Category:Structures on manifolds
Jump to navigation
Jump to search
Template:Sister project There are three main types of structures important on manifolds. The foundational geometric structures are piecewise linear, mostly studied in geometric topology, and smooth manifold structures on a given topological manifold, which are the concern of differential topology as far as classification goes. Building on a smooth structure, there are:
- various G-structures, which relate the tangent bundle to some subgroup G of the general linear group
- structures defined by holonomy conditions.
These can be related, and (for example for Calabi–Yau manifolds) their existence can be predicted using discrete invariants.
Subcategories
This category has the following 2 subcategories, out of 2 total.
C
D
- Differential structures (4 P)
Script error: No such module "anchor".Pages in category "Structures on manifolds"
The following 32 pages are in this category, out of 32 total.