\sigma}\right) \sin c \\
     &= I\ \cos{c}\ +\ i\ \left( \hat{k} \cdot \vec{\sigma} \right)\ \sin c \\
     &= e^{ic \left(\hat{k} \cdot \vec{\sigma}\right)},
     &= e^{i\ c\ \left(\hat{k} \cdot \vec{\sigma} \right) }\ ,
\end{align}</math>
\end{align}</math>


which specifies the generic group multiplication, where, manifestly,   
which specifies the generic group multiplication, where, manifestly,   
<math display=block>\cos c = \cos a \cos b - \hat{n} \cdot \hat{m} \sin a \sin b~,</math>
<math display=block>\ \cos c = \cos a\ \cos b\ -\ \hat{n} \cdot \hat{m}\ \sin a\ \sin b\ ,</math>
the [[spherical law of cosines]].  Given {{mvar|c}}, then,  
the [[spherical law of cosines]].  Given {{mvar|c}}, then,  
<math display=block>\hat{k} = \frac{1}{\sin c}\left(\hat{n} \sin a \cos b + \hat{m} \sin b \cos a - \hat{n}\times\hat{m} \sin a \sin b\right).</math>
<math display=block>\ \hat{k}\ =\ \frac{1}{\sin c}\ \left(\ \hat{n}\ \sin a\ \cos b\ +\ \hat{m}\ \sin b\ \cos a - \hat{n}\times\hat{m}\ \sin a\ \sin b\ \right) ~.</math>


Consequently, the composite rotation parameters in this group element (a closed form of the respective [[Baker–Campbell–Hausdorff formula|BCH expansion]] in this case) simply amount to<ref>{{cite book |first=J.W. |last=Gibbs |year=1884 |title=Elements of Vector Analysis |place=New Haven, CT |page=67 |author-link=J. W. Gibbs |chapter=4. Concerning the differential and integral calculus of vectors |chapter-url={{GBurl|VurzAAAAMAAJ|p=67}} |publisher=Tuttle, Moorehouse & Taylor }} In fact, however, the formula goes back to [[Olinde Rodrigues]] (1840), replete with half-angle: {{cite journal |first=Olinde |last=Rodrigues |author-link=Olinde Rodrigues |year=1840 |title=Des lois géometriques qui regissent les déplacements d' un systéme solide dans l' espace, et de la variation des coordonnées provenant de ces déplacement considérées indépendant des causes qui peuvent les produire |journal=[[J. Math. Pures Appl.]] |volume=5 |pages=380–440 |url=http://sites.mathdoc.fr/JMPA/PDF/JMPA_1840_1_5_A39_0.pdf}}</ref>
Consequently, the composite rotation parameters in this group element (a closed form of the respective [[Baker–Campbell–Hausdorff formula|BCH expansion]] in this case) simply amount to<ref>{{cite book |first=J.W. |last=Gibbs |year=1884 |title=Elements of Vector Analysis |place=New Haven, CT |page=67 |author-link=J. W. Gibbs |chapter=4. Concerning the differential and integral calculus of vectors |chapter-url={{GBurl|VurzAAAAMAAJ|p=67}} |publisher=Tuttle, Moorehouse & Taylor }} In fact, however, the formula goes back to [[Olinde Rodrigues]] (1840), replete with half-angle: {{cite journal |first=Olinde |last=Rodrigues |author-link=Olinde Rodrigues |year=1840 |title=Des lois géometriques qui regissent les déplacements d' un systéme solide dans l' espace, et de la variation des coordonnées provenant de ces déplacement considérées indépendant des causes qui peuvent les produire |journal=[[J. Math. Pures Appl.]] |volume=5 |pages=380–440 |url=http://sites.mathdoc.fr/JMPA/PDF/JMPA_1840_1_5_A39_0.pdf }}</ref>


<math display=block> e^{ic \hat{k} \cdot \vec{\sigma}} =
<math display=block>\ e^{ic \hat{k} \cdot \vec{\sigma}} =
   \exp \left( i\frac{c}{\sin c} \left(\hat{n} \sin a \cos b + \hat{m} \sin b \cos a - \hat{n}\times\hat{m} ~ \sin a \sin b\right) \cdot \vec{\sigma}\right). </math>
   \exp \left( i\frac{c}{\sin c} \left(\hat{n} \sin a \cos b + \hat{m} \sin b \cos a - \hat{n}\times\hat{m} ~ \sin a \sin b\right) \cdot \vec{\sigma}\right) ~.</math>


(Of course, when <math>\hat{n}</math> is parallel to <math>\hat{m}</math>, so is <math>\hat{k}</math>, and {{math|1=''c'' = ''a + b''}}.)
(Of course, when <math>\ \hat{n}\ </math> is parallel to <math>\ \hat{m}\ ,</math> so are <math>\ \hat{k}\ </math> and {{nobr| {{math| ''c'' {{=}} ''a + b''}} .)}}
{{see also|Rotation formalisms in three dimensions#Rodrigues vector|Spinor#Three dimensions}}
{{see also|Rotation formalisms in three dimensions#Rodrigues vector|Spinor#Three dimensions}}


Line 361: Line 362:
</math>
</math>


Taking the dot product of any unit vector with the above formula generates the expression of any single qubit operator under any rotation. For example, it can be shown that <math display="inline">R_y\mathord\left(-\frac{\pi}{2}\right)\, \sigma_x\, R_y\mathord\left(\frac{\pi}{2}\right) = \hat{x} \cdot \left(\hat{y} \times \vec{\sigma}\right) = \sigma_z</math>.
Taking the dot product of any unit vector with the above formula generates the expression of any single qubit operator under any rotation. For example, it can be shown that <math display="inline">\ R_y\mathord\left(-\frac{\pi}{2}\right)\, \sigma_x\, R_y\mathord\left(\frac{\pi}{2}\right) = \hat{x} \cdot \left(\hat{y} \times \vec{\sigma}\right) = \sigma_z ~.</math>


{{see also|Rodrigues' rotation formula}}
{{see also|Rodrigues' rotation formula}}


=== Completeness relation<span class="anchor" id="completeness_anchor"></span> ===
=== Completeness relation<span class="anchor" id="completeness_anchor"></span> ===
An alternative notation that is commonly used for the Pauli matrices is to write the vector index {{mvar|k}} in the superscript, and the matrix indices as subscripts, so that the element in row {{mvar|α}} and column {{mvar|β}} of the {{mvar|k}}-th Pauli matrix is {{math|''σ {{sup|k}}{{sub|αβ}}''.}}
An alternative notation that is commonly used for the Pauli matrices is to write the vector index {{mvar|k}} in the superscript, and the matrix indices as subscripts, so that the element in row {{mvar|α}} and column {{mvar|β}} of the {{mvar|k}}-th Pauli matrix is {{nobr|{{math| ''σ {{sup|k}} {{sub|αβ}}''}} .}}


In this notation, the ''completeness relation'' for the Pauli matrices can be written
In this notation, the ''completeness relation'' for the Pauli matrices can be written
:<math>\vec{\sigma}_{\alpha\beta}\cdot\vec{\sigma}_{\gamma\delta}\equiv \sum_{k=1}^3 \sigma^k_{\alpha\beta}\,\sigma^k_{\gamma\delta} = 2\,\delta_{\alpha\delta} \,\delta_{\beta\gamma} - \delta_{\alpha\beta}\,\delta_{\gamma\delta}.</math>
:<math> \vec{\sigma}_{\alpha\beta}\cdot\vec{\sigma}_{\gamma\delta} \equiv \sum_{k=1}^3 \sigma^k_{\alpha\beta}\ \sigma^k_{\gamma\delta} = 2\ \delta_{\alpha\delta}\ \delta_{\beta\gamma} - \delta_{\alpha\beta}\ \delta_{\gamma\delta} ~.</math>


