Isotopes of palladium: Difference between revisions
imported>Tfdavisatsnetnet →References: Added See also section |
imported>Quondum u → Da |
||
| Line 1: | Line 1: | ||
{{Short description|none}} | {{Short description|none}} | ||
{{Infobox palladium isotopes}} | {{Infobox palladium isotopes}} | ||
Natural [[palladium]] ({{sub|46}}Pd) is composed of six stable [[isotope]]s, {{sup|102}}Pd, {{sup|104}}Pd, {{sup|105}}Pd, {{sup|106}}Pd, {{sup|108}}Pd, and {{sup|110}}Pd, although {{sup|102}}Pd and {{sup|110}}Pd are theoretically unstable. The most stable [[radioisotope]]s are {{sup|107}}Pd with a [[half-life]] of 6.5 million years, {{sup|103}}Pd with a half-life of 17 days, and {{sup|100}}Pd with a half-life of 3.63 days. Twenty-three other radioisotopes have been characterized with [[atomic weight]]s ranging from 90.949 | Natural [[palladium]] ({{sub|46}}Pd) is composed of six stable [[isotope]]s, {{sup|102}}Pd, {{sup|104}}Pd, {{sup|105}}Pd, {{sup|106}}Pd, {{sup|108}}Pd, and {{sup|110}}Pd, although {{sup|102}}Pd and {{sup|110}}Pd are theoretically unstable. The most stable [[radioisotope]]s are {{sup|107}}Pd with a [[half-life]] of 6.5 million years, {{sup|103}}Pd with a half-life of 17 days, and {{sup|100}}Pd with a half-life of 3.63 days. Twenty-three other radioisotopes have been characterized with [[atomic weight]]s ranging from {{val|90.949|ul=Da}} ({{sup|91}}Pd) to {{val|128.96|u=Da}} ({{sup|129}}Pd). Most of these have half-lives that are less than 30 minutes except {{sup|101}}Pd (half-life: 8.47 hours), {{sup|109}}Pd (half-life: 13.7 hours), and {{sup|112}}Pd (half-life: 21 hours). | ||
The primary [[decay mode]] before the most abundant stable isotope, {{sup|106}}Pd, is [[electron capture]] and the primary mode after is [[beta decay]]. The primary [[decay product]] before {{sup|106}}Pd is [[rhodium]] and the primary product after is [[silver]]. | The primary [[decay mode]] before the most abundant stable isotope, {{sup|106}}Pd, is [[electron capture]] and the primary mode after is [[beta decay]]. The primary [[decay product]] before {{sup|106}}Pd is [[rhodium]] and the primary product after is [[silver]]. | ||
[[Radiogenic]] {{sup|107}}Ag is a decay product of {{sup|107}}Pd and was first discovered in the [[Santa Clara, Durango|Santa Clara]] meteorite of 1978.<ref>{{cite journal | [[Radiogenic]] {{sup|107}}Ag is a decay product of {{sup|107}}Pd and was first discovered in the [[Santa Clara, Durango|Santa Clara]] meteorite of 1978.<ref> | ||
{{cite journal | |||
| author= W. R. Kelly |author2=G. J. Wasserburg | | author= W. R. Kelly |author2=G. J. Wasserburg | ||
| year = 1978 | | year = 1978 | ||
| Line 13: | Line 14: | ||
| doi =10.1029/GL005i012p01079 | | doi =10.1029/GL005i012p01079 | ||
| bibcode=1978GeoRL...5.1079K | | bibcode=1978GeoRL...5.1079K | ||
|url=https://authors.library.caltech.edu/43037/ | |url=https://authors.library.caltech.edu/43037/ | ||
}}</ref> The discoverers suggest that the coalescence and differentiation of iron-cored small planets may have occurred 10 million years after a [[nucleosynthetic]] event. {{sup|107}}Pd versus Ag correlations observed in bodies, which have clearly been melted since accretion of the [[Solar System]], must reflect the presence of short-lived nuclides in the early Solar System.<ref> | |||
{{cite journal | {{cite journal | ||
