D-dimer: Difference between revisions
imported>Elshad m Or |
imported>Quondum bypassing pointless redirect in pipe |
||
| Line 7: | Line 7: | ||
D-dimer levels are used as a predictive [[biomarker]] for the blood disorder [[disseminated intravascular coagulation]] and in the coagulation disorders associated with [[Coronavirus disease 2019|COVID-19 infection]].<ref name="Asakura" /><ref name=ponti/> A four-fold increase in the protein is an indicator of poor prognosis in people hospitalized with [[COVID-19]].<ref name="Asakura" /><ref name=ponti/><ref>{{cite journal |last1=Velavan |first1=Thirumalaisamy P. |last2=Meyer |first2=Christian G. |title=Mild versus severe COVID-19: laboratory markers |journal=International Journal of Infectious Diseases |date=25 April 2020 |volume=95 |pages=304–307 |doi=10.1016/j.ijid.2020.04.061 |pmc=7194601 |pmid=32344011 |url=https://www.ijidonline.com/article/S1201-9712(20)30277-0/fulltext#%20 |access-date=25 April 2020|doi-access=free }}</ref> | D-dimer levels are used as a predictive [[biomarker]] for the blood disorder [[disseminated intravascular coagulation]] and in the coagulation disorders associated with [[Coronavirus disease 2019|COVID-19 infection]].<ref name="Asakura" /><ref name=ponti/> A four-fold increase in the protein is an indicator of poor prognosis in people hospitalized with [[COVID-19]].<ref name="Asakura" /><ref name=ponti/><ref>{{cite journal |last1=Velavan |first1=Thirumalaisamy P. |last2=Meyer |first2=Christian G. |title=Mild versus severe COVID-19: laboratory markers |journal=International Journal of Infectious Diseases |date=25 April 2020 |volume=95 |pages=304–307 |doi=10.1016/j.ijid.2020.04.061 |pmc=7194601 |pmid=32344011 |url=https://www.ijidonline.com/article/S1201-9712(20)30277-0/fulltext#%20 |access-date=25 April 2020|doi-access=free }}</ref> | ||
==Principles== | == Principles == | ||
[[Image:D-dimer.png|right|framed|'''D-dimer formation.''' Shown are ''[[fibrinogen]]'', with its one ''E'' domain and two ''D'' domains, acted upon in cascade, by the following [[enzyme]]s: ''[[Thrombin]]'', to create a ''mesh of fibrin'' protofibrils; [[Factor XIII]] to ''crosslink the fibrin mesh'' (linking protofibril D domains), the scaffold for [[blood clot|clot]] formation; ''[[Plasmin]]'', whose action in [[fibrinolysis]] produces [[fibrin degradation products]] (''FDPs''), the smallest of which are ''D-dimers'', protein fragments with one E and two crosslinked D domains from an original fibrinogen.<ref name="Asakura" /><ref name=wells/>]] | [[Image:D-dimer.png|right|framed|'''D-dimer formation.''' Shown are ''[[fibrinogen]]'', with its one ''E'' domain and two ''D'' domains, acted upon in cascade, by the following [[enzyme]]s: ''[[Thrombin]]'', to create a ''mesh of fibrin'' protofibrils; [[Factor XIII]] to ''crosslink the fibrin mesh'' (linking protofibril D domains), the scaffold for [[blood clot|clot]] formation; ''[[Plasmin]]'', whose action in [[fibrinolysis]] produces [[fibrin degradation products]] (''FDPs''), the smallest of which are ''D-dimers'', protein fragments with one E and two crosslinked D domains from an original fibrinogen.<ref name="Asakura" /><ref name=wells/>]] | ||
[[Coagulation]], the formation of a blood clot or [[thrombus]], occurs when the proteins of the [[coagulation cascade]] are activated, either by contact with a damaged blood vessel wall and exposure to collagen in the tissue space (intrinsic pathway) or by activation of [[factor VII]] by [[tissue factor|tissue activating factors]] (extrinsic pathway). Both pathways lead to the generation of [[thrombin]], an enzyme that turns the soluble blood protein [[fibrin]]ogen into fibrin, which aggregates into protofibrils. Another thrombin-generated enzyme, [[factor XIII]], then crosslinks the fibrin protofibrils at the D fragment site, leading to the formation of an insoluble gel that serves as a scaffold for blood clot formation.