{{math proof | proof = The fact that the Pauli matrices, along with the identity matrix {{mvar|I}}, form an orthogonal basis for the Hilbert space of all 2 × 2 [[complex number|complex]] matrices <math>\mathcal{M}_{2,2}(\mathbb{C})</math> over <math>\mathbb{C}</math>, means that we can express any 2 × 2 complex matrix {{mvar|M}} as
{{math proof | proof = The fact that the Pauli matrices, along with the identity matrix {{mvar|I}}, form an orthogonal basis for the Hilbert space of all {{math| 2 × 2 }} [[complex number|complex]] matrices <math>\ \mathcal{M}_{2,2}(\mathbb{C})\ </math> over <math>\ \mathbb{C}\ ,</math> means that we can express any {{math| 2 × 2 }} complex matrix {{mvar|M}} as
<math display="block">M = c\,I + \sum_k a_k \,\sigma^k </math>
<math display="block"> M = c\ I + \sum_k a_k\ \sigma^k </math>
where {{mvar|c}} is a complex number, and {{mvar|a}} is a 3-component, complex vector. It is straightforward to show, using the properties listed above, that
where {{mvar|c}} is a complex number, and {{mvar|a}} is a 3-component, complex vector. It is straightforward to show, using the properties listed above, that
<math display="block">\operatorname{tr}\left( \sigma^j\,\sigma^k \right) = 2\,\delta_{jk}</math>
<math display="block"> \operatorname{tr}\left( \sigma^j\,\sigma^k \right) = 2\ \delta_{jk} </math>
where "{{math|tr}}" denotes the [[trace (linear algebra)|trace]], and hence that  
where "{{math|tr}}" denotes the [[trace (linear algebra)|trace]], and hence that  
<math display="block">\begin{align}
<math display="block">\begin{align}
                   c &={} \tfrac{1}{2}\, \operatorname{tr}\, M\,,\begin{align}&& a_k &= \tfrac{1}{2}\,\operatorname{tr}\,\sigma^k\,M .\end{align} \\[3pt]
                   c &={} \tfrac{1}{2}\ \operatorname{tr}\, M\ ,\begin{align}&& a_k &= \tfrac{1}{2}\ \operatorname{tr}\ \sigma^k\ M \end{align} ~.\\[3pt]
   \therefore ~~ 2\,M &= I\,\operatorname{tr}\, M + \sum_k \sigma^k\,\operatorname{tr}\, \sigma^k M ~,
   \therefore ~~ 2\,M &= I\,\operatorname{tr}\, M + \sum_k \sigma^k\,\operatorname{tr}\, \sigma^k M\ ,
\end{align}</math>
\end{align}</math>
which can be rewritten in terms of matrix indices as
which can be rewritten in terms of matrix indices as
<math display="block">2\, M_{\alpha\beta} = \delta_{\alpha\beta}\,M_{\gamma\gamma} + \sum_k \sigma^k_{\alpha\beta}\,\sigma^k_{\gamma\delta}\,M_{\delta\gamma}~,</math>
<math display="block">2\ M_{\alpha\beta} = \delta_{\alpha\beta}\ M_{\gamma\gamma} + \sum_k \sigma^k_{\alpha\beta}\ \sigma^k_{\gamma\delta}\ M_{\delta\gamma}\ ,</math>
where [[Einstein notation|summation over the repeated indices is implied]] {{mvar|γ}} and {{mvar|δ}}. Since this is true for any choice of the matrix {{mvar|M}}, the completeness relation follows as stated above. [[Q.E.D.]]
where [[Einstein notation|summation over the repeated indices is implied]] {{mvar|γ}} and {{mvar|δ}}. Since this is true for any choice of the matrix {{mvar|M}}, the completeness relation follows as stated above. [[Q.E.D.]]
}}
}}


As noted above, it is common to denote the 2 × 2 unit matrix by {{math|''σ''{{sub|0}},}} so {{math|1=''σ{{sup|0}}{{sub|αβ}}'' = ''δ{{sub|αβ}}''.}} The completeness relation can alternatively be expressed as
As noted above, it is common to denote the 2 × 2 unit matrix by {{nobr| {{math|''σ''{{sub|0}}}} ,}} so {{nobr| {{math| ''σ{{sup|0}}{{sub|αβ}}'' {{=}} ''δ{{sub|αβ}}'' .}} }} The completeness relation can alternatively be expressed as
<math display="block">\sum_{k=0}^3 \sigma^k_{\alpha\beta}\,\sigma^k_{\gamma\delta} = 2\,\delta_{\alpha\delta}\,\delta_{\beta\gamma} ~ .</math>
<math display="block">\ \sum_{k=0}^3 \sigma^k_{\alpha\beta}\ \sigma^k_{\gamma\delta} = 2\ \delta_{\alpha\delta}\ \delta_{\beta\gamma} ~.</math>


The fact that any Hermitian [[complex number|complex]] 2 × 2 matrices can be expressed in terms of the identity matrix and the Pauli matrices also leads to the [[Bloch sphere]] representation of 2 × 2 [[mixed state (physics)|mixed state]]s’ density matrix, ([[Positive semidefinite matrix|positive semidefinite]] 2 × 2 matrices with unit trace. This can be seen by first expressing an arbitrary Hermitian matrix as a real linear combination of {{math|{''σ''{{sub|0}}, ''σ''{{sub|1}}, ''σ''{{sub|2}}, ''σ''{{sub|3}}<nowiki>}</nowiki>}} as above, and then imposing the positive-semidefinite and [[Trace (linear algebra)|trace]] {{math|1}} conditions.
The fact that any Hermitian [[complex number|complex]] 2 × 2 matrices can be expressed in terms of the identity matrix and the Pauli matrices also leads to the [[Bloch sphere]] representation of 2 × 2 [[mixed state (physics)|mixed state]]s’ density matrix, ([[Positive semidefinite matrix|positive semidefinite]] 2 × 2 matrices with unit trace. This can be seen by first expressing an arbitrary Hermitian matrix as a real linear combination of {{math|{''σ''{{sub|0}}, ''σ''{{sub|1}}, ''σ''{{sub|2}}, ''σ''{{sub|3}}<nowiki>}</nowiki>}} as above, and then imposing the positive-semidefinite and [[Trace (linear algebra)|trace]] {{math|1}} conditions.
Line 401: Line 402:
</math>
</math>


acts on the state eigenvector <math>\begin{pmatrix}\cos\left(\frac{\,\theta\,}{2}\right) & e^{+i\phi}\,\sin\left(\frac{\,\theta\,}{2}\right) \end{pmatrix} </math> with eigenvalue +1, hence it acts like a [[projection (linear algebra)|projection operator]].
acts on the state eigenvector <math>\ \begin{pmatrix}\cos\left(\frac{\ \theta\ }{2}\right) & e^{+i\phi}\ \sin\left(\frac{\ \theta\ }{2}\right) \end{pmatrix}\ </math> with eigenvalue +1, hence it acts like a [[projection (linear algebra)|projection operator]].


