User:MathsIsFun

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

My Goal

My goal is to make mathematics more accessible and fun for everyone, and a big part of that is to explain mathematics using "easy language", but this requires a balancing act between precision and comprehension.

Let me explain: there is an educational concept called the spiral, which roughly means that a subject comes around again and again, always at a higher level. For example, a young person is taught that multiplication is just repeated addition. But then a year later the subject is revisited and multiplying by negatives is taught, then decimals come along ...

File:Multiply-p2n3.gif
This is an illustration of 2 times -3. Observe that our toddler is (according to him) moving forward two paces at a time, but he does this three times in a negative direction. If he were stepping backwards two paces at a time while facing forwards, that would be -2 times 3. Have a look at [Multiplying by Negatives] for a longer description.

The Website

And that is why I have developed (Math is Fun, or "Maths is Fun" in British English), to be a place where mathematics can be explained in a more "user-friendly" manner.

And like all people who embark on explaining Science to the general public I must at times leave out details which would only confuse, but it can be very hard to know where to draw the line.

So please forgive me, fellow Wikipedians, when I over-simplify! And correct me gently, but do correct me!

Contact Details

Use this Contact Form or leave a message on the Math is Fun Forum

Test Area Stats

χ2=(OE)2E

Test Area Taylor

f(x)=f(a)+f(a)1!(xa)+f(a)2!(xa)2+f(a)3!(xa)3+.

ex=1+x+x22!+x33!+

ex=n=0xnn!

sinx=xx33!+x55!

sinx=n=0(1)n(2n+1)!x2n+1

cosx=1x22!+x44!

cosx=n=0(1)n(2n)!x2n

tanx=x+x33+2x515+ for |x|<π2

tanx=n=1B2n(4)n(14n)(2n)!x2n1 for |x|<π2

11x=1+x+x2+x3+ for |x|<1

11x=n=0xn for |x|<1


ex=n=0xnn!=1+x+x22!+x33!+x44!+x55!+

eix=1+ix+(ix)22!+(ix)33!+(ix)44!+(ix)55!+

eix=1+ixx22!ix33!+x44!+ix55!

eix=(1x22!+x44!)+i(xx33!+x55!)

eix=cosx+isinx

Test Area Scratch

Help:Displaying_a_formula

rxy=nxiyixiyinxi2(xi)2nyi2(yi)2.

f(ta+(1t)b)tf(a)+(1t)f(b)


|A|=a|efhi|b|dfgi|+c|degh|

|A|=a|fghjklnop|b|eghiklmop|+c|efhijlmnp|d|efgijkmno|

Test Area Symbols

Test Area Stats

rxy=i=1n(xix¯)(yiy¯)i=1n(xix¯)2i=1n(yiy¯)2,

Variance: σ2=2062+762+(224)2+362+(94)25=42,436+5,776+50,176+1,296+8,8365=108,5205=21,704

Test Area Sigma

f=15+27+8+5=55

fx=15×1+27×2+8×3+5×4=113

x¯=fxf=15×1+27×2+8×3+5×415+27+8+5=2.05...

k=mncak=ck=mnak

k=mn6k2=6k=mnk2

k=mn(ak+bk)=k=mnak+k=mnbk

k=mn(akbk)=k=mnakk=mnbk

k=mn(k+k2)=k=mnk+k=mnk2


n=14(2n+1)=3+5+7+9=24

i=214($7×4(i1)+$11×(i2)2)

i=214$7×4(i1)+i=214$11×(i2)2

$7×4i=214(i1)+$11×i=214(i2)2

$7×4j=113j+$11k=112k2

$7×4×13×142+$11×12×13×256

$7×4×91+$11×650

$7×364+$11×650

$2548+$7150=$9698

Test Area Partial Sums

k=1n1=n

k=1nc=nc

k=1nk=n(n+1)2

k=1nk2=n(n+1)(2n+1)6

k=1nk3=(n(n+1)2)2

k=1nk3=(k=1nk)2

k=1n(2k1)=n2



k=114k2=14(14+1)(214+1)6=1015

k=0n1(a+kd)=n2(2a+(n1)d)

k=0101(1+k3)=102(21+(101)3)

k=0n1(ark)=a(1rn1r)

k=041(103k)=10(13413)=400

k=010112(12)k=12(1(12)10112)=12(11102412)=111024

k=0641(12k)=1(126412)

n

n=14n

n=14n=1+2+3+4=10

n=14n2=12+22+32+42=30

i=13i(i+1)=12+23+34=20

i=35ii+1=34+45+56

Test Area Binomial

(a+b)n=k=0n(nk)ankbk


(nk)(1n)k=n!k!(nk)!1nk


k=01k!=10!+11!+12!+13!+14!+...=1+1+12+16+124+...