<ref name="Asakura" /> | [[Coagulation]], the formation of a blood clot or [[thrombus]], occurs when the proteins of the [[coagulation cascade]] are activated, either by contact with a damaged blood vessel wall and exposure to collagen in the tissue space (intrinsic pathway) or by activation of [[factor VII]] by [[tissue factor|tissue activating factors]] (extrinsic pathway). Both pathways lead to the generation of [[thrombin]], an enzyme that turns the soluble blood protein [[fibrin]]ogen into fibrin, which aggregates into protofibrils. Another thrombin-generated enzyme, [[factor XIII]], then crosslinks the fibrin protofibrils at the D fragment site, leading to the formation of an insoluble gel that serves as a scaffold for blood clot formation.<ref name="Asakura" /> | ||
The circulating enzyme [[plasmin]], the main enzyme of [[fibrinolysis]], cleaves the fibrin gel in a number of places. The resultant fragments, "high molecular weight polymers", are digested several times more by plasmin to lead to intermediate and then to small polymers ([[fibrin degradation product]]s or FDPs). The cross-link between two D fragments remains intact, however, and these are exposed on the surface when the fibrin fragments are sufficiently digested. The structure of D-dimer is either a 180 [[ | The circulating enzyme [[plasmin]], the main enzyme of [[fibrinolysis]], cleaves the fibrin gel in a number of places. The resultant fragments, "high molecular weight polymers", are digested several times more by plasmin to lead to intermediate and then to small polymers ([[fibrin degradation product]]s or FDPs). The cross-link between two D fragments remains intact, however, and these are exposed on the surface when the fibrin fragments are sufficiently digested. The structure of D-dimer is either a 180 [[Dalton (unit)|kDa]]<ref name="KoganMukharyamova2016">{{cite journal | vauthors = Kogan AE, Mukharyamova KS, Bereznikova AV, Filatov VL, Koshkina EV, Bloshchitsyna MN, Katrukha AG | title = Monoclonal antibodies with equal specificity to D-dimer and high-molecular-weight fibrin degradation products | journal = Blood Coagulation & Fibrinolysis | volume = 27 | issue = 5 | pages = 542–50 | date = July 2016 | pmid = 26656897 | pmc = 4935535 | doi = 10.1097/MBC.0000000000000453 }}</ref> or 195 kDa<ref name="OlsonCunningham2013">{{cite journal | vauthors = Olson JD, Cunningham MT, Higgins RA, Eby CS, Brandt JT | title = D-dimer: simple test, tough problems | journal = Archives of Pathology & Laboratory Medicine | volume = 137 | issue = 8 | pages = 1030–8 | date = August 2013 | pmid = 23899057 | doi = 10.5858/arpa.2012-0296-CP }}</ref> molecule of two D domains, or a 340 kDa<ref name="OlsonCunningham2013"/> molecule of two D domains and one E domain of the original fibrinogen molecule.<ref name="Asakura" /> The [[biological half-life|half-life]] of D-dimer in blood is approximately 6 to 8 hours.<ref name="pmid20213258">{{cite journal | vauthors = Lippi G, Cervellin G, Franchini M, Favaloro EJ | title = Biochemical markers for the diagnosis of venous thromboembolism: the past, present and future | journal = J Thromb Thrombolysis | volume = 30 | issue = 4 | pages = 459–71 | date = November 2010 | pmid = 20213258 | doi = 10.1007/s11239-010-0460-x | s2cid = 23806848 | url = }}</ref> | ||