| author= J. H. Chen |author2=G. J. Wasserburg | | author= J. H. Chen |author2=G. J. Wasserburg | ||
| Line 22: | Line 23: | ||
| volume = 54| issue = 6 | pages = 1729–1743 | | volume = 54| issue = 6 | pages = 1729–1743 | ||
| doi = 10.1016/0016-7037(90)90404-9 | | doi = 10.1016/0016-7037(90)90404-9 | ||
|bibcode = 1990GeCoA..54.1729C }}</ref> | |bibcode = 1990GeCoA..54.1729C | ||
}}</ref> | |||
== List of isotopes == | == List of isotopes == | ||
| Line 35: | Line 37: | ||
| rowspan=3 style="text-align:right" | 44 | | rowspan=3 style="text-align:right" | 44 | ||
| rowspan=3|89.95737(43)# | | rowspan=3|89.95737(43)# | ||
| rowspan=3|10# ms | | rowspan=3|10# ms{{br}}[> 400 ns] | ||
| [[beta decay|β<sup>+</sup>]]? | | [[beta decay|β<sup>+</sup>]]? | ||
| <sup>90</sup>Rh | | <sup>90</sup>Rh | ||
| Line 613: | Line 615: | ||
| style="text-indent:1em" | <sup>124m</sup>Pd | | style="text-indent:1em" | <sup>124m</sup>Pd | ||
| colspan="3" style="text-indent:2em" | 1000(800)# keV | | colspan="3" style="text-indent:2em" | 1000(800)# keV | ||
| >20 μs | | > 20 μs | ||
| IT | | IT | ||
| <sup>124</sup>Pd | | <sup>124</sup>Pd | ||
| Line 769: | Line 771: | ||
| rowspan=3 style="text-align:right" | 84 | | rowspan=3 style="text-align:right" | 84 | ||
| rowspan=3|129.96486(32)# | | rowspan=3|129.96486(32)# | ||
| rowspan=3|27# ms | | rowspan=3|27# ms{{br}}[> 550 ns] | ||
| β<sup>−</sup> | | β<sup>−</sup> | ||
| <sup>130</sup>Ag | | <sup>130</sup>Ag | ||
| Line 787: | Line 789: | ||
| rowspan=3 style="text-align:right" | 85 | | rowspan=3 style="text-align:right" | 85 | ||
| rowspan=3|130.97237(32)# | | rowspan=3|130.97237(32)# | ||
| rowspan=3|20# ms | | rowspan=3|20# ms{{br}}[> 550 ns] | ||
| β<sup>−</sup> | | β<sup>−</sup> | ||
| <sup>131</sup>Ag | | <sup>131</sup>Ag | ||
| Line 801: | Line 803: | ||
{{Isotopes table/footer}} | {{Isotopes table/footer}} | ||
==Palladium-103== | == Palladium-103 == | ||
'''Palladium-103''' is a [[radioisotope]] of the [[chemical element|element]] [[palladium]] that has uses in [[brachytherapy]] for [[prostate cancer]] and [[uveal melanoma]]. Palladium-103 may be created from [[palladium-102]] or from [[rhodium-103]] using a [[cyclotron]]. Palladium-103 has a [[half-life]] of 16.99<ref name="webelements">{{cite web |last = Winter |first = Mark |title = Isotopes of palladium |work = WebElements |publisher = The University of Sheffield and WebElements Ltd, UK |url = http://www.webelements.com/palladium/isotopes.html| access-date = 4 March 2013}}</ref> days and decays by [[electron capture]] to an excited state of [[rhodium-103]], which undergoes [[internal conversion]] to eject an electron. The resulting electron vacancy leads to emission of [[Characteristic X-ray|characteristic X-rays]] with 20–23 keV of energy. | '''Palladium-103''' is a [[radioisotope]] of the [[chemical element|element]] [[palladium]] that has uses in [[brachytherapy]] for [[prostate cancer]] and [[uveal melanoma]]. Palladium-103 may be created from [[palladium-102]] or from [[rhodium-103]] using a [[cyclotron]]. Palladium-103 has a [[half-life]] of 16.99<ref name="webelements">{{cite web |last = Winter |first = Mark |title = Isotopes of palladium |work = WebElements |publisher = The University of Sheffield and WebElements Ltd, UK |url = http://www.webelements.com/palladium/isotopes.html| access-date = 4 March 2013}}</ref> days and decays by [[electron capture]] to an excited state of [[rhodium-103]], which undergoes [[internal conversion]] to eject an electron. The resulting electron vacancy leads to emission of [[Characteristic X-ray|characteristic X-rays]] with 20–23 keV of energy. | ||