(a+b)3=k=03(3k)a3kbk=(30)a30b0+(31)a31b1+(32)a32b2+(33)a33b3=1a3b0+3a2b1+3a1b2+1a0b3=a3+3a2b+3ab2+b3


(1+1n)n=k=0n(nk)1nk(1n)k=k=0n(nk)(1n)k=k=0nn!k!(nk)!1nk


(x+5)4=k=04(4k)x4k5k=(40)x4050+(41)x4151+(42)x4252+(43)x4353+(44)x4454=1x450+4x351+6x252+4x153+1x054=x4+4x35+6x252+453+54


k=010112(12)k=12(1(12)10112)=12(11102412)=111024=0.9990234375

Test Area Sigma 2

σ=1Ni=1N(xiμ)2

s=1N1i=1N(xix)2


k=0n1(ark)=a(1rn1r)

k=0(ark)=a(11r)

k=0(12(12)k)=12(1112)

k=0(12(12)k)=12(1112)

0.999...=0.9+0.09+0.009+...=0.90.10+0.90.11+0.90.12+...=k=00.90.1k

k=00.9×0.1k=0.9(110.1)=0.9(10.9)=1

Test Area Trig

a2b2a

a2+b2a

asinA=bsinB=csinC

sinAa=sinBb=sinCc

c2=a2+b22abcos(C)

a2=b2+c22bccos(A)

b2=a2+c22accos(B)

tanθ=sinθcosθ

sinθcosθ=Opposite/HypotenuseAdjacent/Hypotenuse=OppositeAdjacent=tanθ

cotθ=cosθsinθ


sinθ2=±1cosθ2

cosθ2=±1+cosθ2

tanθ2=±1cosθ1+cosθ=sinθ1+cosθ=1cosθsinθ=cscθcotθ

cotθ2=±1+cosθ1cosθ=sinθ1cosθ=1+cosθsinθ=cscθ+cotθ

My Test Area Other

c=x2+y2

c=(2)2+32=4+9=13

c=(39)2+(27)2

c=(6)2+(5)2=36+25=61=7.81...


c=(37)2+(5(1))2

c=(10)2+(6)2=100+36=136=11.66...


c=(93)2+(72)2

c=62+52=36+25=61=7.81...


c=(xAxB)2+(yAyB)2

c=(94)2+(28)2+(710)2=25+36+9=70=8.37...


2x25x1x3=2x+1+2x3

12

12×22=22

amn=(an)m

2723=(273)2=32=9

463=(4)63=42=16

amn=amn

an=a1n


233=2

233=2

244=|2|=2


54=625  so  5=6254


abn=anbn

1283=6423=64323=423


abn=anbn

1643=13643=14


a+bnan+bn

abnanbn

an+bnna+b


ann=a

a×a=a

a3×a3×a3=a

an×an×...×ann of them=a

Ellipse a and b

h=(ab)2(a+b)2

p=π(a+b)(1+n=1(0.5n)2hn)

p=π(a+b)n=0(0.5n)2hn

p=π(a+b)(1+14h+164h2+1256h3+...)

Ellipse perimeter, simple formula:

p2πa2+b22

A better approximation by Ramanujan is:

pπ[3(a+b)(3a+b)(a+3b)]

pπ(a+b)(1+3h10+43h)

e=a2b2a

p=2aπ(1i=1(2i)!2(2ii!)4e2i2i1)

p=2aπ[1(12)2e2(1324)2e43(135246)2e65]

p=2aπ[1(12)2e2(1324)2e43(135(2n1)2462n)2e2n2n1]


Ax2+Bxy+Cy2+Dx+Ey+F=0

Ellipse r and s

h=(rs)2(r+s)2

p=π(r+s)(1+n=1(0.5n)2hn)

p=π(r+s)n=0(0.5n)2hn

p=π(r+s)(1+14h+164h2+1256h3+...)

