Meissel–Mertens constant: Difference between revisions

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
imported>OAbot
m Open access bot: url-access updated in citation with #oabot.
 
imported>Headbomb
ce
 
Line 37: Line 37:
* {{Citation|first1=Peter|last1=Lindqvist|first2=Jaak|last2=Peetre|url=https://citeseerx.ist.psu.edu/document?repid=rep1&doi=0ff00f98eb25cbd076cf7a18f85ae51e4b95f618|title=On the remainder in a series of Mertens|year=2007|s2cid=18358425}}
* {{Citation|first1=Peter|last1=Lindqvist|first2=Jaak|last2=Peetre|url=https://citeseerx.ist.psu.edu/document?repid=rep1&doi=0ff00f98eb25cbd076cf7a18f85ae51e4b95f618|title=On the remainder in a series of Mertens|year=2007|s2cid=18358425}}
* {{cite journal|first1=Ernst|last1=Meissel|title=Ueber die Bestimmung der Primzahlenmenge innerhalb gegebener Grenzen|year=1870|journal=Mathematische Annalen|volume=2|number=4|pages=636-642|url=https://eudml.org/doc/156468|doi=10.1007/BF01444045}}
* {{cite journal|first1=Ernst|last1=Meissel|title=Ueber die Bestimmung der Primzahlenmenge innerhalb gegebener Grenzen|year=1870|journal=Mathematische Annalen|volume=2|number=4|pages=636-642|url=https://eudml.org/doc/156468|doi=10.1007/BF01444045}}
* {{cite journal|first1=Franz|last1=Mertens|title=Ein Beitrag zur analytischen Zahlentheorie|journal=J. reine angew. Mathem. |year=1874|volume=78|pages=46-62|doi=10.1515/crll.1874.78.46|url=https://eudml.org/doc/148244|url-access=subscription}}
* {{cite journal|first1=Franz|last1=Mertens|title=Ein Beitrag zur analytischen Zahlentheorie|journal=J. reine angew. Math. |year=1874|volume=78|pages=46-62|doi=10.1515/crll.1874.78.46|url=https://eudml.org/doc/148244|url-access=subscription}}


{{DEFAULTSORT:Meissel-Mertens constant}}
{{DEFAULTSORT:Meissel-Mertens constant}}
[[Category:Mathematical constants]]
[[Category:Mathematical constants]]

Latest revision as of 13:07, 20 June 2025

File:Meissel–Mertens constant definition.svg
In the limit, the sum of the reciprocals of the primes < n and the function ln(ln n) are separated by a constant, the Meissel–Mertens constant (labelled M above).

The Meissel–Mertens constant (named after Ernst Meissel and Franz Mertens), also referred to as the Mertens constant, Kronecker's constant (after Leopold Kronecker), Hadamard–de la Vallée-Poussin constant (after Jacques Hadamard and Charles Jean de la Vallée-Poussin), or the prime reciprocal constant, is a mathematical constant in number theory, defined as the limiting difference between the harmonic series summed only over the primes and the natural logarithm of the natural logarithm:

M=limn(p primepn1pln(lnn))=γ+p[ln(11p)+1p].

Here γ is the Euler–Mascheroni constant, which has an analogous definition involving a sum over all integers (not just the primes).

File:Primes harmonic.png
The plot of the prime harmonic sum up to n=215,216,,2467.04×1013 and the Merten's approximation to it. The original of this figure has y axis of the length 8 cm and spans the interval (2.5, 3.8), so if the n axis would be plotted in the linear scale instead of logarithmic, then it should be 5.33(3)×109 km long — that is the size of the Solar System.

The value of M is approximately

M ≈ 0.2614972128476427837554268386086958590516... (sequence A077761 in the OEIS).

Mertens' second theorem establishes that the limit exists.

The fact that there are two logarithms (log of a log) in the limit for the Meissel–Mertens constant may be thought of as a consequence of the combination of the prime number theorem and the limit of the Euler–Mascheroni constant.

In popular culture

The Meissel-Mertens constant was used by Google when bidding in the Nortel patent auction. Google posted three bids based on mathematical numbers: $1,902,160,540 (Brun's constant), $2,614,972,128 (Meissel–Mertens constant), and $3.14159 billion (π).[1]

See also

References

Template:Reflist

External links

  • Script error: No such module "Template wrapper".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "Citation/CS1".
  • Script error: No such module "Citation/CS1".
  1. Script error: No such module "citation/CS1".