=== Relation with the permutation operator ===
=== Relation with the permutation operator ===
Let {{math|''P{{sub|jk}}''}} be the [[transposition (mathematics)|transposition]] (also known as a permutation) between two spins {{math|''σ{{sub|j}}''}} and {{math|''σ{{sub|k}}''}} living in the [[tensor product]] space {{nowrap|{{tmath|\Complex^2 \otimes \Complex^2}},}}
Let {{math|''P{{sub|jk}}''}} be the [[transposition (mathematics)|transposition]] (also known as a permutation) between two spins {{math|''σ{{sub|j}}''}} and {{math|''σ{{sub|k}}''}} living in the [[tensor product]] space {{nobr| {{tmath|\Complex^2 \otimes \Complex^2}} ,}}
:<math>P_{jk} \left| \sigma_j \sigma_k \right\rangle =  \left| \sigma_k \sigma_j \right\rangle .</math>
:<math>P_{jk} \left| \sigma_j \sigma_k \right\rangle =  \left| \sigma_k \sigma_j \right\rangle .</math>


This operator can also be written more explicitly as [[Exchange interaction#Inclusion of spin|Dirac's spin exchange operator]],
This operator can also be written more explicitly as [[Exchange interaction#Inclusion of spin|Dirac's spin exchange operator]],
:<math>P_{jk} = \frac{1}{2}\,\left(\vec{\sigma}_j \cdot \vec{\sigma}_k + 1\right) ~ .</math>
:<math>\ P_{jk} = \frac{1}{2}\ \left(\vec{\sigma}_j \cdot \vec{\sigma}_k + 1 \right) ~.</math>


Its eigenvalues are therefore{{efn|
Its eigenvalues are therefore{{efn|
Line 423: Line 424:
:<math> \mathfrak{su}(2) = \operatorname{span} \{\; i\,\sigma_1\, ,\; i\,\sigma_2\, , \; i\,\sigma_3 \;\}.</math>
:<math> \mathfrak{su}(2) = \operatorname{span} \{\; i\,\sigma_1\, ,\; i\,\sigma_2\, , \; i\,\sigma_3 \;\}.</math>


As a result, each {{math|''iσ{{sub|j}}''}} can be seen as an [[Lie group#The Lie algebra associated with a Lie group|infinitesimal generator]] of SU(2). The elements of SU(2) are exponentials of linear combinations of these three generators, and multiply as indicated above in discussing the Pauli vector. Although this suffices to generate SU(2), it is not a proper [[Representation theory of SU(2)|representation of {{math|su(2)}}]], as the Pauli eigenvalues are scaled unconventionally. The conventional normalization is {{math|1=''λ'' = {{sfrac|1|2}},}} so that
As a result, each {{math|''iσ{{sub|j}}''}} can be seen as an [[Lie group#The Lie algebra associated with a Lie group|infinitesimal generator]] of SU(2). The elements of SU(2) are exponentials of linear combinations of these three generators, and multiply as indicated above in discussing the Pauli vector. Although this suffices to generate SU(2), it is not a proper [[Representation theory of SU(2)|representation of {{math|su(2)}}]], as the Pauli eigenvalues are scaled unconventionally. The conventional normalization is {{nobr| {{math| ''λ'' {{=}} {{sfrac|1|2}} }} ,}} so that
:<math> \mathfrak{su}(2) = \operatorname{span} \left\{\frac{\,i\,\sigma_1\,}{2}, \frac{\,i\,\sigma_2\,}{2}, \frac{\,i\,\sigma_3\,}{2} \right\}.</math>
:<math>\ \mathfrak{su}(2) = \operatorname{span} \left\{\frac{\ i\ \sigma_1\ }{2}, \frac{\ i\ \sigma_2\ }{2}, \frac{\ i\ \sigma_3\ }{2} \right\} ~.</math>


As SU(2) is a compact group, its [[Cartan decomposition]] is trivial.
As SU(2) is a compact group, its [[Cartan decomposition]] is trivial.


=== SO(3) ===
=== SO(3) ===
The Lie algebra <math> \mathfrak{su}(2)</math> is [[isomorphism|isomorphic]] to the Lie algebra <math> \mathfrak{so}(3)</math>, which corresponds to the Lie group [[Rotation group SO(3)|SO(3)]], the [[group (mathematics)|group]] of [[rotation]]s in three-dimensional space. In other words, one can say that the {{math|''iσ{{sub|j}}''}} are a realization (and, in fact, the lowest-dimensional realization) of ''infinitesimal'' rotations in three-dimensional space. However, even though <math> \mathfrak{su}(2)</math> and <math> \mathfrak{so}(3)</math> are isomorphic as Lie algebras, {{math|SU(2)}} and {{math|SO(3)}} are not isomorphic as Lie groups. {{math|SU(2)}} is actually a [[Double covering group|double cover]] of {{math|SO(3)}}, meaning that there is a two-to-one group homomorphism from {{math|SU(2)}} to {{math|SO(3)}}, see [[Rotation group SO(3)#Connection between SO(3) and SU(2)|relationship between SO(3) and SU(2)]].
The Lie algebra <math>\ \mathfrak{su}(2)\ </math> is [[isomorphism|isomorphic]] to the Lie algebra <math> \mathfrak{so}(3)</math>, which corresponds to the Lie group [[Rotation group SO(3)|SO(3)]], the [[group (mathematics)|group]] of [[rotation]]s in three-dimensional space. In other words, one can say that the {{nobr| {{mvar| i σ{{sub|j}} }} }} are a realization (and, in fact, the lowest-dimensional realization) of ''infinitesimal'' rotations in three-dimensional space. However, even though <math>\ \mathfrak{su}(2)\ </math> and <math> \mathfrak{so}(3)</math> are isomorphic as Lie algebras, {{math|SU(2)}} and {{math|SO(3)}} are not isomorphic as Lie groups. {{math|SU(2)}} is actually a [[Double covering group|double cover]] of {{math|SO(3)}}, meaning that there is a two-to-one group homomorphism from {{nobr|{{math|SU(2)}} {{math|SO(3)}} ,}} see [[Rotation group SO(3)#Connection between SO(3) and SU(2)|relationship between SO(3) and SU(2)]].


=== Quaternions ===
=== Quaternions ===
{{main|Spinor#Three dimensions}}
{{main|Spinor#Three dimensions}}
The real linear span of {{math|{''I'', ''iσ''{{sub|1}}, ''''{{sub|2}}, ''''{{sub|3}}<nowiki>}</nowiki>}} is isomorphic to the real algebra of [[quaternions]], <math>\mathbb{H}</math>, represented by the span of the basis vectors <math> \left\{\; \mathbf{1}, \, \mathbf{i}, \, \mathbf{j}, \, \mathbf{k} \;\right\} .</math> The isomorphism from <math>\mathbb{H}</math> to this set is given by the following map (notice the reversed signs for the Pauli matrices):
The real linear span of {{math|{''I'', '' iσ''{{sub|1}}, ''i σ''{{sub|2}}, ''i σ''{{sub|3}}<nowiki>}</nowiki>}} is isomorphic to the real algebra of [[quaternions]], <math>\mathbb{H}</math>, represented by the span of the basis vectors <math>\ \left\{\; \mathbf{1},\ \mathbf{i},\ \mathbf{j},\ \mathbf{k} \;\right\} ~.</math> The isomorphism from <math>\ \mathbb{H}\ </math> to this set is given by the following map (notice the reversed signs for the Pauli matrices):
<math display=block>
<math display=block>
   \mathbf{1} \mapsto I, \quad
   \mathbf{1} \mapsto I, \quad
   \mathbf{i} \mapsto - \sigma_2\sigma_3 = - i\,\sigma_1, \quad
   \mathbf{i} \mapsto - \sigma_2\sigma_3 = - i\,\sigma_1, \quad
   \mathbf{j} \mapsto - \sigma_3\sigma_1 = - i\,\sigma_2, \quad
   \mathbf{j} \mapsto - \sigma_3\sigma_1 = - i\,\sigma_2, \quad
   \mathbf{k} \mapsto - \sigma_1\sigma_2 = - i\,\sigma_3.
   \mathbf{k} \mapsto - \sigma_1\sigma_2 = - i\,\sigma_3 ~.
</math>
</math>