D-dimers are not normally present in human blood plasma, except when the coagulation system has been activated, for instance, because of the presence of [[thrombosis]] or [[disseminated intravascular coagulation]]. The D-dimer assay depends on the binding of a [[monoclonal antibody]] to a particular [[epitope]] on the D-dimer fragment. Several detection kits are commercially available; all of them rely on a different monoclonal antibody against D-dimer. For some of these, the area of the D-dimer to which the antibody binds is known. The binding of the antibody is then measured quantitatively by one of various laboratory methods.<ref name="Asakura" /> | D-dimers are not normally present in human blood plasma, except when the coagulation system has been activated, for instance, because of the presence of [[thrombosis]] or [[disseminated intravascular coagulation]]. The D-dimer assay depends on the binding of a [[monoclonal antibody]] to a particular [[epitope]] on the D-dimer fragment. Several detection kits are commercially available; all of them rely on a different monoclonal antibody against D-dimer. For some of these, the area of the D-dimer to which the antibody binds is known. The binding of the antibody is then measured quantitatively by one of various laboratory methods.<ref name="Asakura" /> | ||
==Indications== | == Indications == | ||
D-dimer testing is of clinical use when there is a suspicion of [[deep venous thrombosis]] (DVTl), [[pulmonary embolism]] (PE) or [[disseminated intravascular coagulation]] (DIC).<ref name="Asakura" /><ref name=ponti/> | D-dimer testing is of clinical use when there is a suspicion of [[deep venous thrombosis]] (DVTl), [[pulmonary embolism]] (PE) or [[disseminated intravascular coagulation]] (DIC).<ref name="Asakura" /><ref name=ponti/> | ||
| Line 26: | Line 26: | ||
In some hospitals, they are measured by laboratories after a form is completed showing the probability score and only if the probability score is low or intermediate. This reduces the need for unnecessary tests in those who are high-probability.<ref>{{cite journal | vauthors = Rathbun SW, Whitsett TL, Vesely SK, Raskob GE | title = Clinical utility of D-dimer in patients with suspected pulmonary embolism and nondiagnostic lung scans or negative CT findings | journal = Chest | volume = 125 | issue = 3 | pages = 851–5 | date = March 2004 | pmid = 15006941 | pmc = 1215466 | doi = 10.1378/chest.125.3.851 }}</ref> Performing the D-dimer test first can avoid a significant proportion of imaging tests and is less invasive. Since the D-dimer can exclude the need for imaging, [[Specialty (medicine)|specialty]] [[professional organizations]] recommend that physicians use D-dimer testing as an initial diagnostic.<ref name="ACPfive">{{Citation |author1 = American College of Physicians |author1-link = Consumer Reports |others = presented by [[ABIM Foundation]] |title = Five Things Physicians and Patients Should Question |publisher = [[American College of Physicians]] |work = Choosing Wisely |url = http://choosingwisely.org/wp-content/uploads/2012/04/5things_12_factsheet_Amer_College_Phys.pdf |access-date = August 14, 2012 |archive-url = https://web.archive.org/web/20120624075449/http://choosingwisely.org/wp-content/uploads/2012/04/5things_12_factsheet_Amer_College_Phys.pdf |archive-date = June 24, 2012 |url-status = dead }}</ref><ref name="ACEPembolism">{{cite journal | vauthors = Fesmire FM, Brown MD, Espinosa JA, Shih RD, Silvers SM, Wolf SJ, Decker WW | title = Critical issues in the evaluation and management of adult patients presenting to the emergency department with suspected pulmonary embolism | journal = Annals of Emergency Medicine | volume = 57 | issue = 6 | pages = 628–652.e75 | date = June 2011 | pmid = 21621092 | doi = 10.1016/j.annemergmed.2011.01.020 | author8 = American College of Emergency Physicians | doi-access = free }}</ref><ref name="ECSpulemb">{{cite journal | vauthors = Torbicki A, Perrier A, Konstantinides S, Agnelli G, Galiè N, Pruszczyk P, Bengel F, Brady AJ, Ferreira D, Janssens U, Klepetko W, Mayer E, Remy-Jardin M, Bassand JP | display-authors = 6 | title = Guidelines on the diagnosis and management of acute pulmonary embolism: the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC) | journal = European Heart Journal | volume = 29 | issue = 18 | pages = 2276–315 | date = September 2008 | pmid = 18757870 | doi = 10.1093/eurheartj/ehn310 | doi-access = free }}</ref><ref name="AAFPthrombo">{{cite journal | vauthors = Qaseem A, Snow V, Barry P, Hornbake ER, Rodnick JE, Tobolic T, Ireland B, Segal J, Bass E, Weiss KB, Green L, Owens DK | display-authors = 6 | title = Current diagnosis of venous thromboembolism in primary care: a clinical practice guideline from the American Academy of Family Physicians and the American College of Physicians | journal = Annals of Family Medicine | volume = 5 | issue = 1 | pages = 57–62 | year = 2007 | pmid = 17261865 | pmc = 1783928 | doi = 10.1370/afm.667 }}</ref> | In some hospitals, they are measured by laboratories after a form is completed showing the probability score and only if the probability score is low or intermediate. This reduces the need for unnecessary tests in those who are high-probability.<ref>{{cite journal | vauthors = Rathbun SW, Whitsett TL, Vesely SK, Raskob GE | title = Clinical utility of D-dimer in patients with suspected pulmonary embolism and nondiagnostic lung scans or negative CT findings | journal = Chest | volume = 125 | issue = 3 | pages = 851–5 | date = March 2004 | pmid = 15006941 | pmc = 1215466 | doi = 10.1378/chest.125.3.851 }}</ref> Performing the D-dimer test first can avoid a significant proportion of imaging tests and is less invasive. Since the D-dimer can exclude the need for imaging, [[Specialty (medicine)|specialty]] [[professional organizations]] recommend that physicians use D-dimer testing as an initial diagnostic.<ref name="ACPfive">{{Citation |author1 = American College of Physicians |author1-link = Consumer Reports |others = presented by [[ABIM Foundation]] |title = Five Things Physicians and Patients Should Question |publisher = [[American College of Physicians]] |work = Choosing Wisely |url = http://choosingwisely.org/wp-content/uploads/2012/04/5things_12_factsheet_Amer_College_Phys.pdf |access-date = August 14, 2012 |archive-url = https://web.archive.org/web/20120624075449/http://choosingwisely.org/wp-content/uploads/2012/04/5things_12_factsheet_Amer_College_Phys.pdf |archive-date = June 24, 2012 |url-status = dead }}</ref><ref name="ACEPembolism">{{cite journal | vauthors = Fesmire FM, Brown MD, Espinosa JA, Shih RD, Silvers SM, Wolf SJ, Decker WW | title = Critical issues in the evaluation and management of adult patients presenting to the emergency department with suspected pulmonary embolism | journal = Annals of Emergency Medicine | volume = 57 | issue = 6 | pages = 628–652.e75 | date = June 2011 | pmid = 21621092 | doi = 10.1016/j.annemergmed.2011.01.020 | author8 = American College of Emergency Physicians | doi-access = free }}</ref><ref name="ECSpulemb">{{cite journal | vauthors = Torbicki A, Perrier A, Konstantinides S, Agnelli G, Galiè N, Pruszczyk P, Bengel F, Brady AJ, Ferreira D, Janssens U, Klepetko W, Mayer E, Remy-Jardin M, Bassand JP | display-authors = 6 | title = Guidelines on the diagnosis and management of acute pulmonary embolism: the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC) | journal = European Heart Journal | volume = 29 | issue = 18 | pages = 2276–315 | date = September 2008 | pmid = 18757870 | doi = 10.1093/eurheartj/ehn310 | doi-access = free }}</ref><ref name="AAFPthrombo">{{cite journal | vauthors = Qaseem A, Snow V, Barry P, Hornbake ER, Rodnick JE, Tobolic T, Ireland B, Segal J, Bass E, Weiss KB, Green L, Owens DK | display-authors = 6 | title = Current diagnosis of venous thromboembolism in primary care: a clinical practice guideline from the American Academy of Family Physicians and the American College of Physicians | journal = Annals of Family Medicine | volume = 5 | issue = 1 | pages = 57–62 | year = 2007 | pmid = 17261865 | pmc = 1783928 | doi = 10.1370/afm.667 }}</ref> | ||
