Isotopes of ruthenium: Difference between revisions

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
imported>Tfdavisatsnetnet
References: Added See also section
 
If this must be here ...
 
Line 3: Line 3:
Naturally occurring [[ruthenium]] (<sub>44</sub>Ru) is composed of seven stable [[isotope]]s (of which two [[observationally stable|may in the future be found radioactive]]). Additionally, 27 radioactive isotopes have been discovered. Of these [[radioisotope]]s, the most stable are <sup>106</sup>Ru, with a [[half-life]] of 373.59 days; <sup>103</sup>Ru, with a half-life of 39.26 days and <sup>97</sup>Ru, with a half-life of 2.9 days.
Naturally occurring [[ruthenium]] (<sub>44</sub>Ru) is composed of seven stable [[isotope]]s (of which two [[observationally stable|may in the future be found radioactive]]). Additionally, 27 radioactive isotopes have been discovered. Of these [[radioisotope]]s, the most stable are <sup>106</sup>Ru, with a [[half-life]] of 373.59 days; <sup>103</sup>Ru, with a half-life of 39.26 days and <sup>97</sup>Ru, with a half-life of 2.9 days.


Twenty-four other radioisotopes have been characterized with [[atomic weight]]s ranging from 86.95&nbsp;[[atomic mass unit|u]] (<sup>87</sup>Ru) to 119.95&nbsp;u (<sup>120</sup>Ru). Most of these have half-lives that are less than five minutes, except <sup>94</sup>Ru (half-life: 51.8 minutes), <sup>95</sup>Ru (half-life: 1.643 hours), and <sup>105</sup>Ru (half-life: 4.44 hours).
Twenty-four other radioisotopes have been characterized with [[atomic mass]]es ranging from {{val|86.95|ul=Da}} (<sup>87</sup>Ru) to {{val|119.95|u=Da}} (<sup>120</sup>Ru). Most of these have half-lives that are less than five minutes, except <sup>94</sup>Ru (half-life: 51.8 minutes), <sup>95</sup>Ru (half-life: 1.643 hours), and <sup>105</sup>Ru (half-life: 4.44 hours).


The primary [[decay mode]] before the most abundant isotope, <sup>102</sup>Ru, is [[electron capture]] and the primary mode after is [[beta emission]]. The primary [[decay product]] before <sup>102</sup>Ru is [[technetium]] and the primary product after is [[rhodium]].
The primary [[decay mode]] before the most abundant isotope, <sup>102</sup>Ru, is [[electron capture]] and the primary mode after is [[beta emission]]. The primary [[decay product]] before <sup>102</sup>Ru is [[technetium]] and the primary product after is [[rhodium]].


Because of the very high volatility of [[ruthenium tetroxide]] ({{chem|Ru|O|4}}) ruthenium radioactive isotopes with their relative short half-life are considered as the second most hazardous gaseous isotopes after [[iodine-131]] in case of release by a nuclear accident.<ref name="Ronneau_1995">Ronneau, C., Cara, J., & Rimski-Korsakov, A. (1995). [https://doi.org/10.1016/0265-931X(95)91633-F Oxidation-enhanced emission of ruthenium from nuclear fuel]. Journal of Environmental Radioactivity, 26(1), 63-70.</ref><ref name="Backman_2004">Backman, U., Lipponen, M., Auvinen, A., Jokiniemi, J., & Zilliacus, R. (2004). [https://inis.iaea.org/collection/NCLCollectionStore/_Public/36/031/36031958.pdf Ruthenium behaviour in severe nuclear accident conditions]. Final report (No. NKS–100). Nordisk Kernesikkerhedsforskning.</ref><ref name="Beuzet_2012">Beuzet, E., Lamy, J. S., Perron, H., Simoni, E., & Ducros, G. (2012). [https://www.academia.edu/download/50047444/Ruthenium_release_modelling_in_air_and_s20161101-1709-kv6n0y.pdf Ruthenium release modelling in air and steam atmospheres under severe accident conditions using the MAAP4 code]{{dead link|date=July 2022|bot=medic}}{{cbignore|bot=medic}}. Nuclear Engineering and Design, 246, 157-162.</ref> The two most important isotopes of ruthenium in case of nuclear accident are these with the longest half-life: <sup>103</sup>Ru (39.26 days) and <sup>106</sup>Ru (373.59 days).<ref name="Backman_2004" />
Because of the very high volatility of [[ruthenium tetroxide]] ({{chem|Ru|O|4}}), ruthenium isotopes with relatively short half-life are considered the next most hazardous airborne isotopes, after [[iodine-131]], in case of release by a nuclear accident.<ref name="Ronneau_1995">Ronneau, C., Cara, J., & Rimski-Korsakov, A. (1995). [https://doi.org/10.1016/0265-931X(95)91633-F Oxidation-enhanced emission of ruthenium from nuclear fuel]. Journal of Environmental Radioactivity, 26(1), 63-70.</ref><ref name="Backman_2004">Backman, U., Lipponen, M., Auvinen, A., Jokiniemi, J., & Zilliacus, R. (2004). [https://inis.iaea.org/collection/NCLCollectionStore/_Public/36/031/36031958.pdf Ruthenium behaviour in severe nuclear accident conditions]. Final report (No. NKS–100). Nordisk Kernesikkerhedsforskning.</ref><ref name="Beuzet_2012">Beuzet, E., Lamy, J. S., Perron, H., Simoni, E., & Ducros, G. (2012). [https://www.academia.edu/download/50047444/Ruthenium_release_modelling_in_air_and_s20161101-1709-kv6n0y.pdf Ruthenium release modelling in air and steam atmospheres under severe accident conditions using the MAAP4 code]{{dead link|date=July 2022|bot=medic}}{{cbignore|bot=medic}}. Nuclear Engineering and Design, 246, 157-162.</ref> The two most important isotopes of ruthenium so released are those with the longest half-life: <sup>103</sup>Ru (39.26 days) and <sup>106</sup>Ru (373.59 days).<ref name="Backman_2004" />
[[File:Ruthenium-96.png|thumb|Ruthenium-96]]


== List of isotopes ==
== List of isotopes ==
{{Anchor}}
{{Anchor}}
<!--Please delete anchor(s) from the list above or table below if adding a dedicated isotope section(s).-->
<!--Please delete anchor(s) from the list above or table below if adding a dedicated isotope section(s).-->
{{Isotopes table
{{Isotopes table
|symbol=Ru
|symbol=Ru
Line 24: Line 23:
| style="text-align:right" | 41
| style="text-align:right" | 41
| 84.96712(54)#
| 84.96712(54)#
| 1#&nbsp;ms<br>[>400&nbsp;ns]
| 1#&nbsp;ms{{br}}[>&nbsp;400&nbsp;ns]
|  
|  
|  
|  
Line 35: Line 34:
| style="text-align:right" | 42
| style="text-align:right" | 42
| 85.95731(43)#
| 85.95731(43)#
| 50#&nbsp;ms<br>[>400&nbsp;ns]
| 50#&nbsp;ms{{br}}[>&nbsp;400&nbsp;ns]
|  
|  
|  
|  
Line 46: Line 45:
| style="text-align:right" | 43
| style="text-align:right" | 43
| 86.95091(43)#
| 86.95091(43)#
| 50#&nbsp;ms<br>[>1.5&nbsp;μs]
| 50#&nbsp;ms{{br}}[>&nbsp;1.5&nbsp;μs]
|  
|  
|  
|  
Line 588: Line 587:
| style="text-align:right" | 81
| style="text-align:right" | 81
| 124.96954(32)#
| 124.96954(32)#
| 12#&nbsp;ms<br>[>550&nbsp;ns]
| 12#&nbsp;ms{{br}}[>&nbsp;550&nbsp;ns]
|  
|  
|  
|  
Line 595: Line 594:
|
|
{{Isotopes table/footer}}
{{Isotopes table/footer}}
* In September 2017 an estimated amount of 100 to 300 TBq (0.3 to 1 g) of <sup>106</sup>Ru was released in Russia, probably in the Ural region. It was, after ruling out release from a reentering satellite, concluded that the source is to be found either in nuclear fuel cycle facilities or radioactive source production. In France levels up to 0.036mBq/m<sup>3</sup> of air were measured. It is estimated that over distances of the order of a few tens of kilometres around the location of the release levels may exceed the limits for non-dairy foodstuffs.<ref>[https://www.irsn.fr/EN/newsroom/News/Documents/IRSN_Information-Report_Ruthenium-106-in-europe_20171109.pdf] Detection of ruthenium 106 in France and in Europe, IRSN France (9 Nov 2017)</ref>
 
[[File:Ruthenium-96.png|thumb|Ruthenium-96]]
== Alleged ruthenium-106 leak ==
 
In September 2017 an estimated amount of 100 to 300 TBq (0.3 to 1 g) of <sup>106</sup>Ru was released in Russia, probably in the Ural region. It was, after ruling out release from a reentering satellite, concluded that the source was either in nuclear fuel cycle facilities or radioactive source production. In France levels up to 0.036mBq/m<sup>3</sup> of air were measured. It was estimated that for distances of the order of a few tens of kilometres, contamination levels may have exceeded the limits for non-dairy foodstuffs.<ref>[https://www.irsn.fr/EN/newsroom/News/Documents/IRSN_Information-Report_Ruthenium-106-in-europe_20171109.pdf] Detection of ruthenium 106 in France and in Europe, IRSN France (9 Nov 2017)</ref>


== See also ==
== See also ==
Line 605: Line 606:


== References ==
== References ==
{{Reflist}}
{{reflist}}
* Isotope masses from:
* Isotope masses from:
**{{NUBASE 2003}}
** {{NUBASE 2003}}
* Isotopic compositions and standard atomic masses from:
* Isotopic compositions and standard atomic masses from:
**{{CIAAW2003}}
** {{CIAAW2003}}
**{{CIAAW 2005}}
** {{CIAAW 2005}}
* Half-life, spin, and isomer data selected from the following sources.
* Half-life, spin, and isomer data selected from the following sources.
**{{NUBASE 2003}}
** {{NUBASE 2003}}
**{{NNDC}}
** {{NNDC}}
**{{CRC85|chapter=11}}
** {{CRC85|chapter=11}}


{{Navbox element isotopes}}
{{Navbox element isotopes}}

Latest revision as of 20:59, 28 June 2025

Template:Short description Template:Infobox ruthenium isotopes Naturally occurring ruthenium (44Ru) is composed of seven stable isotopes (of which two may in the future be found radioactive). Additionally, 27 radioactive isotopes have been discovered. Of these radioisotopes, the most stable are 106Ru, with a half-life of 373.59 days; 103Ru, with a half-life of 39.26 days and 97Ru, with a half-life of 2.9 days.

Twenty-four other radioisotopes have been characterized with atomic masses ranging from Template:Val (87Ru) to Template:Val (120Ru). Most of these have half-lives that are less than five minutes, except 94Ru (half-life: 51.8 minutes), 95Ru (half-life: 1.643 hours), and 105Ru (half-life: 4.44 hours).

The primary decay mode before the most abundant isotope, 102Ru, is electron capture and the primary mode after is beta emission. The primary decay product before 102Ru is technetium and the primary product after is rhodium.

Because of the very high volatility of ruthenium tetroxide (Template:Chem), ruthenium isotopes with relatively short half-life are considered the next most hazardous airborne isotopes, after iodine-131, in case of release by a nuclear accident.[1][2][3] The two most important isotopes of ruthenium so released are those with the longest half-life: 103Ru (39.26 days) and 106Ru (373.59 days).[2]

File:Ruthenium-96.png
Ruthenium-96

List of isotopes

Script error: No such module "anchor". Template:Isotopes table |-id=Ruthenium-85 | 85Ru | style="text-align:right" | 44 | style="text-align:right" | 41 | 84.96712(54)# | 1# ms

  1. REDIRECT Template:Break[> 400 ns]

| | | 3/2−# | | |-id=Ruthenium-86 | 86Ru | style="text-align:right" | 44 | style="text-align:right" | 42 | 85.95731(43)# | 50# ms

  1. REDIRECT Template:Break[> 400 ns]

| | | 0+ | | |-id=Ruthenium-87 | 87Ru | style="text-align:right" | 44 | style="text-align:right" | 43 | 86.95091(43)# | 50# ms

  1. REDIRECT Template:Break[> 1.5 μs]

| | | 1/2−# | | |-id=Ruthenium-88 | rowspan=2|88Ru | rowspan=2 style="text-align:right" | 44 | rowspan=2 style="text-align:right" | 44 | rowspan=2|87.94166(32)# | rowspan=2|1.5(3) s | β+ (>96.4%) | 88Tc | rowspan=2|0+ | rowspan=2| | rowspan=2| |- | β+, p (<3.6%) | 87Mo |-id=Ruthenium-89 | rowspan=2|89Ru | rowspan=2 style="text-align:right" | 44 | rowspan=2 style="text-align:right" | 45 | rowspan=2|88.937338(26) | rowspan=2|1.32(3) s | β+ (96.7%) | 89Tc | rowspan=2|(9/2+) | rowspan=2| | rowspan=2| |- | β+, p (3.1%) | 88Mo |-id=Ruthenium-90 | 90Ru | style="text-align:right" | 44 | style="text-align:right" | 46 | 89.9303444(40) | 11.7(9) s | β+ | 90Tc | 0+ | | |-id=Ruthenium-91 | 91Ru | style="text-align:right" | 44 | style="text-align:right" | 47 | 90.9267415(24) | 8.0(4) s | β+ | 91Tc | (9/2+) | | |-id=Ruthenium-91m | rowspan=2 style="text-indent:1em" | 91mRu[n 1] | rowspan=2 colspan="3" style="text-indent:2em" | −340(500) keV | rowspan=2|7.6(8) s | β+ (>99.9%) | 91Tc | rowspan=2|(1/2−) | rowspan=2| | rowspan=2| |- | β+, p (?%) | 90Mo |-id=Ruthenium-92 | 92Ru | style="text-align:right" | 44 | style="text-align:right" | 48 | 91.9202344(29) | 3.65(5) min | β+ | 92Tc | 0+ | | |-id=Ruthenium-92m | style="text-indent:1em" | 92mRu | colspan="3" style="text-indent:2em" | 2833.9(18) keV | 100(8) ns | IT | 92Ru | (8+) | | |-id=Ruthenium-93 | 93Ru | style="text-align:right" | 44 | style="text-align:right" | 49 | 92.9171044(22) | 59.7(6) s | β+ | 93Tc | (9/2)+ | | |-id=Ruthenium-93m1 | rowspan=3 style="text-indent:1em" | 93m1Ru | rowspan=3 colspan="3" style="text-indent:2em" | 734.40(10) keV | rowspan=3|10.8(3) s | β+ (78.0%) | 93Tc | rowspan=3|(1/2)− | rowspan=3| | rowspan=3| |- | IT (22.0%) | 93Ru |- | β+, p (0.027%) | 92Mo |-id=Ruthenium-93m2 | style="text-indent:1em" | 93m2Ru | colspan="3" style="text-indent:2em" | 2082.5(9) keV | 2.30(7) μs | IT | 93Ru | (21/2)+ | | |-id=Ruthenium-94 | 94Ru | style="text-align:right" | 44 | style="text-align:right" | 50 | 93.9113429(34) | 51.8(6) min | β+ | 94Tc | 0+ | | |-id=Ruthenium-94m | style="text-indent:1em" | 94mRu | colspan="3" style="text-indent:2em" | 2644.1(4) keV | 67.5(28) μs | IT | 94Ru | 8+ | | |-id=Ruthenium-95 | 95Ru | style="text-align:right" | 44 | style="text-align:right" | 51 | 94.910404(10) | 1.607(4) h | β+ | 95Tc | 5/2+ | | |-id=Ruthenium-96 | 96Ru | style="text-align:right" | 44 | style="text-align:right" | 52 | 95.90758891(18) | colspan=3 align=center|Observationally Stable[n 2] | 0+ | 0.0554(14) | |-id=Ruthenium-97 | 97Ru | style="text-align:right" | 44 | style="text-align:right" | 53 | 96.9075458(30) | 2.8370(14) d | β+ | 97Tc | 5/2+ | | |-id=Ruthenium-98 | 98Ru | style="text-align:right" | 44 | style="text-align:right" | 54 | 97.9052867(69) | colspan=3 align=center|Stable | 0+ | 0.0187(3) | |-id=Ruthenium-99 | 99Ru | style="text-align:right" | 44 | style="text-align:right" | 55 | 98.90593028(37) | colspan=3 align=center|Stable | 5/2+ | 0.1276(14) | |-id=Ruthenium-100 | 100Ru | style="text-align:right" | 44 | style="text-align:right" | 56 | 99.90421046(37) | colspan=3 align=center|Stable | 0+ | 0.1260(7) | |-id=Ruthenium-101 | 101Ru[n 3] | style="text-align:right" | 44 | style="text-align:right" | 57 | 100.90557309(44) | colspan=3 align=center|Stable | 5/2+ | 0.1706(2) | |-id=Ruthenium-101m | style="text-indent:1em" | 101mRu | colspan="3" style="text-indent:2em" | 527.56(10) keV | 17.5(4) μs | IT | 101Ru | 11/2− | | |-id=Ruthenium-102 | 102Ru[n 3] | style="text-align:right" | 44 | style="text-align:right" | 58 | 101.90434031(45) | colspan=3 align=center|Stable | 0+ | 0.3155(14) | |-id=Ruthenium-103 | 103Ru[n 3] | style="text-align:right" | 44 | style="text-align:right" | 59 | 102.90631485(47) | 39.245(8) d | β | 103Rh | 3/2+ | | |-id=Ruthenium-103m | style="text-indent:1em" | 103mRu | colspan="3" style="text-indent:2em" | 238.2(7) keV | 1.69(7) ms | IT | 103Ru | 11/2− | | |-id=Ruthenium-104 | 104Ru[n 3] | style="text-align:right" | 44 | style="text-align:right" | 60 | 103.9054253(27) | colspan=3 align=center|Observationally Stable[n 4] | 0+ | 0.1862(27) | |-id=Ruthenium-105 | 105Ru[n 3] | style="text-align:right" | 44 | style="text-align:right" | 61 | 104.9077455(27) | 4.439(11) h | β | 105Rh | 3/2+ | | |-id=Ruthenium-105m | style="text-indent:1em" | 105mRu | colspan="3" style="text-indent:2em" | 20.606(14) keV | 340(15) ns | IT | 105Ru | 5/2+ | | |-id=Ruthenium-106 | 106Ru[n 3] | style="text-align:right" | 44 | style="text-align:right" | 62 | 105.9073282(58) | 371.8(18) d | β | 106Rh | 0+ | | |-id=Ruthenium-107 | 107Ru | style="text-align:right" | 44 | style="text-align:right" | 63 | 106.9099698(93) | 3.75(5) min | β | 107Rh | (5/2)+ | | |-id=Ruthenium-108 | 108Ru | style="text-align:right" | 44 | style="text-align:right" | 64 | 107.9101858(93) | 4.55(5) min | β | 108Rh | 0+ | | |-id=Ruthenium-109 | 109Ru | style="text-align:right" | 44 | style="text-align:right" | 65 | 108.9133237(96) | 34.4(2) s | β | 109Rh | (5/2+) | | |-id=Ruthenium-109m | style="text-indent:1em" | 109mRu | colspan="3" style="text-indent:2em" | 96.14(15) keV | 680(30) ns | IT | 109Ru | (5/2−) | | |-id=Ruthenium-110 | 110Ru | style="text-align:right" | 44 | style="text-align:right" | 66 | 109.9140385(96) | 12.04(17) s | β | 110Rh | 0+ | | |-id=Ruthenium-111 | 111Ru | style="text-align:right" | 44 | style="text-align:right" | 67 | 110.917568(10) | 2.12(7) s | β | 111Rh | 5/2+ | | |-id=Ruthenium-112 | 112Ru | style="text-align:right" | 44 | style="text-align:right" | 68 | 111.918807(10) | 1.75(7) s | β | 112Rh | 0+ | | |-id=Ruthenium-113 | 113Ru | style="text-align:right" | 44 | style="text-align:right" | 69 | 112.922847(41) | 0.80(5) s | β | 113Rh | (1/2+) | | |-id=Ruthenium-113m | rowspan=2 style="text-indent:1em" | 113mRu | rowspan=2 colspan="3" style="text-indent:2em" | 131(33) keV | rowspan=2|510(30) ms | β (?%) | 113Rh | rowspan=2|(7/2−) | rowspan=2| | rowspan=2| |- | IT (?%) | 113Ru |-id=Ruthenium-114 | 114Ru | style="text-align:right" | 44 | style="text-align:right" | 70 | 113.9246144(38) | 0.54(3) s | β | 114Rh | 0+ | | |-id=Ruthenium-115 | 115Ru | style="text-align:right" | 44 | style="text-align:right" | 71 | 114.929033(27) | 318(19) ms | β | 115Rh | (1/2+) | | |-id=Ruthenium-115m | rowspan=2 style="text-indent:1em" | 115mRu | rowspan=2 colspan="3" style="text-indent:2em" | 82(6) keV | rowspan=2|76(6) ms | β (?%) | 115Rh | rowspan=2|(7/2−) | rowspan=2| | rowspan=2| |- | IT (?%) | 115Ru |-id=Ruthenium-116 | 116Ru | style="text-align:right" | 44 | style="text-align:right" | 72 | 115.9312192(40) | 204(6) ms | β | 116Rh | 0+ | | |-id=Ruthenium-117 | 117Ru | style="text-align:right" | 44 | style="text-align:right" | 73 | 116.93614(47) | 151(3) ms | β | 117Rh | 3/2+# | | |-id=Ruthenium-117m | style="text-indent:1em" | 117mRu | colspan="3" style="text-indent:2em" | 185.0(4) keV | 2.49(6) μs | IT | 117Ru | 7/2−# | | |-id=Ruthenium-118 | 118Ru | style="text-align:right" | 44 | style="text-align:right" | 74 | 117.93881(22)# | 99(3) ms | β | 118Rh | 0+ | | |-id=Ruthenium-119 | 119Ru | style="text-align:right" | 44 | style="text-align:right" | 75 | 118.94409(32)# | 69.5(20) ms | β | 119Rh | 3/2+# | | |-id=Ruthenium-119m | style="text-indent:1em" | 119mRu | colspan="3" style="text-indent:2em" | 227.1(7) keV | 384(22) ns | IT | 119Ru | | | |-id=Ruthenium-120 | 120Ru | style="text-align:right" | 44 | style="text-align:right" | 76 | 119.94662(43)# | 45(2) ms | β | 120Rh | 0+ | | |-id=Ruthenium-121 | 121Ru | style="text-align:right" | 44 | style="text-align:right" | 77 | 120.95210(43)# | 29(2) ms | β | 121Rh | 3/2+# | | |-id=Ruthenium-122 | 122Ru | style="text-align:right" | 44 | style="text-align:right" | 78 | 121.95515(54)# | 25(1) ms | β | 122Rh | 0+ | | |-id=Ruthenium-123 | 123Ru | style="text-align:right" | 44 | style="text-align:right" | 79 | 122.96076(54)# | 19(2) ms | β | 123Rh | 3/2+# | | |-id=Ruthenium-124 | 124Ru | style="text-align:right" | 44 | style="text-align:right" | 80 | 123.96394(64)# | 15(3) ms | β | 124Rh | 0+ | | |-id=Ruthenium-125 | 125Ru | style="text-align:right" | 44 | style="text-align:right" | 81 | 124.96954(32)# | 12# ms

  1. REDIRECT Template:Break[> 550 ns]

| | | 3/2+# | | Template:Isotopes table/footer

Alleged ruthenium-106 leak

In September 2017 an estimated amount of 100 to 300 TBq (0.3 to 1 g) of 106Ru was released in Russia, probably in the Ural region. It was, after ruling out release from a reentering satellite, concluded that the source was either in nuclear fuel cycle facilities or radioactive source production. In France levels up to 0.036mBq/m3 of air were measured. It was estimated that for distances of the order of a few tens of kilometres, contamination levels may have exceeded the limits for non-dairy foodstuffs.[4]

See also

Daughter products other than ruthenium

References

Template:Reflist

Script error: No such module "Navbox".

  1. Ronneau, C., Cara, J., & Rimski-Korsakov, A. (1995). Oxidation-enhanced emission of ruthenium from nuclear fuel. Journal of Environmental Radioactivity, 26(1), 63-70.
  2. a b Backman, U., Lipponen, M., Auvinen, A., Jokiniemi, J., & Zilliacus, R. (2004). Ruthenium behaviour in severe nuclear accident conditions. Final report (No. NKS–100). Nordisk Kernesikkerhedsforskning.
  3. Beuzet, E., Lamy, J. S., Perron, H., Simoni, E., & Ducros, G. (2012). Ruthenium release modelling in air and steam atmospheres under severe accident conditions using the MAAP4 codeTemplate:Dead linkTemplate:Cbignore. Nuclear Engineering and Design, 246, 157-162.
  4. [1] Detection of ruthenium 106 in France and in Europe, IRSN France (9 Nov 2017)


Cite error: <ref> tags exist for a group named "n", but no corresponding <references group="n"/> tag was found