Line 460: Line 461:
</math>
</math>


As the set of [[versor]]s {{math|''U'' ⊂ <math>\mathbb{H}</math>}} forms a group isomorphic to {{math|SU(2)}}, {{mvar|U}} gives yet another way of describing {{math|SU(2)}}. The two-to-one homomorphism from {{math|SU(2)}} to {{math|SO(3)}} may be given in terms of the Pauli matrices in this formulation.
As the set of [[versor]]s <math>U\sub\mathbb{H}</math> forms a group isomorphic to {{math|SU(2)}}, {{mvar|U}} gives yet another way of describing {{math|SU(2)}}. The two-to-one homomorphism from {{math|SU(2)}} to {{math|SO(3)}} may be given in terms of the Pauli matrices in this formulation.


== Physics ==
== Physics ==
Line 467: Line 468:
{{Main|Quaternions and spatial rotation}}
{{Main|Quaternions and spatial rotation}}


In [[classical mechanics]], Pauli matrices are useful in the context of the Cayley-Klein parameters.<ref name=Goldstein-1959>
In [[classical mechanics]], Pauli matrices are useful in the context of the Cayley–Klein parameters.<ref name=Goldstein-1959>
{{cite book
{{cite book
  |last=Goldstein |first=Herbert
  |last=Goldstein |first=Herbert
Line 474: Line 475:
  |pages=109–118
  |pages=109–118
  |publisher=Addison-Wesley
  |publisher=Addison-Wesley
|oclc=3175838
}}
}}
</ref> The matrix {{mvar|P}} corresponding to the position <math>\vec{x}</math> of a point in space is defined in terms of the above Pauli vector matrix,
</ref> The matrix {{mvar|P}} corresponding to the position <math>\vec{x}</math> of a point in space is defined in terms of the above Pauli vector matrix,
Line 479: Line 481:


Consequently, the transformation matrix {{math|''Q{{sub|θ}}''}} for rotations about the {{mvar|x}}-axis through an angle {{mvar|θ}} may be written in terms of Pauli matrices and the unit matrix as<ref name=Goldstein-1959/>
Consequently, the transformation matrix {{math|''Q{{sub|θ}}''}} for rotations about the {{mvar|x}}-axis through an angle {{mvar|θ}} may be written in terms of Pauli matrices and the unit matrix as<ref name=Goldstein-1959/>
:<math>Q_\theta = \boldsymbol{1}\,\cos\frac{\theta}{2} + i\,\sigma_x \sin\frac{\theta}{2} .</math>
:<math>\ Q_\theta = \boldsymbol{1}\,\cos\frac{\theta}{2} + i\ \sigma_x \sin\frac{\theta}{2} ~.</math>


Similar expressions follow for general Pauli vector rotations as detailed above.
Similar expressions follow for general Pauli vector rotations as detailed above.
Line 487: Line 489:
In [[quantum mechanics]], each Pauli matrix is related to an [[angular momentum operator]] that corresponds to an [[observable]] describing the [[Spin (physics)|spin]] of a [[spin-1/2|spin {{1/2}}]] particle, in each of the three spatial directions. As an immediate consequence of the Cartan decomposition mentioned above, {{math|''iσ{{sub|j}}''}} are the generators of a [[projective representation]] ('''spin representation''') of the [[rotation group SO(3)]] acting on [[theory of relativity|non-relativistic]] particles with spin {{1/2}}. The [[mathematical formulation of quantum mechanics|states]] of the particles are represented as two-component [[Spinors in three dimensions|spinors]]. In the same way, the Pauli matrices are related to the [[Isospin|isospin operator]].
In [[quantum mechanics]], each Pauli matrix is related to an [[angular momentum operator]] that corresponds to an [[observable]] describing the [[Spin (physics)|spin]] of a [[spin-1/2|spin {{1/2}}]] particle, in each of the three spatial directions. As an immediate consequence of the Cartan decomposition mentioned above, {{math|''iσ{{sub|j}}''}} are the generators of a [[projective representation]] ('''spin representation''') of the [[rotation group SO(3)]] acting on [[theory of relativity|non-relativistic]] particles with spin {{1/2}}. The [[mathematical formulation of quantum mechanics|states]] of the particles are represented as two-component [[Spinors in three dimensions|spinors]]. In the same way, the Pauli matrices are related to the [[Isospin|isospin operator]].


An interesting property of spin {{1/2}} particles is that they must be rotated by an angle of 4{{mvar|π}} in order to return to their original configuration. This is due to the two-to-one correspondence between SU(2) and SO(3) mentioned above, and the fact that, although one visualizes spin up/down as the north–south pole on the [[2-sphere]] {{math|''S''{{sup|2}},}} they are actually represented by [[orthogonal]] vectors in the two-dimensional complex [[Hilbert space]].
An interesting property of spin {{1/2}} particles is that they must be rotated by an angle of 4{{mvar|π}} in order to return to their original configuration. This is due to the two-to-one correspondence between SU(2) and SO(3) mentioned above, and the fact that, although one visualizes spin up/down as the north–south pole on the [[2-sphere]] {{nobr| {{math|''S''{{sup|2}} }},}} they are actually represented by [[orthogonal]] vectors in the two-dimensional complex [[Hilbert space]].


For a spin {{1/2}} particle, the spin operator is given by {{math|1='''''J''''' = {{sfrac|''ħ''|2}}'''''σ'''''}}, the [[fundamental representation]] of [[representation theory of SU(2)|SU(2)]]. By taking [[Kronecker product]]s of this representation with itself repeatedly, one may construct all higher irreducible representations. That is, the resulting [[spin operator]]s for higher spin systems in three spatial dimensions, for arbitrarily large ''j'', can be calculated using this [[spin operator]] and [[Ladder operator#Angular momentum|ladder operators]]. They can be found in {{section link|Rotation group SO(3)#A note on Lie algebras}}. The analog formula to the above generalization of Euler's formula for Pauli matrices, the group element in terms of spin matrices, is tractable, but less simple.<ref>{{Cite journal | doi=10.3842/SIGMA.2014.084 |last1=Curtright|last2=Fairlie|last3=Zachos |first1=T L |first2=D B |first3=C K|author-link=Thomas Curtright|author-link2=David Fairlie|author-link3=Cosmas Zachos|year=2014|title=A compact formula for rotations as spin matrix polynomials| journal =SIGMA| volume=10| page=084|arxiv=1402.3541 |bibcode=2014SIGMA..10..084C |s2cid=18776942}}</ref>
For a spin {{1/2}} particle, the spin operator is given by {{nobr| {{math| '''''J''''' {{=}} {{sfrac|''ħ''|2}}'''''σ'''''}} ,}} the [[fundamental representation]] of [[representation theory of SU(2)|SU(2)]]. By taking [[Kronecker product]]s of this representation with itself repeatedly, one may construct all higher irreducible representations. That is, the resulting [[spin operator]]s for higher spin systems in three spatial dimensions, for arbitrarily large ''j'', can be calculated using this [[spin operator]] and [[Ladder operator#Angular momentum|ladder operators]]. They can be found in {{section link|Rotation group SO(3)#A note on Lie algebras}}. The analog formula to the above generalization of Euler's formula for Pauli matrices, the group element in terms of spin matrices, is tractable, but less simple.<ref>{{cite journal |last1=Curtright |first1=T.L. |author1-link=Thomas Curtright |last2=Fairlie |first2=D.B. |author2-link=David Fairlie |last3=Zachos |first3=C.K. |author3-link=Cosmas Zachos |year=2014 |title=A compact formula for rotations as spin matrix polynomials |journal=[[SIGMA (journal)|SIGMA]] |volume=10 |page=084 |arxiv=1402.3541 |bibcode=2014SIGMA..10..084C |s2cid=18776942 |doi=10.3842/SIGMA.2014.084 }}</ref>


Also useful in the [[quantum mechanics]] of multiparticle systems, the general [[Pauli group]] {{math|''G{{sub|n}}''}} is defined to consist of all {{mvar|n}}-fold [[tensor]] products of Pauli matrices.
Also useful in the [[quantum mechanics]] of multiparticle systems, the general [[Pauli group]] {{math|''G{{sub|n}}''}} is defined to consist of all {{mvar|n}}-fold [[tensor]] products of Pauli matrices.