==Interpretation== | == Interpretation == | ||
===Reference ranges=== | === Reference ranges === | ||
The following are [[reference range]]s for D-dimer:<ref>[http://www.perinatology.com/Reference/Reference%20Ranges/D-Dimer.htm Reference Values During Pregnancy] at perinatology.com. Retrieved October 2014.</ref> | The following are [[reference range]]s for D-dimer:<ref>[http://www.perinatology.com/Reference/Reference%20Ranges/D-Dimer.htm Reference Values During Pregnancy] at perinatology.com. Retrieved October 2014.</ref> | ||
{|class="wikitable" | {|class="wikitable" | ||
| Line 44: | Line 44: | ||
{{Anchor|FEU}}An alternative measurement of D-dimer is in fibrinogen equivalent units (FEU). The molecular weight of the fibrinogen molecule is about twice the size of the D-dimer molecule, and therefore 1.0 mcg/mL FEU is equivalent to 0.5 mcg/mL of d-dimer.<ref>{{cite web|url=http://education.questdiagnostics.com/faq/FAQ149|title=Clinical Education Center|website=Quest Diagnostics}} Document FAQS.149 Version: 3 effective 07/23/2019 to present</ref> | {{Anchor|FEU}}An alternative measurement of D-dimer is in fibrinogen equivalent units (FEU). The molecular weight of the fibrinogen molecule is about twice the size of the D-dimer molecule, and therefore 1.0 mcg/mL FEU is equivalent to 0.5 mcg/mL of d-dimer.<ref>{{cite web|url=http://education.questdiagnostics.com/faq/FAQ149|title=Clinical Education Center|website=Quest Diagnostics}} Document FAQS.149 Version: 3 effective 07/23/2019 to present</ref> | ||
===Thrombotic disease=== | === Thrombotic disease === | ||
Various kits have a 93 to 95% [[Sensitivity and specificity#Sensitivity|sensitivity]] (true positive rate). For hospitalized patients, one study found the [[Sensitivity and specificity#Specificity|specificity]] to be about 50% (related to false positive rate) in the diagnosis of thrombotic disease.<ref>{{cite journal | vauthors = Schrecengost JE, LeGallo RD, Boyd JC, Moons KG, Gonias SL, Rose CE, Bruns DE | title = Comparison of diagnostic accuracies in outpatients and hospitalized patients of D-dimer testing for the evaluation of suspected pulmonary embolism | journal = Clinical Chemistry | volume = 49 | issue = 9 | pages = 1483–90 | date = September 2003 | pmid = 12928229 | doi = 10.1373/49.9.1483 | doi-access = free }}</ref> | Various kits have a 93 to 95% [[Sensitivity and specificity#Sensitivity|sensitivity]] (true positive rate). For hospitalized patients, one study found the [[Sensitivity and specificity#Specificity|specificity]] to be about 50% (related to false positive rate) in the diagnosis of thrombotic disease.<ref>{{cite journal | vauthors = Schrecengost JE, LeGallo RD, Boyd JC, Moons KG, Gonias SL, Rose CE, Bruns DE | title = Comparison of diagnostic accuracies in outpatients and hospitalized patients of D-dimer testing for the evaluation of suspected pulmonary embolism | journal = Clinical Chemistry | volume = 49 | issue = 9 | pages = 1483–90 | date = September 2003 | pmid = 12928229 | doi = 10.1373/49.9.1483 | doi-access = free }}</ref> | ||
* [[False positive]] readings can be due to various causes: [[liver]] disease, high [[rheumatoid factor]], [[inflammation]], [[cancer|malignancy]], [[Physical trauma|trauma]], [[pregnancy]], recent [[surgery]] as well as advanced age.<ref>{{cite journal | vauthors = Kabrhel C, Mark Courtney D, Camargo CA, Plewa MC, Nordenholz KE, Moore CL, Richman PB, Smithline HA, Beam DM, Kline JA | display-authors = 6 | title = Factors associated with positive D-dimer results in patients evaluated for pulmonary embolism | journal = Academic Emergency Medicine | volume = 17 | issue = 6 | pages = 589–97 | date = June 2010 | pmid = 20624138 | pmc = 3538031 | doi = 10.1111/j.1553-2712.2010.00765.x }}</ref> | * [[False positive]] readings can be due to various causes: [[liver]] disease, high [[rheumatoid factor]], [[inflammation]], [[cancer|malignancy]], [[Physical trauma|trauma]], [[pregnancy]], recent [[surgery]] as well as advanced age.