==Palladium-107== | == Palladium-107 == | ||
{{Long-lived fission products}} | {{Long-lived fission products}} | ||
'''Palladium-107''' is the second-longest lived ([[half-life]] of 6.5 million years<ref name="webelements" />) and least radioactive ([[decay energy]] only 33 [[keV]], [[specific activity]] 5{{e|-5}} Ci/g) of the 7 long-lived [[fission products]]. It undergoes pure [[beta decay]] (without [[gamma radiation]]) to [[Silver-107|<sup>107</sup>Ag]], which is stable. | '''Palladium-107''' is the second-longest lived ([[half-life]] of 6.5 million years<ref name="webelements" />) and least radioactive ([[decay energy]] only 33 [[keV]], [[specific activity]] 5{{e|-5}} Ci/g) of the 7 long-lived [[fission products]]. It undergoes pure [[beta decay]] (without [[gamma radiation]]) to [[Silver-107|<sup>107</sup>Ag]], which is stable. | ||
| Line 820: | Line 822: | ||
* [[Isotopes of ruthenium]] | * [[Isotopes of ruthenium]] | ||
==References== | == References == | ||
*[http://www.wipo.int/ipdl/IPDL-CIMAGES/view/pct/getbykey5?KEY=00/08651.000217&ELEMENT_SET=BASICHTML Patent application for Palladium-103 implantable radiation-delivery device]{{Dead link|date=January 2020 |bot=InternetArchiveBot |fix-attempted=yes }} (accessed 12/7/05) | * [http://www.wipo.int/ipdl/IPDL-CIMAGES/view/pct/getbykey5?KEY=00/08651.000217&ELEMENT_SET=BASICHTML Patent application for Palladium-103 implantable radiation-delivery device]{{Dead link|date=January 2020 |bot=InternetArchiveBot |fix-attempted=yes }} (accessed 12/7/05) | ||
{{ | {{reflist}} | ||
* Isotope masses from: | * Isotope masses from: | ||
**{{NUBASE 2003}} | ** {{NUBASE 2003}} | ||
* Isotopic compositions and standard atomic masses from: | * Isotopic compositions and standard atomic masses from: | ||
**{{CIAAW2003}} | ** {{CIAAW2003}} | ||
**{{CIAAW 2005}} | ** {{CIAAW 2005}} | ||
* Half-life, spin, and isomer data selected from the following sources. | * Half-life, spin, and isomer data selected from the following sources. | ||
**{{NUBASE 2003}} | ** {{NUBASE 2003}} | ||
**{{NNDC}} | ** {{NNDC}} | ||
**{{CRC85|chapter=11}} | ** {{CRC85|chapter=11}} | ||
{{Navbox element isotopes}} | {{Navbox element isotopes}} | ||
Latest revision as of 23:06, 21 June 2025
Template:Short description Template:Infobox palladium isotopes Natural palladium (46Pd) is composed of six stable isotopes, 102Pd, 104Pd, 105Pd, 106Pd, 108Pd, and 110Pd, although 102Pd and 110Pd are theoretically unstable. The most stable radioisotopes are 107Pd with a half-life of 6.5 million years, 103Pd with a half-life of 17 days, and 100Pd with a half-life of 3.63 days. Twenty-three other radioisotopes have been characterized with atomic weights ranging from Template:Val (91Pd) to Template:Val (129Pd). Most of these have half-lives that are less than 30 minutes except 101Pd (half-life: 8.47 hours), 109Pd (half-life: 13.7 hours), and 112Pd (half-life: 21 hours).
The primary decay mode before the most abundant stable isotope, 106Pd, is electron capture and the primary mode after is beta decay. The primary decay product before 106Pd is rhodium and the primary product after is silver.