=== Relativistic quantum mechanics ===
=== Relativistic quantum mechanics ===
In [[relativistic quantum mechanics]], the spinors in four dimensions are 4 × 1 (or 1 × 4) matrices. Hence the Pauli matrices or the Sigma matrices operating on these spinors have to be 4 × 4 matrices. They are defined in terms of 2 × 2 Pauli matrices as
In [[relativistic quantum mechanics]], the spinors in four dimensions are {{math|4 × 1}} (or {{nobr| {{math|1 × 4}})}} matrices. Hence the Pauli matrices or the Sigma matrices operating on these spinors have to be {{nobr| {{math|4 × 4}} matrices.}} They are defined in terms of {{nobr| {{math| 2 × 2 }} }} Pauli matrices as
:<math>\mathsf{\Sigma}_k = \begin{pmatrix} \mathsf{\sigma}_k & 0 \\ 0 & \mathsf{\sigma}_k \end{pmatrix} .</math>
:<math>\mathsf{\Sigma}_k = \begin{pmatrix} \mathsf{\sigma}_k & 0 \\ 0 & \mathsf{\sigma}_k \end{pmatrix} ~.</math>


It follows from this definition that the <math>\ \mathsf{ \Sigma }_k \ </math> matrices have the same algebraic properties as the {{mvar| σ{{sub|k}} }} matrices.
It follows from this definition that the <math>\ \mathsf{ \Sigma }_k\ </math> matrices have the same algebraic properties as the {{mvar| σ{{sub|k}} }} matrices.


However, [[relativistic angular momentum]] is not a three-vector, but a second order [[four-tensor]]. Hence <math>\ \mathsf{\Sigma}_k\ </math> needs to be replaced by {{mvar|Σ{{sub|μν}} }}, the generator of [[representation theory of the Lorentz group#The (1/2, 0) ⊕ (0, 1/2) spin representation|Lorentz transformations on spinors]]. By the antisymmetry of angular momentum, the {{math|Σ''{{sub|μν}}''}} are also antisymmetric. Hence there are only six independent matrices.
However, [[relativistic angular momentum]] is not a three-vector, but a second order [[four-tensor]]. Hence <math>\ \mathsf{\Sigma}_k\ </math> needs to be replaced by {{math''{{sub|μν}}''}}, the generator of [[representation theory of the Lorentz group#The (1/2, 0) ⊕ (0, 1/2) spin representation|Lorentz transformations on spinors]]. By the antisymmetry of angular momentum, the {{math|Σ''{{sub|μν}}''}} are also antisymmetric. Hence there are only six independent matrices.


The first three are the <math>\ \Sigma_{k\ell} \equiv \epsilon_{jk\ell}\mathsf{\Sigma}_j .</math> The remaining three, <math>\ -i\ \Sigma_{0k} \equiv \mathsf{\alpha}_k\ ,</math> where the [[Dirac equation|Dirac {{math|''α{{sub|k}}''}} matrices]] are defined as
The first three are the <math>\ \Sigma_{k\ell} \equiv \epsilon_{jk\ell}\mathsf{\Sigma}_j ~.</math> The remaining three, <math>\ -i\ \Sigma_{0k} \equiv \mathsf{\alpha}_k\ ,</math> where the [[Dirac equation|Dirac {{math|''α{{sub|k}}''}} matrices]] are defined as


:<math>
:<math>
\mathsf{\alpha}_k =
\mathsf{\alpha}_k =
\begin{pmatrix}
\begin{pmatrix}
  0  &  \mathsf{\sigma}_k \\
  0  &  \mathsf{\sigma}_k \\
  \mathsf{\sigma}_k  &  0
  \mathsf{\sigma}_k  &  0
\end{pmatrix} .
\end{pmatrix} ~.
</math>
</math>


The relativistic spin matrices {{math|Σ''{{sub|μν}}''}} are written in compact form in terms of commutator of [[gamma matrices]] as
The relativistic spin matrices {{math|Σ''{{sub|μν}}''}} are written in compact form in terms of commutator of [[gamma matrices]] as
:<math>\Sigma_{\mu\nu} = \frac{i}{2} \bigl[ \gamma_\mu, \gamma_\nu \bigr] .</math>
:<math>\ \Sigma_{\mu\nu} = \frac{i}{2} \bigl[ \gamma_\mu, \gamma_\nu \bigr] ~.</math>


=== Quantum information ===
=== Quantum information ===
In [[quantum information]], single-[[qubit]] [[quantum gate]]s are 2 × 2 [[unitary matrices]]. The Pauli matrices are some of the most important single-qubit operations. In that context, the Cartan decomposition given above is called the "Z–Y decomposition of a single-qubit gate". Choosing a different Cartan pair gives a similar "X–Y ''decomposition of a single-qubit gate'' ".
In [[quantum information]], single-[[qubit]] [[quantum gate]]s are 2 × 2 [[unitary matrices]]. The Pauli matrices are some of the most important single-qubit operations. In that context, the Cartan decomposition given above is called the "Z–Y ''decomposition of a single-qubit gate''". Choosing a different Cartan pair gives a similar "X–Y ''decomposition of a single-qubit gate'' ".


== See also ==
== See also ==

Latest revision as of 11:00, 19 November 2025

Template:Short description Template:Use American English Template:MOS

File:Wolfgang Pauli.jpg
Wolfgang Pauli (1900–1958), c. 1924. Pauli received the Nobel Prize in Physics in 1945, nominated by Albert Einstein, for the Pauli exclusion principle.

In mathematical physics and mathematics, the Pauli matrices are a set of three Template:Math complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma (Template:Mvar), they are occasionally denoted by tau (Template:Mvar) when used in connection with isospin symmetries. σ1=σx=(0110),σ2=σy=(0ii0),σ3=σz=(1001).

These matrices are named after the physicist Wolfgang Pauli. In quantum mechanics, they occur in the Pauli equation, which takes into account the interaction of the spin of a particle with an external electromagnetic field. They also represent the interaction states of two polarization filters for horizontal/vertical polarization, 45 degree polarization (right/left), and circular polarization (right/left).

Each Pauli matrix is Hermitian, and together with the identity matrix Template:Mvar (sometimes considered as the zeroth Pauli matrix Template:Math), the Pauli matrices form a basis of the vector space of Template:Math Hermitian matrices over the real numbers, under addition. This means that any Template:Math Hermitian matrix can be written in a unique way as a linear combination of Pauli matrices, with all coefficients being real numbers.

The Pauli matrices satisfy the useful product relation:

σi σj=δij I+i εijk σk ,

where Template:Mvar is the Kronecker delta, which equals Template:Math if Template:Nobr otherwise Template:Math, and the Levi-Civita symbol Template:Math is used.

Hermitian operators represent observables in quantum mechanics, so the Pauli matrices span the space of observables of the complex two-dimensional Hilbert space. In the context of Pauli's work, Template:Mvar represents the observable corresponding to spin along the Template:Mvarth coordinate axis in three-dimensional Euclidean space 3.

The Pauli matrices (after multiplication by Template:Mvar to make them anti-Hermitian) also generate transformations in the sense of Lie algebras: The matrices Template:Math form a basis for the real Lie algebra  𝔰𝔲(2) , which exponentiates to the special unitary group SU(2).Template:Efn The algebra generated by the three matrices Template:Math is isomorphic to the Clifford algebra of  3 ,[1] and the (unital) associative algebra generated by Template:Math functions identically (is isomorphic) to that of quaternions ().

Algebraic properties

Cayley table; the entry shows the value of the row times the column.
× σx σy σz
σx I i σz i σy
σy i σz I i σx
σz iσy i σx I

All three of the Pauli matrices can be compacted into a single expression:

σj=(δj3δj1i δj2δj1+i δj2δj3).

This expression is useful for "selecting" any one of the matrices numerically by substituting values of Template:Nobr in turn useful when any of the matrices (but no particular one) is to be used in algebraic manipulations.

The matrices are involutory:

σ12=σ22=σ32=i σ1 σ2 σ3=(1001)=I ,

where Template:Mvar is the identity matrix.

The determinants and traces of the Pauli matrices are

detσj=1 ,trσj=0 ,

from which we can deduce that each matrix Template:Mvar has eigenvalues Template:Math and Template:Nobr

With the inclusion of the identity matrix Template:Mvar (sometimes denoted Template:Math), the Pauli matrices form an orthogonal basis (in the sense of Hilbert–Schmidt) of the Hilbert space  2  of Template:Math Hermitian matrices over   , and the Hilbert space 2,2() of all complex Template:Math matrices over  .

Commutation and anti-commutation relations

Commutation relations

The Pauli matrices obey the following commutation relations:

[σj,σk]=2 i εjkl σl.

These commutation relations make the Pauli matrices the generators of a representation of the Lie algebra (3,×)  𝔰𝔲(2)  𝔰𝔬(3).

Anticommutation relations

They also satisfy the anticommutation relations:

{σj,σk}=2 δjk I ,

where {σj,σk} is defined as  σj σk+σk σj , and Template:Math is the Kronecker delta. Template:Mvar denotes the Template:Math identity matrix.

These anti-commutation relations make the Pauli matrices the generators of a representation of the Clifford algebra for  3 , denoted  Cl3().

The usual construction of generators  σjk=14[σj,σk]  of  𝔰𝔬(3)  using the Clifford algebra recovers the commutation relations above, up to unimportant numerical factors.

A few explicit commutators and anti-commutators are given below as examples:

Commutators Anticommutators
[ σ1,σ1 ]=0[ σ1,σ2 ]=2 i σ3[ σ2,σ3 ]=2 i σ1[ σ3,σ1 ]=2 i σ2Template:Quad { σ1,σ1 }=2 I{ σ1,σ2 }=0{ σ2,σ3 }=0{ σ3,σ1 }=0

Eigenvectors and eigenvalues

Each of the (Hermitian) Pauli matrices has two eigenvalues: Template:Math and Template:Math. The corresponding normalized eigenvectors are

ψx+=12[11],ψx=12[11],ψy+=12[1i],ψy=12[1i],ψz+=[10],ψz=[01].

Pauli vectors

The Pauli vector is defined byTemplate:Efn σ=σ1x^1+σ2x^2+σ3x^3 , where  x^1 ,  x^2 , and  x^3  are an equivalent notation for the more familiar  x^ ,  y^ , and  z^.

The Pauli vector provides a mapping mechanism from a vector basis to a Pauli matrix basis[2] as follows: aσ=k,lakσx^kx^=kakσk=(a3a1ia2a1+ia2a3).

More formally, this defines a map from 3 to the vector space of traceless Hermitian 2×2 matrices. This map encodes structures of 3 as a normed vector space and as a Lie algebra (with the cross-product as its Lie bracket) via functions of matrices, making the map an isomorphism of Lie algebras. This makes the Pauli matrices intertwiners from the point of view of representation theory.

Another way to view the Pauli vector is as a  2×2  Hermitian traceless matrix-valued dual vector, that is, an element of  Mat2×2()(3)*  that maps  aaσ.

Completeness relation

Each component of a can be recovered from the matrix (see completeness relation below) 12tr( ( aσ ) σ )=a. This constitutes an inverse to the map  a  aσ , making it manifest that the map is a bijection.

Determinant

The norm is given by the determinant (up to a minus sign) det( aσ ) = aa = | a |2. Then, considering the conjugation action of an  SU(2)  matrix U on this space of matrices,

 U*aσ := U aσ U1 ,

we find  det(U*aσ) = det(aσ) , and that  U*aσ  is Hermitian and traceless. It then makes sense to define  U*aσ = aσ , where  a  has the same norm as a, and therefore interpret U as a rotation of three-dimensional space. In fact, it turns out that the special restriction on U implies that the rotation is orientation preserving. This allows the definition of a map  R:SU(2)SO(3)  given by

 U*aσ = aσ =: (R(U) a)σ ,

where  R(U)  SO(3). This map is the concrete realization of the double cover of  SO(3)  by  SU(2) , and therefore shows that  SU(2)  Spin(3). The components of R(U) can be recovered using the tracing process above:

 R(U)ij=12 tr( σiUσjU1 ).

Cross-product

The cross-product is given by the matrix commutator (up to a factor of  2 i ) [ aσ, bσ ]=2 i (a×b)σ. In fact, the existence of a norm follows from the fact that  3  is a Lie algebra (see Killing form).

This cross-product can be used to prove the orientation-preserving property of the map above.

Eigenvalues and eigenvectors

The eigenvalues of  aσ  are  ±|a|. This follows immediately from tracelessness and explicitly computing the determinant.

More abstractly, without computing the determinant, which requires explicit properties of the Pauli matrices, this follows from  (aσ)2|a|2=0 , since this can be factorised into  (aσ|a|)(aσ+|a|)=0. A standard result in linear algebra (a linear map that satisfies a polynomial equation written in distinct linear factors is diagonalizable) means this implies  aσ  is diagonalizable with possible eigenvalues  ±|a|. The tracelessness of  aσ  means it has exactly one of each eigenvalue.

Its normalized eigenvectors are ψ+=12|a| (a3+|a|)  [a3+|a|a1+ia2] ;ψ=12|a|(a3+|a|)[ia2a1a3+|a|]. These expressions become singular for  a3| a |. They can be rescued by letting a=| a |(ϵ, 0, (1ϵ22))  and taking the limit  ϵ0 , which yields the correct eigenvectors Template:Nobr and Template:Nobr of  σz.

Alternatively, one may use spherical coordinates  a=a ( sinϑ cosφ, sinϑ sinφ, cosϑ )  to obtain the eigenvectors  ψ+=( cosϑ2,sinϑ2 e+iφ )  and  ψ=( sinϑ2 eiφ,cosϑ2 ).

Pauli 4-vector

The Pauli 4-vector, used in spinor theory, is written  σμ  with components

 σμ=( I, σ ).