<ref>{{cite journal | vauthors = Kabrhel C, Mark Courtney D, Camargo CA, Plewa MC, Nordenholz KE, Moore CL, Richman PB, Smithline HA, Beam DM, Kline JA | display-authors = 6 | title = Factors associated with positive D-dimer results in patients evaluated for pulmonary embolism | journal = Academic Emergency Medicine | volume = 17 | issue = 6 | pages = 589–97 | date = June 2010 | pmid = 20624138 | pmc = 3538031 | doi = 10.1111/j.1553-2712.2010.00765.x }}</ref> | ||
| Line 51: | Line 51: | ||
* Likelihood ratios are derived from sensitivity and specificity to adjust pretest probability. | * Likelihood ratios are derived from sensitivity and specificity to adjust pretest probability. | ||
In interpretation of the D-dimer, for patients over age 50, a value of (patient's age) × 10 μg/L may be abnormal.<ref name="pmid22072293">{{cite journal | vauthors = van Es J, Mos I, Douma R, Erkens P, Durian M, Nizet T, van Houten A, Hofstee H, ten Cate H, Ullmann E, Büller H, Huisman M, Kamphuisen PW | display-authors = 6 | title = The combination of four different clinical decision rules and an age-adjusted D-dimer cut-off increases the number of patients in whom acute pulmonary embolism can safely be excluded | journal = Thrombosis and Haemostasis | volume = 107 | issue = 1 | pages = 167–71 | date = January 2012 | pmid = 22072293 | doi = 10.1160/TH11-08-0587 | s2cid = 4832019 }}</ref><ref name="pmid20354012">{{cite journal | vauthors = Douma RA, le Gal G, Söhne M, Righini M, Kamphuisen PW, Perrier A, Kruip MJ, Bounameaux H, Büller HR, Roy PM | display-authors = 6 | title = Potential of an age adjusted D-dimer cut-off value to improve the exclusion of pulmonary embolism in older patients: a retrospective analysis of three large cohorts | journal = BMJ | volume = 340 | pages = c1475 | date = March 2010 | pmid = 20354012 | pmc = 2847688 | doi = 10.1136/bmj.c1475 }}</ref> | In interpretation of the D-dimer, for patients over age 50, a value of (patient's age) × 10 μg/L may be abnormal.<ref name="pmid22072293">{{cite journal | vauthors = van Es J, Mos I, Douma R, Erkens P, Durian M, Nizet T, van Houten A, Hofstee H, ten Cate H, Ullmann E, Büller H, Huisman M, Kamphuisen PW | display-authors = 6 | title = The combination of four different clinical decision rules and an age-adjusted D-dimer cut-off increases the number of patients in whom acute pulmonary embolism can safely be excluded | journal = Thrombosis and Haemostasis | volume = 107 | issue = 1 | pages = 167–71 | date = January 2012 | pmid = 22072293 | doi = 10.1160/TH11-08-0587 | s2cid = 4832019 | hdl = 1765/74645 | hdl-access = free }}</ref><ref name="pmid20354012">{{cite journal | vauthors = Douma RA, le Gal G, Söhne M, Righini M, Kamphuisen PW, Perrier A, Kruip MJ, Bounameaux H, Büller HR, Roy PM | display-authors = 6 | title = Potential of an age adjusted D-dimer cut-off value to improve the exclusion of pulmonary embolism in older patients: a retrospective analysis of three large cohorts | journal = BMJ | volume = 340 | pages = c1475 | date = March 2010 | pmid = 20354012 | pmc = 2847688 | doi = 10.1136/bmj.c1475 }}</ref> | ||
==History== | == History == | ||
D-dimer was originally identified, described and named in the 1970s ([https://www.sciencedirect.com/sdfe/pdf/download/eid/1-s2.0-026894999390039X/first-page-pdf Fibrinolysis, Dr P J Gaffney]) and found its diagnostic application in the 1990s.<ref name="Asakura" /><ref name=wells/> | D-dimer was originally identified, described and named in the 1970s ([https://www.sciencedirect.com/sdfe/pdf/download/eid/1-s2.0-026894999390039X/first-page-pdf Fibrinolysis, Dr P J Gaffney]) and found its diagnostic application in the 1990s.<ref name="Asakura" /><ref name=wells/> | ||