Radiogenic 107Ag is a decay product of 107Pd and was first discovered in the Santa Clara meteorite of 1978.[1] The discoverers suggest that the coalescence and differentiation of iron-cored small planets may have occurred 10 million years after a nucleosynthetic event. 107Pd versus Ag correlations observed in bodies, which have clearly been melted since accretion of the Solar System, must reflect the presence of short-lived nuclides in the early Solar System.[2]
List of isotopes
Template:Isotopes table |-id=Palladium-90 | rowspan=3|90Pd | rowspan=3 style="text-align:right" | 46 | rowspan=3 style="text-align:right" | 44 | rowspan=3|89.95737(43)# | rowspan=3|10# ms
- REDIRECT Template:Break[> 400 ns]
| β+? | 90Rh | rowspan=3|0+ | rowspan=3| | rowspan=3| |- | β+, p? | 89Ru |- | 2p? | 88Ru |-id=Palladium-91 | rowspan=2|91Pd | rowspan=2 style="text-align:right" | 46 | rowspan=2 style="text-align:right" | 45 | rowspan=2|90.95044(45)# | rowspan=2|32(3) ms | β+ (96.9%) | 91Rh | rowspan=2|7/2+# | rowspan=2| | rowspan=2| |- | β+, p (3.1%) | 90Ru |-id=Palladium-92 | rowspan=2|92Pd | rowspan=2 style="text-align:right" | 46 | rowspan=2 style="text-align:right" | 46 | rowspan=2|91.94119(37) | rowspan=2|1.06(3) s | β+ (98.4%) | 92Rh | rowspan=2|0+ | rowspan=2| | rowspan=2| |- | β+, p (1.6%) | 91Ru |-id=Palladium-93 | rowspan=2|93Pd | rowspan=2 style="text-align:right" | 46 | rowspan=2 style="text-align:right" | 47 | rowspan=2|92.93668(40) | rowspan=2|1.17(2) s | β+ (92.6%) | 93Rh | rowspan=2|(9/2+) | rowspan=2| | rowspan=2| |- | β+, p (7.4%) | 92Ru |-id=Palladium-94 | rowspan=2|94Pd | rowspan=2 style="text-align:right" | 46 | rowspan=2 style="text-align:right" | 48 | rowspan=2|93.9290363(46) | rowspan=2|9.1(3) s | β+ (>99.87%) | 94Rh | rowspan=2|0+ | rowspan=2| | rowspan=2| |- | β+, p (<0.13%) | 93Ru |-id=Palladium-94m1 | style="text-indent:1em" | 94m1Pd | colspan="3" style="text-indent:2em" | 4883.1(4) keV | 515(1) ns | IT | 94Pd | (14+) | | |-id=Palladium-94m2 | style="text-indent:1em" | 94m2Pd | colspan="3" style="text-indent:2em" | 7209.8(8) keV | 206(18) ns | IT | 94Pd | (19−) | | |-id=Palladium-95 | rowspan=2|95Pd | rowspan=2 style="text-align:right" | 46 | rowspan=2 style="text-align:right" | 49 | rowspan=2|94.9248885(33) | rowspan=2|7.4(4) s | β+ (99.77%) | 95Rh | rowspan=2|9/2+# | rowspan=2| | rowspan=2| |- | β+, p (0.23%) | 94Ru |-id=Palladium-95m | rowspan=3 style="text-indent:1em" | 95mPd | rowspan=3 colspan="3" style="text-indent:2em" | 1875.13(14) keV | rowspan=3|13.3(2) s | β+ (88%) | 95Rh | rowspan=3|(21/2+) | rowspan=3| | rowspan=3| |- | IT (11%) | 95Pd |- | β+, p (0.71%) | 94Ru |-id=Palladium-96 | 96Pd | style="text-align:right" | 46 | style="text-align:right" | 50 | 95.9182137(45) | 122(2) s | β+ | 96Rh | 0+ | | |-id=Palladium-96m | style="text-indent:1em" | 96mPd | colspan="3" style="text-indent:2em" | 2530.57(23) keV | 1.804(7) μs | IT | 96Pd | 8+# | | |-id=Palladium-97 | 97Pd | style="text-align:right" | 46 | style="text-align:right" | 51 | 96.9164720(52) | 3.10(9) min | β+ | 97Rh | 5/2+# | | |-id=Palladium-98 | 98Pd | style="text-align:right" | 46 | style="text-align:right" | 