This defines a map from  1,3  to the vector space of Hermitian matrices,

 xμxμσμ ,

which also encodes the Minkowski metric (with mostly minus convention) in its determinant:

 det( xμσμ )=η(x,x).

This 4-vector also has a completeness relation. It is convenient to define a second Pauli 4-vector

 σ¯μ=( I,σ ).

and allow raising and lowering using the Minkowski metric tensor. The relation can then be written  xν=12tr( σ¯ν(xμσμ) ).

Similarly to the Pauli 3-vector case, we can find a matrix group that acts as isometries on  1,3 ; in this case the matrix group is  SL(2,) , and this shows  SL(2,)  Spin(1,3). Similarly to above, this can be explicitly realized for  SSL(2,)  with components

 Λ(S)μν=12tr( σ¯ν S σμ S ).

In fact, the determinant property follows abstractly from trace properties of the  σμ. For  2×2  matrices, the following identity holds:

 det( A+B ) = det(A) + det(B) + tr(A) tr(B)  tr( A B ).

That is, the 'cross-terms' can be written as traces. When  A,B  are chosen to be different  σμ , the cross-terms vanish. It then follows, now showing summation explicitly, det(μxμσμ)=μdet(xμσμ). Since the matrices are  2×2 , this is equal to  μxμ2det(σμ)=η(x,x).

Relation to dot and cross product

Pauli vectors elegantly map these commutation and anticommutation relations to corresponding vector products. Adding the commutator to the anticommutator gives

[σj,σk]+{σj,σk}=(σjσkσkσj)+(σjσk+σkσj)2iεjkσ+2δjkI=2σjσk

so that, Template:Equation box 1

Contracting each side of the equation with components of two Template:Math-vectors Template:Math and Template:Math (which commute with the Pauli matrices, i.e., Template:Math for each matrix Template:Math and vector component Template:Math (and likewise with Template:Math) yields

ajbkσjσk=ajbk(iεjkσ+δjkI)ajσjbkσk=iεjkajbkσ+ajbkδjkI.

Finally, translating the index notation for the dot product and cross product results in Template:NumBlk

If Template:Mvar is identified with the pseudoscalar Template:Nobr then the right hand side becomes  ab+ab , which is also the definition for the product of two vectors in geometric algebra.

If we define the spin operator as Template:Nobr then Template:Math satisfies the commutation relation: 𝐉×𝐉=i 𝐉  Or equivalently, the Pauli vector satisfies: σ2×σ2=i σ2.

Some trace relations

The following traces can be derived using the commutation and anticommutation relations.

tr(σj)=0tr(σjσk)=2δjktr(σjσkσ)=2iεjktr(σjσkσσm)=2(δjkδmδjδkm+δjmδk).

If the matrix Template:Math is also considered, these relationships become

tr(σα)=2δ0αtr(σασβ)=2δαβtr(σασβσγ)=2(αβγ)δαβδ0γ4δ0αδ0βδ0γ+2iε0αβγtr(σασβσγσμ)=2(δαβδγμδαγδβμ+δαμδβγ)+4(δαγδ0βδ0μ+δβμδ0αδ0γ)8δ0αδ0βδ0γδ0μ+2i(αβγμ)ε0αβγδ0μ.

where Greek indices Template:Math and Template:Mvar assume values from Template:Math and the notation (α) is used to denote the sum over the cyclic permutation of the included indices.

Exponential of a Pauli vector

For

a=a n^,| n^ |=1 ,

one has, for even powers, Template:Math

 (n^σ)2p=I ,

which can be shown first for the Template:Math case using the anticommutation relations. For convenience, the case Template:Math is taken to be Template:Mvar by convention.

For odd powers, Template:Math

 (n^σ)2q+1=n^σ.

Matrix exponentiating, and using the Taylor series for sine and cosine,

eia(n^σ)=k=0ik[a(n^σ)]kk!=p=0(1)p(an^σ)2p(2p)!+iq=0(1)q(an^σ)2q+1(2q+1)!=Ip=0(1)pa2p(2p)!+i(n^σ)q=0(1)qa2q+1(2q+1)!.

In the last line, the first sum is the cosine, while the second sum is the sine; so, finally, Template:NumBlk

which is analogous to Euler's formula, extended to quaternions. In particular,

ei a σ1=(cosai sinai sinacosa) ,ei a σ2=(cosasinasinacosa) ,ei a σ3=(ei a00ei a).

Note that

det[ i a (n^σ) ]=a2 ,

while the determinant of the exponential itself is just Template:Math, which makes it the generic group element of SU(2).

A more abstract version of formula Template:EquationNote for a general Template:Math matrix can be found in the article on matrix exponentials. A general version of Template:EquationNote for an analytic (at Template:Mvar and Template:Mvar) function is provided by application of Sylvester's formula,[3]

 f( a(n^σ) ) = I  f(+a)+f(a) 2 + n^σ  f(+a)f(a) 2.

The group composition law of Template:Math

A straightforward application of formula Template:EquationNote provides a parameterization of the composition law of the group Template:Math.Template:Efn One may directly solve for Template:Mvar in ei a(n^σ) ei b (m^σ)=I ( cosa cosb  n^m^ sina sinb ) + i ( n^ sina cosb + m^ sinb cosa  n^×m^sina sinb )σ=I cosc + i (k^σ) sinc=ei c (k^σ) ,

which specifies the generic group multiplication, where, manifestly,  cosc=cosa cosb  n^m^ sina sinb , the spherical law of cosines. Given Template:Mvar, then,  k^ = 1sinc ( n^ sina cosb + m^ sinb cosan^×m^ sina sinb ).

Consequently, the composite rotation parameters in this group element (a closed form of the respective BCH expansion in this case) simply amount to[4]

 eick^σ=exp(icsinc(n^sinacosb+m^sinbcosan^×m^sinasinb)σ).

(Of course, when  n^  is parallel to  m^ , so are  k^  and Template:Nobr Script error: No such module "Labelled list hatnote".

Adjoint action

It is also straightforward to likewise work out the adjoint action on the Pauli vector, namely rotation of any angle a along any axis n^: Rn(a)σRn(a)=eia2(n^σ)σeia2(n^σ)=σcos(a)+n^×σsin(a)+n^n^σ(1cos(a)).

Taking the dot product of any unit vector with the above formula generates the expression of any single qubit operator under any rotation. For example, it can be shown that  Ry(π2)σxRy(π2)=x^(y^×σ)=σz.

Script error: No such module "Labelled list hatnote".

Completeness relation

An alternative notation that is commonly used for the Pauli matrices is to write the vector index Template:Mvar in the superscript, and the matrix indices as subscripts, so that the element in row Template:Mvar and column Template:Mvar of the Template:Mvar-th Pauli matrix is Template:Nobr

In this notation, the completeness relation for the Pauli matrices can be written

σαβσγδk=13σαβk σγδk=2 δαδ δβγδαβ δγδ.

Template:Math proof

As noted above, it is common to denote the 2 × 2 unit matrix by Template:Nobr so Template:Nobr The completeness relation can alternatively be expressed as  k=03σαβk σγδk=2 δαδ δβγ.

The fact that any Hermitian complex 2 × 2 matrices can be expressed in terms of the identity matrix and the Pauli matrices also leads to the Bloch sphere representation of 2 × 2 mixed states’ density matrix, (positive semidefinite 2 × 2 matrices with unit trace. This can be seen by first expressing an arbitrary Hermitian matrix as a real linear combination of Template:Math as above, and then imposing the positive-semidefinite and trace Template:Math conditions.