Latest revision as of 17:17, 10 June 2025
D-dimer (or D dimer) is a dimer that is a fibrin degradation product (FDP), a small protein fragment present in the blood after a blood clot is degraded by fibrinolysis. It is so named because it contains two D fragments of the fibrin protein joined by a cross-link, hence forming a protein dimer.[1]
D-dimer concentration may be determined by a blood test to help diagnose thrombosis.[2] Since its introduction in the 1990s, it has become an important test performed in people with suspected thrombotic disorders, such as venous thromboembolism.[2][3] While a negative result practically rules out thrombosis, a positive result can indicate thrombosis but does not exclude other potential causes.[3] Its main use, therefore, is to exclude thromboembolic disease where the probability is low.[1][2]
D-dimer levels are used as a predictive biomarker for the blood disorder disseminated intravascular coagulation and in the coagulation disorders associated with COVID-19 infection.[1][3] A four-fold increase in the protein is an indicator of poor prognosis in people hospitalized with COVID-19.[1][3][4]
Principles
Coagulation, the formation of a blood clot or thrombus, occurs when the proteins of the coagulation cascade are activated, either by contact with a damaged blood vessel wall and exposure to collagen in the tissue space (intrinsic pathway) or by activation of factor VII by tissue activating factors (extrinsic pathway). Both pathways lead to the generation of thrombin, an enzyme that turns the soluble blood protein fibrinogen into fibrin, which aggregates into protofibrils. Another thrombin-generated enzyme, factor XIII, then crosslinks the fibrin protofibrils at the D fragment site, leading to the formation of an insoluble gel that serves as a scaffold for blood clot formation.[1]
The circulating enzyme plasmin, the main enzyme of fibrinolysis, cleaves the fibrin gel in a number of places. The resultant fragments, "high molecular weight polymers", are digested several times more by plasmin to lead to intermediate and then to small polymers (fibrin degradation products or FDPs). The cross-link between two D fragments remains intact, however, and these are exposed on the surface when the fibrin fragments are sufficiently digested. The structure of D-dimer is either a 180 kDa[6] or 195 kDa[7] molecule of two D domains, or a 340 kDa[7] molecule of two D domains and one E domain of the original fibrinogen molecule.[1] The half-life of D-dimer in blood is approximately 6 to 8 hours.[8]
D-dimers are not normally present in human blood plasma, except when the coagulation system has been activated, for instance, because of the presence of thrombosis or disseminated intravascular coagulation. The D-dimer assay depends on the binding of a monoclonal antibody to a particular epitope on the D-dimer fragment. Several detection kits are commercially available; all of them rely on a different monoclonal antibody against D-dimer. For some of these, the area of the D-dimer to which the antibody binds is known. The binding of the antibody is then measured quantitatively by one of various laboratory methods.[1]
Indications
D-dimer testing is of clinical use when there is a suspicion of deep venous thrombosis (DVTl), pulmonary embolism (PE) or disseminated intravascular coagulation (DIC).[1][3]
For DVT and PE, there are possible various scoring systems that are used to determine the a priori clinical probability of these diseases; the best-known is the Wells score.[5]
- For a high score, or pretest probability, a D-dimer will make little difference and anticoagulant therapy will be initiated regardless of test results, and additional testing for DVT or pulmonary embolism may be performed.
- For a moderate or low score, or pretest probability:Script error: No such module "Unsubst".
