Cold seep: Difference between revisions
imported>OAbot m Open access bot: url-access updated in citation with #oabot. |
imported>Polunbus m →Stability: fix convert syntax, no change to article appearance |
||
| Line 31: | Line 31: | ||
They are remarkable in that they utilize a [[carbon]] source independent of [[photosynthesis]] and the sun-dependent photosynthetic food chain that supports all other life on Earth.<ref name="MMS 2006" /> Although the process of chemosynthesis is entirely microbial, chemosynthetic bacteria and their production can support thriving assemblages of higher organisms through [[symbiosis]].<ref name="MMS 2006" /> | They are remarkable in that they utilize a [[carbon]] source independent of [[photosynthesis]] and the sun-dependent photosynthetic food chain that supports all other life on Earth.<ref name="MMS 2006" /> Although the process of chemosynthesis is entirely microbial, chemosynthetic bacteria and their production can support thriving assemblages of higher organisms through [[symbiosis]].<ref name="MMS 2006" /> | ||
These prokaryotes, both [[Archaea]] and [[Bacteria]], process sulfides and methane through [[chemosynthesis]] into chemical energy. More complex organisms, such as [[Vesicomyidae|vesicomyid clams]] and [[Siboglinidae|siboglinid]] [[tube worm (body plan)|tube worms]] use this energy to power their own life processes. | These prokaryotes, both [[Archaea]] and [[Bacteria]], process sulfides and methane through [[chemosynthesis]] into chemical energy. More complex organisms, such as [[Vesicomyidae|vesicomyid clams]] and [[Siboglinidae|siboglinid]] [[tube worm (body plan)|tube worms]] use this energy to power their own life processes. In exchange, the microbes are provided with both safety and a reliable source of food. Other microbes form mats that blanket sizable areas. | ||
--> | --> | ||
| Line 38: | Line 38: | ||
[[File:bacterial mat.jpg|thumb|[[Bacterial mat]] consisting of sulfide-oxidizing bacteria ''[[Beggiatoa]]'' spp. at a seep on [[Blake Ridge]], off South Carolina. The red dots are range-finding laser beams.]] | [[File:bacterial mat.jpg|thumb|[[Bacterial mat]] consisting of sulfide-oxidizing bacteria ''[[Beggiatoa]]'' spp. at a seep on [[Blake Ridge]], off South Carolina. The red dots are range-finding laser beams.]] | ||
Biological research in cold seeps and hydrothermal vents has been mostly focused on the [[microbiology]] and the prominent | Biological research in cold seeps and hydrothermal vents has been mostly focused on the [[microbiology]] and the prominent macro-invertebrates thriving on [[Chemosynthesis|chemosynthetic]] microorganisms.<ref name="Vanreusel 2010" /> Much less research has been done on the smaller [[benthic]] fraction at the size of the [[meiofauna]] (<1 mm).<ref name="Vanreusel 2010" /> | ||
A community composition's orderly shift from one set of species to another is called [[ecological succession]].<ref name="Hsing 2010" /> | A community composition's orderly shift from one set of species to another is called [[ecological succession]].<ref name="Hsing 2010" /> | ||
| Line 56: | Line 56: | ||
||[[File:Siboglinidae.jpg|thumb|"Roots" of tubeworms also provide a supply of hydrogen sulfide from the sediment to the bacteria inside these tubeworms.]] | ||[[File:Siboglinidae.jpg|thumb|"Roots" of tubeworms also provide a supply of hydrogen sulfide from the sediment to the bacteria inside these tubeworms.]] | ||
||[[File:Lamellibrachia luymesi.png|left|thumb|Symbiotic vestimentiferan tubeworm ''[[Lamellibrachia luymesi]]'' from a cold seep at 550 m depth in the Gulf of Mexico. In the sediments around the base are orange bacterial mats of the sulfide-oxidizing bacteria ''[[Beggiatoa]]'' spp. and empty shells of various clams and snails, which are also common inhabitants of the seeps.<ref name="Boetius 2005" />]] | ||[[File:Lamellibrachia luymesi.png|left|thumb|Symbiotic vestimentiferan tubeworm ''[[Lamellibrachia luymesi]]'' from a cold seep at 550 m depth in the Gulf of Mexico. In the sediments around the base are orange bacterial mats of the sulfide-oxidizing bacteria ''[[Beggiatoa]]'' spp. and empty shells of various clams and snails, which are also common inhabitants of the seeps.<ref name="Boetius 2005" />]] | ||