For a pure state, in polar coordinates, a=(sinθcosϕsinθsinϕcosθ), the idempotent density matrix 12(𝟏+aσ)=(cos2(θ2)eiϕsin(θ2)cos(θ2)e+iϕsin(θ2)cos(θ2)sin2(θ2))

acts on the state eigenvector  (cos( θ 2)e+iϕ sin( θ 2))  with eigenvalue +1, hence it acts like a projection operator.

Relation with the permutation operator

Let Template:Math be the transposition (also known as a permutation) between two spins Template:Math and Template:Math living in the tensor product space Template:Nobr

Pjk|σjσk=|σkσj.

This operator can also be written more explicitly as Dirac's spin exchange operator,

 Pjk=12 (σjσk+1).

Its eigenvalues are thereforeTemplate:Efn 1 or −1. It may thus be utilized as an interaction term in a Hamiltonian, splitting the energy eigenvalues of its symmetric versus antisymmetric eigenstates.

SU(2)

The group SU(2) is the Lie group of unitary Template:Math matrices with unit determinant; its Lie algebra is the set of all Template:Math anti-Hermitian matrices with trace 0. Direct calculation, as above, shows that the Lie algebra 𝔰𝔲2 is the three-dimensional real algebra spanned by the set Template:Math. In compact notation,

𝔰𝔲(2)=span{iσ1,iσ2,iσ3}.

As a result, each Template:Math can be seen as an infinitesimal generator of SU(2). The elements of SU(2) are exponentials of linear combinations of these three generators, and multiply as indicated above in discussing the Pauli vector. Although this suffices to generate SU(2), it is not a proper [[Representation theory of SU(2)|representation of Template:Math]], as the Pauli eigenvalues are scaled unconventionally. The conventional normalization is Template:Nobr so that

 𝔰𝔲(2)=span{ i σ1 2, i σ2 2, i σ3 2}.

As SU(2) is a compact group, its Cartan decomposition is trivial.

SO(3)

The Lie algebra  𝔰𝔲(2)  is isomorphic to the Lie algebra 𝔰𝔬(3), which corresponds to the Lie group SO(3), the group of rotations in three-dimensional space. In other words, one can say that the Template:Nobr are a realization (and, in fact, the lowest-dimensional realization) of infinitesimal rotations in three-dimensional space. However, even though  𝔰𝔲(2)  and 𝔰𝔬(3) are isomorphic as Lie algebras, Template:Math and Template:Math are not isomorphic as Lie groups. Template:Math is actually a double cover of Template:Math, meaning that there is a two-to-one group homomorphism from Template:Nobr see relationship between SO(3) and SU(2).

Quaternions

Script error: No such module "Labelled list hatnote". The real linear span of Template:Math is isomorphic to the real algebra of quaternions, , represented by the span of the basis vectors  {𝟏, 𝐢, 𝐣, 𝐤}. The isomorphism from    to this set is given by the following map (notice the reversed signs for the Pauli matrices): 𝟏I,𝐢σ2σ3=iσ1,𝐣σ3σ1=iσ2,𝐤σ1σ2=iσ3.

Alternatively, the isomorphism can be achieved by a map using the Pauli matrices in reversed order,[5]

𝟏I,𝐢iσ3,𝐣iσ2,𝐤iσ1.

As the set of versors U forms a group isomorphic to Template:Math, Template:Mvar gives yet another way of describing Template:Math. The two-to-one homomorphism from Template:Math to Template:Math may be given in terms of the Pauli matrices in this formulation.

Physics

Classical mechanics

Script error: No such module "Labelled list hatnote".

In classical mechanics, Pauli matrices are useful in the context of the Cayley–Klein parameters.[6] The matrix Template:Mvar corresponding to the position x of a point in space is defined in terms of the above Pauli vector matrix,

P=xσ=xσx+yσy+zσz.

Consequently, the transformation matrix Template:Math for rotations about the Template:Mvar-axis through an angle Template:Mvar may be written in terms of Pauli matrices and the unit matrix as[6]

 Qθ=1cosθ2+i σxsinθ2.

Similar expressions follow for general Pauli vector rotations as detailed above.

Quantum mechanics

In quantum mechanics, each Pauli matrix is related to an angular momentum operator that corresponds to an observable describing the spin of a [[spin-1/2|spin Template:1/2]] particle, in each of the three spatial directions. As an immediate consequence of the Cartan decomposition mentioned above, Template:Math are the generators of a projective representation (spin representation) of the rotation group SO(3) acting on non-relativistic particles with spin Template:1/2. The states of the particles are represented as two-component spinors. In the same way, the Pauli matrices are related to the isospin operator.

An interesting property of spin Template:1/2 particles is that they must be rotated by an angle of 4Template:Mvar in order to return to their original configuration. This is due to the two-to-one correspondence between SU(2) and SO(3) mentioned above, and the fact that, although one visualizes spin up/down as the north–south pole on the 2-sphere Template:Nobr they are actually represented by orthogonal vectors in the two-dimensional complex Hilbert space.

For a spin Template:1/2 particle, the spin operator is given by Template:Nobr the fundamental representation of SU(2). By taking Kronecker products of this representation with itself repeatedly, one may construct all higher irreducible representations. That is, the resulting spin operators for higher spin systems in three spatial dimensions, for arbitrarily large j, can be calculated using this spin operator and ladder operators. They can be found in Template:Section link. The analog formula to the above generalization of Euler's formula for Pauli matrices, the group element in terms of spin matrices, is tractable, but less simple.[7]

Also useful in the quantum mechanics of multiparticle systems, the general Pauli group Template:Math is defined to consist of all Template:Mvar-fold tensor products of Pauli matrices.

Relativistic quantum mechanics

In relativistic quantum mechanics, the spinors in four dimensions are Template:Math (or Template:Nobr matrices. Hence the Pauli matrices or the Sigma matrices operating on these spinors have to be Template:Nobr They are defined in terms of Template:Nobr Pauli matrices as

Σk=(σk00σk).

It follows from this definition that the  Σk  matrices have the same algebraic properties as the Template:Mvar matrices.

However, relativistic angular momentum is not a three-vector, but a second order four-tensor. Hence  Σk  needs to be replaced by Template:Math, the generator of Lorentz transformations on spinors. By the antisymmetry of angular momentum, the Template:Math are also antisymmetric. Hence there are only six independent matrices.

The first three are the  ΣkϵjkΣj. The remaining three,  i Σ0kαk , where the [[Dirac equation|Dirac Template:Math matrices]] are defined as

 αk=(0σkσk0).

The relativistic spin matrices Template:Math are written in compact form in terms of commutator of gamma matrices as

 Σμν=i2[γμ,γν].

Quantum information

In quantum information, single-qubit quantum gates are 2 × 2 unitary matrices. The Pauli matrices are some of the most important single-qubit operations. In that context, the Cartan decomposition given above is called the "Z–Y decomposition of a single-qubit gate". Choosing a different Cartan pair gives a similar "X–Y decomposition of a single-qubit gate ".

See also

Remarks

Template:Notelist

Notes

Template:Reflist

References

Template:Refbegin

  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".

Template:Refend

Template:Matrix classes

  1. Script error: No such module "Citation/CS1".
  2. See the spinor map.
  3. Script error: No such module "citation/CS1".
  4. Script error: No such module "citation/CS1". In fact, however, the formula goes back to Olinde Rodrigues (1840), replete with half-angle: Script error: No such module "Citation/CS1".
  5. Script error: No such module "citation/CS1".
  6. a b Script error: No such module "citation/CS1".
  7. Script error: No such module "Citation/CS1".