Ellipse perimeter, simple formula:

p2πr2+s22

A better approximation by Ramanujan is:

pπ[3(r+s)(3r+s)(r+3s)]

ε=r2s2r

p=2rπ(1i=1(2i)!2(2ii!)4ε2i2i1)

p=2rπ[1(12)2ε2(1324)2ε43(135246)2ε65]

p=2rπ[1(12)2ε2(1324)2ε43(135(2n1)2462n)2ε2n2n1]


Ax2+Bxy+Cy2+Dx+Ey+F=0

My Test Exponents

x1n=xn

2713=273=3

xmn=xmn

625n=5 6254=5 ann=a


xmn=xmn=(xn)m

xmn=xmn=(xn)m


x23=x23=(x3)2



xmn=x(m×1n)=(xm)1n=xmn

xmn=x(1n×m)=(x1n)m=(xn)m

My Test Area

abf(x)dx

2x2+5x+3=0 x23x=0 5x3=0

limx0sin(x)x=1

1e2

233×33=2×33×3=69

12=24=24=22

34=34=32

x23=x23

1010100

1010101000

n!(nr)!×1r!=n!r!(nr)!

n!r!(nr)!=(nr)

f(k;n,p)=(nk)pk(1p)nk

for k=0,1,2,,n and where

(nk)=n!k!(nk)!

f(3;10,0.5)=(103)0.53(10.5)(103)=(103)0.530.57

(103)=10!3!(103)!=10!3!7!=120

(42)=4!2!(42)!=4!2!2!=43212121=6

f(3;10,0.5)=120×0.530.57=0.1171875

P(n,r)=nPr=nPr=n!(nr)!

C(n,r)=nCr=nCr=(nr)=n!r!(nr)!

P(n,r)=n!(nr)!.

Test Area 2

i×j=k

File:Hexadecimal multiplication table.svg
A hexadecimal multiplication table

nCr=n!(nr)!(r!)

k=110k! = 0.110001000000000000000001000...

0<|xpq|<1qn

A=s(sa)(sb)(sc)

C=cos1(a2+b2c22ab)


φ=12+52=1+52

φ=1+11+11+11+=1.618...

132

132×3+23+2=3+232(2)2=3+27

2x4x

2x4x×2+x2+x=22(2)2(4x)(2+x)=(4x)(4x)(2+x)=12+x

Test Area Comb Perm

nr

n!(nr)!

n!r!(nr)!

(r+n1)!r!(n1)!

(r+n1r)=(r+n1)!r!(n1)!

(r+n1r)=(r+n1n1)=(r+n1)!r!(n1)!

Test Area Sets

f(t)={$50if t6$80if t>6 and t15$80+$5(t15)if t>15

f(x)={x2if x<26if x=210xif x>2 and x6 .

f(x)=|x|={x,if x0x,if x<0 .

h(x)={2,if x1x,if x>1 .

1x 1y x2 y xn yn y1n

ex ln(y) ax loga(y)

sin(x) arcsin(y) sin1(y)

cos(x) arccos(y) cos1(y)

tan(x) arctan(y) tan1(y)

Help:Displaying_a_formula

f:

f:{1,2,3,...}{1,2,3,...}

f:

f:xx2

f(x)=x2

From Set-builder notation

Examples:

n=14(2n+1) -

Test Area Limits

limx1x21x1=2

limx1x21x1=limx1(x1)(x+1)x1=limx1(x+1)

limx1(x+1)=1+1=2

x21x1=(x1)(x+1)x1=x+1

limn(1+1n)n=e

limx10x2=5

limx42x4x

2x4x×2+x2+x=22(x)2(4x)(2+x)=(4x)(4x)(2+x)=12+x

2x4x×2+x2+x

22(x)2(4x)(2+x)

(4x)(4x)(2+x)

12+x

limx42x4x=limx412+x=12+4=14

Test Area Derivatives

2xΔx+Δx2Δx

limΔx02xΔx+Δx2Δx=limΔx02x+Δx

limΔx02x+Δx=2x

limΔx02xΔx+Δx2Δx=limΔx02xΔxΔx=limΔx02x=2x

limΔx03x2Δx+3xΔx2+Δx3Δx=limΔx03x2+3xΔx+Δx2=3x2

f(x) =limΔx0f(x+Δx)f(x)Δx

ΔyΔx=f(x+Δx)f(x)Δx

dydx=f(x+dx)f(x)dx

dydx

=f(x+dx)f(x)dx

=(x+dx)2x2dx

=x2+2xdx+dx2x2dx

=2xdx+dx2dx

=2x+dx

=2x

Test Area Integrals

122xdx=2212=3

0.51cos(x)dx=sin(1)sin(0.5)=0.841...0.479...=0.362...

13cos(x)dx=sin(3)sin(1)=0.141...0.841...=0.700...

01sin(x)dx=cos(1)(cos(0))=0.540...(1)=0.460...


π4π2cos(x)dx