Toeplitz matrix: Difference between revisions
imported>Citation bot Add: pages, issue, volume, date, journal, author-link1, isbn, arxiv, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Matrices (mathematics) | #UCB_Category 228/234 |
imported>Headbomb m clean up, removed: ® |
||
| Line 44: | Line 44: | ||
* Toeplitz matrices are also closely connected with [[Fourier series]], because the [[multiplication operator]] by a [[trigonometric polynomial]], [[compression (functional analysis)|compressed]] to a finite-dimensional space, can be represented by such a matrix. Similarly, one can represent linear convolution as multiplication by a Toeplitz matrix. | * Toeplitz matrices are also closely connected with [[Fourier series]], because the [[multiplication operator]] by a [[trigonometric polynomial]], [[compression (functional analysis)|compressed]] to a finite-dimensional space, can be represented by such a matrix. Similarly, one can represent linear convolution as multiplication by a Toeplitz matrix. | ||
* Toeplitz matrices commute [[asymptotic analysis|asymptotically]]. This means they [[Diagonalizable matrix|diagonalize]] in the same [[basis (linear algebra)|basis]] when the row and column dimension tends to infinity. | * Toeplitz matrices commute [[asymptotic analysis|asymptotically]]. This means they [[Diagonalizable matrix|diagonalize]] in the same [[basis (linear algebra)|basis]] when the row and column dimension tends to infinity. | ||
* For symmetric Toeplitz matrices, there is the decomposition | * For symmetric Toeplitz matrices, there is the decomposition | ||
| Line 151: | Line 150: | ||
*{{citation | first1= O. | last1= Goldreich | first2= A. | last2= Tal | author1-link= Oded Goldreich | title= Matrix rigidity of random Toeplitz matrices | journal= Computational Complexity | year= 2018 | volume= 27 | issue= 2 | pages= 305–350 | doi= 10.1007/s00037-016-0144-9 | s2cid= 253641700 }} | *{{citation | first1= O. | last1= Goldreich | first2= A. | last2= Tal | author1-link= Oded Goldreich | title= Matrix rigidity of random Toeplitz matrices | journal= Computational Complexity | year= 2018 | volume= 27 | issue= 2 | pages= 305–350 | doi= 10.1007/s00037-016-0144-9 | s2cid= 253641700 }} | ||
*{{citation |author-link1=Gene H. Golub |last1=Golub |first1=G. H. |author2-link=Charles F. Van Loan |last2=van Loan |first2=C. F. |date=1996 |title=Matrix Computations |publisher=[[Johns Hopkins University Press]] |at=§4.7—Toeplitz and Related Systems |isbn=0-8018-5413-X |oclc=34515797 }} | *{{citation |author-link1=Gene H. Golub |last1=Golub |first1=G. H. |author2-link=Charles F. Van Loan |last2=van Loan |first2=C. F. |date=1996 |title=Matrix Computations |publisher=[[Johns Hopkins University Press]] |at=§4.7—Toeplitz and Related Systems |isbn=0-8018-5413-X |oclc=34515797 }} | ||
*{{citation |last=Gray |first=R. M. |url=http://ee.stanford.edu/~gray/toeplitz.pdf |title=Toeplitz and Circulant Matrices: A Review |journal=Foundations and | *{{citation |last=Gray |first=R. M. |url=http://ee.stanford.edu/~gray/toeplitz.pdf |title=Toeplitz and Circulant Matrices: A Review |journal=Foundations and Trends in Communications and Information Theory |date=2005 |volume=2 |issue=3 |pages=155–239 |publisher=Now Publishers |doi=10.1561/0100000006}} | ||
*{{citation | last1 =Noor | first1 = F. | last2= Morgera | first2= S. D. | year = 1992 | title = Construction of a Hermitian Toeplitz matrix from an arbitrary set of eigenvalues | journal = [[IEEE Transactions on Signal Processing]] | volume = 40 | issue=8 | pages= 2093–4 | doi = 10.1109/78.149978 | bibcode= 1992ITSP...40.2093N }} | *{{citation | last1 =Noor | first1 = F. | last2= Morgera | first2= S. D. | year = 1992 | title = Construction of a Hermitian Toeplitz matrix from an arbitrary set of eigenvalues | journal = [[IEEE Transactions on Signal Processing]] | volume = 40 | issue=8 | pages= 2093–4 | doi = 10.1109/78.149978 | bibcode= 1992ITSP...40.2093N }} | ||
*{{citation | title=Structured Matrices and Polynomials: unified superfast algorithms | first=Victor Y. | last=Pan | author-link=Victor Pan | publisher=[[Birkhäuser]] | year=2001 | isbn=978-0817642402 }} | *{{citation | title=Structured Matrices and Polynomials: unified superfast algorithms | first=Victor Y. | last=Pan | author-link=Victor Pan | publisher=[[Birkhäuser]] | year=2001 | isbn=978-0817642402 }} | ||
Latest revision as of 09:17, 25 June 2025
Template:Short description In linear algebra, a Toeplitz matrix or diagonal-constant matrix, named after Otto Toeplitz, is a matrix in which each descending diagonal from left to right is constant. For instance, the following matrix is a Toeplitz matrix:
Any matrix of the form
is a Toeplitz matrix. If the element of is denoted then we have
A Toeplitz matrix is not necessarily square.
Solving a Toeplitz system
A matrix equation of the form
is called a Toeplitz system if is a Toeplitz matrix. If is an Toeplitz matrix, then the system has at most only unique values, rather than . We might therefore expect that the solution of a Toeplitz system would be easier, and indeed that is the case.
Toeplitz systems can be solved by algorithms such as the Schur algorithm or the Levinson algorithm in time.[1][2] Variants of the latter have been shown to be weakly stable (i.e. they exhibit numerical stability for well-conditioned linear systems).[3] The algorithms can also be used to find the determinant of a Toeplitz matrix in time.[4]
A Toeplitz matrix can also be decomposed (i.e. factored) in time.[5] The Bareiss algorithm for an LU decomposition is stable.[6] An LU decomposition gives a quick method for solving a Toeplitz system, and also for computing the determinant.
Properties
- An Toeplitz matrix may be defined as a matrix where , for constants . The set of Toeplitz matrices is a subspace of the vector space of matrices (under matrix addition and scalar multiplication).
- Two Toeplitz matrices may be added in time (by storing only one value of each diagonal) and multiplied in time.
- Toeplitz matrices are persymmetric. Symmetric Toeplitz matrices are both centrosymmetric and bisymmetric.
- Toeplitz matrices are also closely connected with Fourier series, because the multiplication operator by a trigonometric polynomial, compressed to a finite-dimensional space, can be represented by such a matrix. Similarly, one can represent linear convolution as multiplication by a Toeplitz matrix.
- Toeplitz matrices commute asymptotically. This means they diagonalize in the same basis when the row and column dimension tends to infinity.
- For symmetric Toeplitz matrices, there is the decomposition
- where is the lower triangular part of .
- The inverse of a nonsingular symmetric Toeplitz matrix has the representation
- where and are lower triangular Toeplitz matrices and is a strictly lower triangular matrix.[7]
Discrete convolution
The convolution operation can be constructed as a matrix multiplication, where one of the inputs is converted into a Toeplitz matrix. For example, the convolution of and can be formulated as:
This approach can be extended to compute autocorrelation, cross-correlation, moving average etc.
Infinite Toeplitz matrix
Script error: No such module "Labelled list hatnote". A bi-infinite Toeplitz matrix (i.e. entries indexed by ) induces a linear operator on .
The induced operator is bounded if and only if the coefficients of the Toeplitz matrix are the Fourier coefficients of some essentially bounded function .
In such cases, is called the symbol of the Toeplitz matrix , and the spectral norm of the Toeplitz matrix coincides with the norm of its symbol. The proof can be found as Theorem 1.1 of Böttcher and Grudsky.[8]
See also
- Circulant matrix, a square Toeplitz matrix with the additional property that
- Hankel matrix, an "upside down" (i.e., row-reversed) Toeplitz matrix
- Template:Annotated link
- Template:Annotated link
Notes
References
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
Further reading
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
Template:Matrix classes Template:Authority control
- ↑ Script error: No such module "Footnotes".
- ↑ Script error: No such module "Footnotes".
- ↑ Script error: No such module "Footnotes".
- ↑ Script error: No such module "Footnotes".
- ↑ Script error: No such module "Footnotes".
- ↑ Script error: No such module "Footnotes".
- ↑ Script error: No such module "Footnotes".
- ↑ Script error: No such module "Footnotes".