52 | 97.9126983(51) | 17.7(4) min | β+ | 98Rh | 0+ | | |-id=Palladium-99 | 99Pd | style="text-align:right" | 46 | style="text-align:right" | 53 | 98.9117731(55) | 21.4(2) min | β+ | 99Rh | (5/2)+ | | |-id=Palladium-100 | 100Pd | style="text-align:right" | 46 | style="text-align:right" | 54 | 99.908520(19) | 3.63(9) d | EC | 100Rh | 0+ | | |-id=Palladium-101 | 101Pd | style="text-align:right" | 46 | style="text-align:right" | 55 | 100.9082848(49) | 8.47(6) h | β+ | 101Rh | 5/2+ | | |-id=Palladium-102 | 102Pd | style="text-align:right" | 46 | style="text-align:right" | 56 | 101.90563229(45) | colspan=3 align=center|Observationally Stable[n 1] | 0+ | 0.0102(1) | |- | 103Pd | style="text-align:right" | 46 | style="text-align:right" | 57 | 102.90611107(94) | 16.991(19) d | EC | 103Rh | 5/2+ | | |-id=Palladium-104 | 104Pd | style="text-align:right" | 46 | style="text-align:right" | 58 | 103.9040304(14) | colspan=3 align=center|Stable | 0+ | 0.1114(8) | |-id=Palladium-105 | 105Pd[n 2] | style="text-align:right" | 46 | style="text-align:right" | 59 | 104.9050795(12) | colspan=3 align=center|Stable | 5/2+ | 0.2233(8) | |-id=Palladium-105m | style="text-indent:1em" | 105mPd | colspan="3" style="text-indent:2em" | 489.1(3) keV | 35.5(5) μs | IT | 105Pd | 11/2− | | |-id=Palladium-106 | 106Pd[n 2] | style="text-align:right" | 46 | style="text-align:right" | 60 | 105.9034803(12) | colspan=3 align=center|Stable | 0+ | 0.2733(3) | |- | 107Pd[n 3] | style="text-align:right" | 46 | style="text-align:right" | 61 | 106.9051281(13) | 6.5(3)×106 y | β− | 107Ag | 5/2+ | trace[n 4] | |-id=Palladium-107m1 | style="text-indent:1em" | 107m1Pd | colspan="3" style="text-indent:2em" | 115.74(12) keV | 0.85(10) μs | IT | 107Pd | 1/2+ | | |-id=Palladium-107m2 | style="text-indent:1em" | 107m2Pd | colspan="3" style="text-indent:2em" | 214.6(3) keV | 21.3(5) s | IT | 107Pd | 11/2− | | |-id=Palladium-108 | 108Pd[n 2] | style="text-align:right" | 46 | style="text-align:right" | 62 | 107.9038918(12) | colspan=3 align=center|Stable | 0+ | 0.2646(9) | |-id=Palladium-109 | 109Pd[n 2] | style="text-align:right" | 46 | style="text-align:right" | 63 | 108.9059506(12) | 13.59(12) h | β− | 109Ag | 5/2+ | | |-id=Palladium-109m1 | style="text-indent:1em" | 109m1Pd | colspan="3" style="text-indent:2em" | 113.4000(14) keV | 380(50) ns | IT | 109Pd | 1/2+ | | |-id=Palladium-109m2 | style="text-indent:1em" | 109m2Pd | colspan="3" style="text-indent:2em" | 188.9903(10) keV | 4.703(9) min | IT | 109Pd | 11/2− | | |-id=Palladium-110 | 110Pd[n 2] | style="text-align:right" | 46 | style="text-align:right" | 64 | 109.90517288(66) | colspan=3 align=center|Observationally Stable[n 5] | 0+ | 0.1172(9) | |-id=Palladium-111 | 111Pd | style="text-align:right" | 46 | style="text-align:right" | 65 | 110.90769036(79) | 23.56(9) min | β− | 111Ag | 5/2+ | | |-id=Palladium-111m | rowspan=2 style="text-indent:1em" | 111mPd | rowspan=2 colspan="3" style="text-indent:2em" | 172.18(8) keV | rowspan=2|5.563(13) h | IT (76.8%) | 111Pd | rowspan=2|11/2− | rowspan=2| | rowspan=2| |- | β− (23.2%) | 111Ag |-id=Palladium-112 | 112Pd | style="text-align:right" | 