||[[File:cold seep community.jpg|left|thumb|[[Lamellibrachia|Tubeworms]], soft [[coral]]s, and chemosynthetic mussels at a seep located {{convert|3000|m|ft|abbr=on}} down on the Florida Escarpment. [[Eelpout]]s, | ||[[File:cold seep community.jpg|left|thumb|[[Lamellibrachia|Tubeworms]], soft [[coral]]s, and chemosynthetic mussels at a seep located {{convert|3000|m|ft|abbr=on}} down on the Florida Escarpment. [[Eelpout]]s, a [[Galatheidae|Galatheid]] crab, and an [[Alvinocarididae|alvinocarid]] shrimp feed on mussels damaged during a sampling exercise.]] | ||
|} | |} | ||
| Line 78: | Line 78: | ||
== Distribution == | == Distribution == | ||
Cold seeps were discovered in 1983 by Charles Paull and colleagues on the Florida Escarpment in the [[Gulf of Mexico]] at a depth of {{convert|3200|m|ft|sp=us}}.<ref>{{cite journal |author1=Paull |author2=Hecker |author3=Commeau |author4=Freeman-Lynde |author5=Neumann |author6=Corso |author7=Golubic |author8=Hook |author9=Sikes |author10=Curray |display-authors=3 | year=1984 | title=Biological communities at the Florida escarpment resemble hydrothermal vent taxa | journal=Science | volume=226 | issue=4677 | pages=965–967 | doi=10.1126/science.226.4677.965| pmid=17737352 | bibcode=1984Sci...226..965P |s2cid=45699993 }}</ref> Since then, seeps have been discovered in many other parts of the world's oceans. Most have been grouped into five [[biogeographic]] provinces: Gulf of Mexico, Atlantic, Mediterranean, East Pacific, and West Pacific,<ref name="Olu 2010" /> but cold seeps are also known from under the [[ice shelf]] in [[Antarctica]],<ref>{{cite web |url = https://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=109683 |title = Demise of Antarctic Ice Shelf Reveals New Life |publisher = [[National Science Foundation]] |year = 2007 |access-date = 14 February 2008 }}</ref> the [[Arctic Ocean]], the [[North Sea]], [[Skagerrak]], [[Kattegat]], the [[Gulf of California]], the [[Red Sea]], the [[Indian Ocean]], off [[southern Australia]], and in the inland [[Caspian Sea]].<ref name=Levin2005>{{cite book| author=Levin, L.A. | year=2005 | chapter=Ecology of cold seep sediments: Interactions if fauna with flow, chemistry and microbes | pages=1–46 | editor1=Gibson, R.N. |editor2=R.J.A. Atkinson |editor3=J.D.M. Gordon | title=Oceanography and Marine Biology: An Annual Review | volume=43 | publisher=Taylor & Francis | isbn=9780849335976}}</ref> In the [[Pacific Northwest]], a cold seep called [[Pythia's Oasis]] was discovered in 2015.<ref>{{cite web |title=Pythias Oasis: An Underwater Spring Unlike Any Other |url=https://interactiveoceans.washington.edu/10/2019/pythias-oasis-an-underwater-spring-unlike-any-other/ |website=OOI Regional Cable Array |publisher=University of Washington |access-date=24 April 2023 |date=1 October 2019}}</ref> With the recent discovery of a methane seep in the [[Southern Ocean]],<ref name="Domack 2005">{{cite journal | last1 = Domack | first1 = E. | author-link = Eugene Domack | last2 = Ishman | first2 = S. | last3 = Leventer | first3 = A. | last4 = Sylva | first4 = S. | last5 = Willmott | first5 = V. | Cold seeps were discovered in 1983 by Charles Paull and colleagues on the Florida Escarpment in the [[Gulf of Mexico]] at a depth of {{convert|3200|m|ft|sp=us}}.<ref>{{cite journal |author1=Paull |author2=Hecker |author3=Commeau |author4=Freeman-Lynde |author5=Neumann |author6=Corso |author7=Golubic |author8=Hook |author9=Sikes |author10=Curray |display-authors=3 | year=1984 | title=Biological communities at the Florida escarpment resemble hydrothermal vent taxa | journal=Science | volume=226 | issue=4677 | pages=965–967 | doi=10.1126/science.226.4677.965| pmid=17737352 | bibcode=1984Sci...226..965P |s2cid=45699993 }}</ref> Since then, seeps have been discovered in many other parts of the world's oceans. Most have been grouped into five [[biogeographic]] provinces: Gulf of Mexico, Atlantic, Mediterranean, East Pacific, and West Pacific,<ref name="Olu 2010" /> but cold seeps are also known from under the [[ice shelf]] in [[Antarctica]],<ref>{{cite web |url = https://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=109683 |title = Demise of Antarctic Ice Shelf Reveals New Life |publisher = [[National Science Foundation]] |year = 2007 |access-date = 14 February 2008 }}</ref> the [[Arctic Ocean]], the [[North Sea]], [[Skagerrak]], [[Kattegat]], the [[Gulf of California]], the [[Red Sea]], the [[Indian Ocean]], off [[southern Australia]], and in the inland [[Caspian Sea]].<ref name=Levin2005>{{cite book| author=Levin, L.A. | year=2005 | chapter=Ecology of cold seep sediments: Interactions if fauna with flow, chemistry and microbes | pages=1–46 | editor1=Gibson, R.N. |editor2=R.J.A. Atkinson |editor3=J.D.M. Gordon | title=Oceanography and Marine Biology: An Annual Review | volume=43 | publisher=Taylor & Francis | isbn=9780849335976}}</ref> In the [[Pacific Northwest]], a cold seep called [[Pythia's Oasis]] was discovered in 2015.<ref>{{cite web |title=Pythias Oasis: An Underwater Spring Unlike Any Other |url=https://interactiveoceans.washington.edu/10/2019/pythias-oasis-an-underwater-spring-unlike-any-other/ |website=OOI Regional Cable Array |publisher=University of Washington |access-date=24 April 2023 |date=1 October 2019}}</ref> With the recent discovery of a methane seep in the [[Southern Ocean]],<ref name="Domack 2005">{{cite journal | last1 = Domack | first1 = E. | author-link = Eugene Domack | last2 = Ishman | first2 = S. | last3 = Leventer | first3 = A. | last4 = Sylva | first4 = S. | last5 = Willmott | first5 = V. | s2cid = 35944740 | year = 2005 | title = A chemotrophic ecosystem found beneath Antarctic Ice Shelf | journal = [[Eos (newspaper)|Eos, Transactions American Geophysical Union]] | volume = 86 | issue = 29| pages = 269–276 | doi = 10.1029/2005EO290001 | bibcode=2005EOSTr..86..269D| doi-access = free }}</ref> cold seeps are now known in all major oceans.<ref name="Bernardino 2012" /> Cold seeps are common along continental margins in areas of high primary productivity and tectonic activity, where crustal deformation and compaction drive emissions of methane-rich fluid.<ref name="Bernardino 2012" /> Cold seeps are patchily distributed, and they occur most frequently near ocean margins from [[intertidal]] to [[hadal]] depths.<ref name="Bernardino 2012" /> In Chile, cold seeps are known from the intertidal zone,<ref>{{cite journal| author1=Jessen |author2=Pantoja |author3=Gutierréz |author4=Quiñones |author5=González |author6=Sellanes |author7=Kellermanns |author8=Hinrichs |display-authors=3 | year=2011 | title=Methane in shallow cold seeps at Mocha Island off central Chile | journal=Continental Shelf Research | volume=31 | issue=6 | pages=574–581 | doi=10.1016/j.csr.2010.12.012| bibcode=2011CSR....31..574J | hdl=10533/129437 | hdl-access=free }}</ref> in Kattegat, the methane seeps are known as "bubbling reefs" and are typically at depths of {{convert|0|-|30|m|ft|abbr=on|-2}},<ref name=HelcomCS>{{cite web|url=http://helcom.fi/Red%20List%20of%20biotopes%20habitats%20and%20biotope%20complexe/HELCOM%20Red%20List%201180%20Submarine%20structures%20made%20by%20leaking%20gases.pdf | title=Red List – Submarine structures made by leaking gases | publisher=[[HELCOM]] | year=2013 | access-date=16 June 2017}}</ref> and off northern California, they can be found as shallow as {{convert|35|-|55|m|ft|abbr=on}}.<ref name=Levin2005/> Most cold seeps are located considerably deeper, well beyond the reach of ordinary [[scuba diving]], and the deepest seep community known is found in the [[Japan Trench]] at a depth of {{convert|7326|m|ft|abbr=on}}.<ref>{{cite journal| author1=Fujikura |author2=Kojima |author3=Tamaki |author4=Maki |author5=Hunt |author6=Okutani |display-authors=3 | year=1999 | title=The deepest chemosynthesis-based community yet discovered from the hadal zone, 7326 m deep, in the Japan Trench | journal=Marine Ecology Progress Series | volume=190 | pages=17–26 | doi=10.3354/meps190017| bibcode=1999MEPS..190...17F | doi-access=free }}</ref> | ||
In addition to cold seeps existing today, the fossil remains of ancient seep systems have been found in several parts of the world. Some of these are located far inland in places formerly covered by [[prehistoric ocean]]s.<ref name=Levin2005/><ref>{{cite journal| author1=Campbell, K.A. |author2=J.D. Farmer |author3=D. Des Marais | year=2002 | title=Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments | journal=Geofluids | volume=2 | issue=2 | pages=63–94 | doi=10.1046/j.1468-8123.2002.00022.x| doi-access=free |bibcode=2002Gflui...2...63C }}</ref> | In addition to cold seeps existing today, the fossil remains of ancient seep systems have been found in several parts of the world. Some of these are located far inland in places formerly covered by [[prehistoric ocean]]s.<ref name=Levin2005/><ref>{{cite journal| author1=Campbell, K.A. |author2=J.D. Farmer |author3=D. Des Marais | year=2002 | title=Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments | journal=Geofluids | volume=2 | issue=2 | pages=63–94 | doi=10.1046/j.1468-8123.2002.00022.x| doi-access=free |bibcode=2002Gflui...2...63C }}</ref> | ||
| Line 90: | Line 90: | ||
The chemosynthetic communities of the Gulf of Mexico have been studied extensively since the 1990s, and communities first discovered on the upper slope are likely the best understood seep communities in the world. The history of the discovery of these remarkable animals has all occurred since the 1980s. Each major discovery was unexpected―from the first hydrothermal vent communities anywhere in the world to the first cold seep communities in the [[Gulf of Mexico]].<ref name="MMS 2006" /> | The chemosynthetic communities of the Gulf of Mexico have been studied extensively since the 1990s, and communities first discovered on the upper slope are likely the best understood seep communities in the world. The history of the discovery of these remarkable animals has all occurred since the 1980s. Each major discovery was unexpected―from the first hydrothermal vent communities anywhere in the world to the first cold seep communities in the [[Gulf of Mexico]].<ref name="MMS 2006" /> | ||
Communities were discovered in the eastern Gulf of Mexico in 1983 using the crewed submersible ''[[DSV Alvin]]'', during a cruise investigating the bottom of the [[Florida Escarpment]] in areas of "cold" brine seepage, where they unexpectedly discovered [[Lamellibrachia|tubeworms]] and mussels.<ref>{{cite journal | author1 = Pauli C.K. | Communities were discovered in the eastern Gulf of Mexico in 1983 using the crewed submersible ''[[DSV Alvin]]'', during a cruise investigating the bottom of the [[Florida Escarpment]] in areas of "cold" brine seepage, where they unexpectedly discovered [[Lamellibrachia|tubeworms]] and mussels.<ref>{{cite journal | author1 = Pauli C.K. | author2 = Hecker B. | author3 = Commeau R. | author4 = Freeman-Lynde R. | author5 = Neumann C. |author6 = Corso W. | author7= Golubic S. | author8=Hook J.E. | author9=Sikes E.L. |author10=Curray J.R. | year = 1984 | title = Biological Communities at the Florida Escarpment Resemble Hydrothermal Vent Taxa | journal = Science | volume = 226 | issue = 4677| pages = 965–967 | doi = 10.1126/science.226.4677.965| pmid = 17737352 | bibcode = 1984Sci...226..965P }}</ref><ref name="MMS 2006" /> Two groups fortuitously discovered chemosynthetic communities in the central Gulf of Mexico nearly concurrently in November and December 1984. During investigations in late December on the research vessel R/V ''Gyre'' cruise 84-G-12, by [[Texas A&M University]], two bottom trawls were conducted to determine the effects of [[oil seep]]age on [[benthic ecology]] (until this investigation, all effects of oil seepage were assumed to be detrimental). Trawls unexpectedly recovered extensive collections of chemosynthetic organisms, including tubeworms and clams.<ref>{{cite journal | author1 = Kennicutt M. | author2 = Brooks J. | author3 = Bidigare R.R. | author4 = Fay R.R. | author5 = Wade T.L. |author6 = McDonald T.J. | year = 1985 | title = Vent-type taxa in a hydrocarbon seep region on the Louisiana slope | journal = Nature | volume = 317 | issue = 6035| pages = 351–353 | doi = 10.1038/317351a0| bibcode = 1985Natur.317..351K }}</ref> a month earlier, LGL Ecological Research Associates was conducting a research cruise as part of the multiyear [[Minerals Management Service|MMS]] Northern Gulf of Mexico Continental Slope Study (Gallaway et al., 1988<ref>Gallaway, B.J., L.R. Martin, L.R., Howard R.L. (Eds.). 1988a. Northern Gulf of Mexico Continental Slope Study, Annual Report: Year 3. Volume II: Technical Narrative. Annual report submitted to the Minerals Management Service, New Orleans, LA. Contract No. 14-12-0001-3212. OCS Study/MMS 87-0060. 586 pp. https://espis.boem.gov/final%20reports/3774.pdf</ref>). Bottom photography as part of this project obtained images from the end of a film roll of a deep-sea camera sled (processed on board the vessel November 14, 1984) that resulted in clear images of [[Vesicomyidae|vesicomyid]] clam chemosynthetic communities (Rossman et al., 1987<ref>Rosman, I., Boland, G.S., Baker, J.S. 1987. Aggregations of Vesicomyidae on the continental slope off Louisiana. Deep-Sea Res. 34(11): 1811-1820.</ref>) coincidentally in the same manner as the first documentation of chemosynthetic communities at the Galapagos Rift investigating hot water plumes by camera sled in the Pacific in 1976 (Lonsdale 1977<ref>Lonsdale, P. 1977. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Res., 24(9), 857-863.</ref>). Photography during the same LGL/MMS cruise also documented tube-worm communities in situ in the Central Gulf of Mexico for the first time (not processed until after the cruise; Boland, 1986<ref>Boland, G.S. 1986. Discovery of co-occurring bivalve Acesta sp. and chemosynthetic tube worms Lamellibrachia sp. (Photograph and text). Nature, 323 (6091): 759</ref>) prior to the initial submersible investigations and firsthand descriptions of [[Green Canyon|Bush Hill]] ({{coord|27|47|02|N|91|30|31|W|name=Bush Hill}}) in 1986.<ref>{{cite journal | author1 = Rosman I. | author2 = Boland G.S. | author3 = Baker J.S. | year = 1987 | title = Epifaunal aggregations of Vesicomyidae on the continental slope off Louisiana | journal = Deep Sea Research Part A. Oceanographic Research Papers | volume = 34 | issue = 11 | pages = 1811–1820 | doi = 10.1016/0198-0149(87)90055-0| bibcode = 1987DSRA...34.1811R }}</ref><ref>{{cite journal | author1 = MacDonald I.R. | author2 = Boland G.S. | author3 = Baker J.S. | author4 = Brooks J.M. | author5 = Kennicutt M.C. |author6 = Bidigare R.R. | year = 1989 | title = Gulf of Mexico hydrocarbon seep communities II Spatial distribution of seep organisms and hydrocarbons at Bush Hill | journal = Marine Biology | volume = 101| issue = 2 | pages = 235–247 | doi = 10.1007/BF00391463| bibcode = 1989MarBi.101..235M }}</ref> The Bush Hill site was targeted by acoustic "wipeout" zones or lack of substrate structure caused by seeping hydrocarbons. This was determined using an acoustic pinger system during the same cruise on the R/V ''Edwin Link'' (renamed from ''Sea Diver'' and only {{convert|113|ft|m|abbr=on}}), which used one of the ''[[Johnson Sea Link]]'' submersibles. This site represents the first eyes-on human observations of chemosynthetic communities in the northern Gulf of Mexico and is characterized by dense tubeworm and mussel accumulations, as well as exposed carbonate outcrops with numerous [[gorgonia]]n and ''[[Lophelia]]'' coral colonies. Bush Hill has become one of the most thoroughly-studied chemosynthetic sites in the world.<ref name="MMS 2006" /> | ||
==== Distribution ==== | ==== Distribution ==== | ||
| Line 98: | Line 98: | ||
There is a clear relationship between known hydrocarbon discoveries at great depth in the Gulf slope and chemosynthetic communities, hydrocarbon seepage, and [[Authigenesis|authigenic]] minerals including carbonates at the seafloor.<ref name=Sassen1993>{{cite journal |author1 = Sassen R. | author2 = Roberts H.| author3= Aharon P. | author4= Larkin J. | author5= Chinn E.W. | author6= