Talk:Double Mersenne number

From Wikipedia, the free encyclopedia
Latest comment: 25 February 2024 by 212.200.181.79 in topic Solved
Jump to navigation Jump to search

Template:WikiProject banner shell

At approximately what time will all Mersenne exponents below 80,000,000 checked for whether they are prime?? (This is just about how far http://mersenne.org/status.htm goes.) 66.245.19.60 22:02, 10 May 2004 (UTC)Reply

This reference might help: http://www.utm.edu/research/primes/notes/faq/NextMersenne.html. Giftlite 23:56, 10 May 2004 (UTC)Reply

Just a Conjecture but...

I believe that MM127, or 2170141183460469231731687303715884105727 - 1, is prime. At approximately 5.12176 × 1037 digits, it may be centuries before I am proven correct or incorrect. Also, I believe that this is the fifth, final, and largest Double Mersenne prime. In other words, I believe that MMn is composite for all n > 7, expect for n = 127. PhiEaglesfan712 20:32, 12 July 2007 (UTC)Reply

How about n = M127???

I don’t think this number is prime, for another similar example of repeated exponents, 2+1=3 is prime, 2^2+1=5 is prime, 2^(2^2)+1=17 is prime, 2^(2^(2^2))+1=65537 is also prime, but 2^(2^(2^(2^2)))+1=2^65536+1 is not prime. For the original sequence, 2^2-1=3 is prime, 2^(2^2-1)-1=7 is prime, 2^(2^(2^2-1)-1)-1=127 is prime, 2^(2^(2^(2^2-1)-1)-1)-1 is also prime, but the next number 2^(2^(2^(2^2-1)-1)-1)-1 may not be prime. These two sequences are similar, and the first four terms of both sequences are all primes, but the fifth (and further) terms are (conjectured) all composite. 61.224.41.36 (talk) 09:46, 23 February 2019 (UTC)Reply

Changed definition

PhiEaglesfan712 has just changed the definition of double Mersenne number [1] and Mersenne number [2]. I think both should be changed back. I suggest to keep comments together at Talk:Mersenne prime#Mersenne number. PrimeHunter 23:52, 14 August 2007 (UTC)Reply

Catalan-Mersenne numbers

I have a source in Slovene that Catalan-Mersenne numbers are also called "Cantor('s) numbers" (and I've made an article with this name - Cantorjevo število, since I've found this name in source), perhaps mainly because Georg Cantor allegedly conjectured that these kind of numbers are all primes. Does anybody perhaps have similar English source for this? --xJaM (talk) 00:55, 19 January 2011 (UTC)Reply

Double Wagstaff Numbers

Let Mn=2n1, Wn=(2n+1)/3, we know that when n = 2, 3, 5, 7, then MMn is a prime, but when n = 13, 17, 19, 31, it's not, and we know that when n = 2, 3, 5, 7, then WWn is a prime, but when n = 11, 13, 17, 19, 23, 31, it's not. I believe that when n>7 (Except of n=43 and n=127), both MMn and WWn are not primes, but WW43 is a prime, and MM127 and WW127 are the largest double Mersenne prime and double Wagstaff prime.(Because 43 is W7 and 127 is M7)

Solved

Conjecture if it is one is solved by many many many people, using divisibility rules and Fibonacci sequences. (And also are conjectures if they are indeed ones such as Collatz conjecture, Twin primes conjecture, and many (or all) others probably) 87.116.177.227 (talk) 18:57, 25 February 2024 (UTC)Reply

@87.116.177.227 i made errors can someone delete all my comments 212.200.181.79 (talk) 20:34, 25 February 2024 (UTC)Reply