46 | style="text-align:right" | 66 | 111.9073306(70) | 21.04(17) h | β− | 112Ag | 0+ | | |-id=Palladium-113 | 113Pd | style="text-align:right" | 46 | style="text-align:right" | 67 | 112.9102619(75) | 93(5) s | β− | 113Ag | (5/2+) | | |-id=Palladium-113m | style="text-indent:1em" | 113mPd | colspan="3" style="text-indent:2em" | 81.1(3) keV | 0.3(1) s | IT | 113Pd | (9/2−) | | |-id=Palladium-114 | 114Pd | style="text-align:right" | 46 | style="text-align:right" | 68 | 113.9103694(75) | 2.42(6) min | β− | 114Ag | 0+ | | |-id=Palladium-115 | 115Pd | style="text-align:right" | 46 | style="text-align:right" | 69 | 114.9136650(19)[3] | 25(2) s | β− | 115Ag | (1/2)+ | | |-id=Palladium-115m | rowspan=2 style="text-indent:1em" | 115mPd | rowspan=2 colspan="3" style="text-indent:2em" | 86.8(29) keV[3] | rowspan=2|50(3) s | β− (92.0%) | 115Ag | rowspan=2|(7/2−) | rowspan=2| | rowspan=2| |- | IT (8.0%) | 115Pd |-id=Palladium-116 | 116Pd | style="text-align:right" | 46 | style="text-align:right" | 70 | 115.9142979(77) | 11.8(4) s | β− | 116Ag | 0+ | | |-id=Palladium-117 | 117Pd | style="text-align:right" | 46 | style="text-align:right" | 71 | 116.9179556(78) | 4.3(3) s | β− | 117Ag | (3/2+) | | |-id=Palladium-117m | style="text-indent:1em" | 117mPd | colspan="3" style="text-indent:2em" | 203.3(3) keV | 19.1(7) ms | IT | 117Pd | (9/2−) | | |-id=Palladium-118 | 118Pd | style="text-align:right" | 46 | style="text-align:right" | 72 | 117.9190673(27) | 1.9(1) s | β− | 118Ag | 0+ | | |-id=Palladium-119 | rowspan=2|119Pd | rowspan=2 style="text-align:right" | 46 | rowspan=2 style="text-align:right" | 73 | rowspan=2|118.9231238(45)[3] | rowspan=2|0.88(2) s | β− | 119Ag | rowspan=2|1/2+, 3/2+[4] | rowspan=2| | rowspan=2| |- | β−, n? | 118Ag |-id=Palladium-119m | style="text-indent:1em" | 119mPd[3] | colspan="3" style="text-indent:2em" | 199.1(30) keV | 0.85(1) s | IT | 119Pd | (11/2−)[4] | | |-id=Palladium-120 | rowspan=2|120Pd | rowspan=2 style="text-align:right" | 46 | rowspan=2 style="text-align:right" | 74 | rowspan=2|119.9245517(25) | rowspan=2|492(33) ms | β− (>99.3%) | 120Ag | rowspan=2|0+ | rowspan=2| | rowspan=2| |- | β−, n (<0.7%) | 119Ag |-id=Palladium-121 | rowspan=2|121Pd | rowspan=2 style="text-align:right" | 46 | rowspan=2 style="text-align:right" | 75 | rowspan=2|120.9289513(40)[3] | rowspan=2|290(1) ms | β− (>99.2%) | 121Ag | rowspan=2|3/2+# | rowspan=2| | rowspan=2| |- | β−, n (<0.8%) | 120Ag |-id=Palladium-121m1 | style="text-indent:1em" | 121m1Pd | colspan="3" style="text-indent:2em" | 135.5(5) keV | 460(90) ns | IT | 121Pd | 7/2+# | | |-id=Palladium-121m2 | style="text-indent:1em" | 121m2Pd | colspan="3" style="text-indent:2em" | 160(14) keV | 460(90) ns | IT | 121Pd | 11/2−# | | |-id=Palladium-122 | rowspan=2|122Pd | rowspan=2 style="text-align:right" | 46 | rowspan=2 style="text-align:right" | 76 | rowspan=2|121.930632(21) | rowspan=2|193(5) ms | β− | 122Ag | rowspan=2|0+ | rowspan=2| | rowspan=2| |- | β−, n (<2.5%) | 121Ag |-id=Palladium-123 | rowspan=2|123Pd | rowspan=2 style="text-align:right" | 46 | rowspan=2 style="text-align:right" | 77 | rowspan=2|122.93513(85) | rowspan=2|108(1) ms | β− (90%) | 123Ag | rowspan=2|3/2+# | rowspan=2| | rowspan=2| |- | β−, n (10%) | 122Ag |-id=Palladium-123m | rowspan=2 style="text-indent:1em" | 123mPd | rowspan=2 colspan="3" style="text-indent:2em" | 100(50)# keV | rowspan=2|100# ms | β− | 123Ag | rowspan=2|11/2−# | rowspan=2| | rowspan=2| |- | IT? | 123Pd |-id=Palladium-124 | rowspan=2|124Pd | rowspan=2 style="text-align:right" | 46 | rowspan=2 style="text-align:right" | 78 | rowspan=2|123.93731(32)# | rowspan=2|88(15) ms | β− (83%) | 124Ag | rowspan=2|0+ | rowspan=2| | rowspan=2| |- | β−, n (17%) | 123Ag |-id=Palladium-124m | style="text-indent:1em" | 124mPd | colspan="3" style="text-indent:2em" | 1000(800)# keV | > 20 μs | IT | 124Pd | 11/2−# | | |-id=Palladium-125 | rowspan=2|125Pd | rowspan=2 style="text-align:right" | 46 | rowspan=2 style="text-align:right" | 79 | rowspan=2|124.94207(43)# | rowspan=2|60(6) ms | β− (88%) | 125Ag | rowspan=2|3/2+# | rowspan=2| | rowspan=2| |- | β−, n (12%) | 124Ag |-id=Palladium-125m1 | rowspan=2 style="text-indent:1em" | 125m1Pd | rowspan=2 colspan="3" style="text-indent:2em" | 100(50)# keV | rowspan=2|50# ms | β− | 125Ag | rowspan=2|11/2−# | rowspan=2| | rowspan=2| |- | IT? | 125Pd |-id=Palladium-125m2 | style="text-indent:1em" | 125m2Pd | colspan="3" style="text-indent:2em" | 1805.23(18) keV | 144(4) ns | IT | 125Pd | (23/2+) | | |-id=Palladium-126 | rowspan=2|126Pd | rowspan=2 style="text-align:right" | 46 | rowspan=2 style="text-align:right" | 80 | rowspan=2|125.94440(43)# | rowspan=2|48.6(8) ms | β− (78%) | 126Ag | rowspan=2|0+ | rowspan=2| | rowspan=2| |- | β−, n (22%) | 125Ag |-id=Palladium-126m1 | style="text-indent:1em" | 126m1Pd | colspan="3" style="text-indent:2em" | 2023.5(7) keV | 330(40) ns | IT | 126Pd | (5−) | | |-id=Palladium-126m2 | style="text-indent:1em" | 126m2Pd | colspan="3" style="text-indent:2em" | 2109.7(9) keV | 440(30) ns | IT | 126Pd | (7−) | | |-id=Palladium-126m3 | rowspan=2 style="text-indent:1em" | 126m3Pd | rowspan=2 colspan="3" style="text-indent:2em" | 2406.0(10) keV | rowspan=2|23.0(8) ms | β− (72%) | 126Ag | rowspan=2|(10+) | rowspan=2| | rowspan=2| |- | IT (28%) | 126Pd |-id=Palladium-127 | rowspan=3|127Pd | rowspan=3 style="text-align:right" | 46 | rowspan=3 style="text-align:right" | 81 | rowspan=3|126.94931(54)# | rowspan=3|38(2) ms | β− (>81%) | 127Ag | rowspan=3|11/2−# | rowspan=3| | rowspan=3| |- | β−, n (<19%) | 126Ag |- | β−, 2n? | 125Ag |-id=Palladium-127m | style="text-indent:1em" | 127mPd | colspan="3" style="text-indent:2em" | 1717.91(23) keV | 39(6) μs | IT | 127Pd | (19/2+) | | |-id=Palladium-128 | rowspan=2|128Pd | rowspan=2 style="text-align:right" | 46 | rowspan=2 style="text-align:right" | 82 | rowspan=2|127.95235(54)# | rowspan=2|35(3) ms | β− | 128Ag | rowspan=2|0+ | rowspan=2| | rowspan=2| |- | β−, n? | 127Ag |-id=Palladium-128m | style="text-indent:1em" | 128mPd | colspan="3" style="text-indent:2em" | 2151.0(10) keV | 5.8(8) μs | IT | 128Pd | (8+) | | |-id=Palladium-129 | rowspan=3|129Pd | rowspan=3 style="text-align:right" | 46 | rowspan=3 style="text-align:right" | 83 | rowspan=3|128.95933(64)# | rowspan=3|31(7) ms | β− | 129Ag | rowspan=3|7/2−# | rowspan=3| | rowspan=3| |- | β−, n? | 128Ag |- | β−, 2n? | 127Ag |-id=Palladium-130 | rowspan=3|130Pd | rowspan=3 style="text-align:right" | 46 | rowspan=3 style="text-align:right" | 84 | rowspan=3|129.96486(32)# | rowspan=3|27# ms