- A negative D-dimer test will virtually rule out thromboembolism:[5] the degree to which the D-dimer reduces the probability of thrombotic disease is dependent on the test properties of the specific test used in the clinical setting: most available D-dimer tests with a negative result will reduce the probability of thromboembolic disease to less than 1% if the pretest probability is less than 15-20%. Chest computed tomography (CT angiography) should not be used to evaluate pulmonary embolism for persons with negative results of a D-dimer assay.[9] A low pretest probability is also valuable in ruling out PE.[10]
- If the D-dimer reads high, then further testing (ultrasound of the leg veins or lung scintigraphy or CT scanning) is required to confirm the presence of thrombus. Anticoagulant therapy may be started at this point or withheld until further tests confirm the diagnosis, depending on the clinical situation.
In some hospitals, they are measured by laboratories after a form is completed showing the probability score and only if the probability score is low or intermediate. This reduces the need for unnecessary tests in those who are high-probability.[11] Performing the D-dimer test first can avoid a significant proportion of imaging tests and is less invasive. Since the D-dimer can exclude the need for imaging, specialty professional organizations recommend that physicians use D-dimer testing as an initial diagnostic.[12][13][14][15]
Interpretation
Reference ranges
The following are reference ranges for D-dimer:[16]
| Units | Nonpregnant adult |
First trimester | Second trimester | Third trimester |
|---|---|---|---|---|
| mg/L or μg/mL | < 0.5 | 0.05 - 0.95 | 0.32 - 1.29 | 0.13 -1.7 |
| μg/L or ng/mL | < 500 | 50 - 950 | 320 - 1290 | 130 - 1700 |
| nmol/L | < 2.7 | 0.3 - 5.2 | 1.8 - 7.1 | 0.7 - 9.3 |
D-dimer increases with age. It has therefore been suggested to use a cutoff equal to patient’s age in years × 10 μg/L (or x 0.056 nmol/L) for patients aged over 50 years for the suspicion of venous thromboembolism (VTE), as it decreases the false positive rate without substantially increasing the false negative rate.[17][18]
Script error: No such module "anchor".An alternative measurement of D-dimer is in fibrinogen equivalent units (FEU). The molecular weight of the fibrinogen molecule is about twice the size of the D-dimer molecule, and therefore 1.0 mcg/mL FEU is equivalent to 0.5 mcg/mL of d-dimer.[19]
Thrombotic disease
Various kits have a 93 to 95% sensitivity (true positive rate). For hospitalized patients, one study found the specificity to be about 50% (related to false positive rate) in the diagnosis of thrombotic disease.[20]
- False positive readings can be due to various causes: liver disease, high rheumatoid factor, inflammation, malignancy, trauma, pregnancy, recent surgery as well as advanced age.[21]
- False negative readings can occur if the sample is taken either too early after thrombus formation or if testing is delayed for several days. Additionally, the presence of anti-coagulation can render the test negative because it prevents thrombus extension. The anti-coagulation medications dabigatran and rivaroxaban decrease D-dimer levels but do not interfere with the D-dimer assay.[22]
- False values may be obtained if the specimen collection tube is not sufficiently filled (false low value if underfilled and false high value if overfilled). This is due to the dilutional effect of the anticoagulant (the blood must be collected in a 9:1 blood to anticoagulant ratio).
- Likelihood ratios are derived from sensitivity and specificity to adjust pretest probability.
In interpretation of the D-dimer, for patients over age 50, a value of (patient's age) × 10 μg/L may be abnormal.[23][24]
History
D-dimer was originally identified, described and named in the 1970s (Fibrinolysis, Dr P J Gaffney) and found its diagnostic application in the 1990s.[1][5]
References
External links
- D-dimer - Lab Tests Online
Template:Coagulation cascade Template:Myeloid blood tests
- ↑ a b c d e f g h i j Script error: No such module "Citation/CS1".
- ↑ a b c Script error: No such module "Citation/CS1".
- ↑ a b c d e Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b c d Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1"..
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Reference Values During Pregnancy at perinatology.com. Retrieved October 2014.
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1". Document FAQS.149 Version: 3 effective 07/23/2019 to present
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".