- REDIRECT Template:Break[> 550 ns]
| β− | 130Ag | rowspan=3|0+ | rowspan=3| | rowspan=3| |- | β−, n? | 129Ag |- | β−, 2n? | 128Ag
|-id=Palladium-131 | rowspan=3|131Pd | rowspan=3 style="text-align:right" | 46 | rowspan=3 style="text-align:right" | 85 | rowspan=3|130.97237(32)# | rowspan=3|20# ms
- REDIRECT Template:Break[> 550 ns]
| β− | 131Ag | rowspan=3|7/2−# | rowspan=3| | rowspan=3| |- | β−, n? | 130Ag |- | β−, 2n? | 129Ag Template:Isotopes table/footer
Palladium-103
Palladium-103 is a radioisotope of the element palladium that has uses in brachytherapy for prostate cancer and uveal melanoma. Palladium-103 may be created from palladium-102 or from rhodium-103 using a cyclotron. Palladium-103 has a half-life of 16.99[5] days and decays by electron capture to an excited state of rhodium-103, which undergoes internal conversion to eject an electron. The resulting electron vacancy leads to emission of characteristic X-rays with 20–23 keV of energy.
Palladium-107
Template:Long-lived fission products Palladium-107 is the second-longest lived (half-life of 6.5 million years[5]) and least radioactive (decay energy only 33 keV, specific activity 5Template:E Ci/g) of the 7 long-lived fission products. It undergoes pure beta decay (without gamma radiation) to 107Ag, which is stable.
Its yield from thermal neutron fission of uranium-235 is 0.14% per fission,[6] only 1/4 that of iodine-129, and only 1/40 those of 99Tc, 93Zr, and 135Cs. Yield from 233U is slightly lower, but yield from 239Pu is much higher, 3.2%.[6] Fast fission or fission of some heavier actinides[which?] will produce palladium-107 at higher yields.
One source[7] estimates that palladium produced from fission contains the isotopes 104Pd (16.9%),105Pd (29.3%), 106Pd (21.3%), 107Pd (17%), 108Pd (11.7%) and 110Pd (3.8%). According to another source, the proportion of 107Pd is 9.2% for palladium from thermal neutron fission of 235U, 11.8% for 233U, and 20.4% for 239Pu (and the 239Pu yield of palladium is about 10 times that of 235U).
Because of this dilution and because 105Pd has 11 times the neutron absorption cross section, 107Pd is not amenable to disposal by nuclear transmutation. However, as a noble metal, palladium is not as mobile in the environment as iodine or technetium.
See also
Daughter products other than palladium
References
- Patent application for Palladium-103 implantable radiation-delivery deviceTemplate:Dead link (accessed 12/7/05)
- Isotope masses from:
- Isotopic compositions and standard atomic masses from:
- Half-life, spin, and isomer data selected from the following sources.
Script error: No such module "Navbox".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b c d e Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
Cite error: <ref> tags exist for a group named "n", but no corresponding <references group="n"/> tag was found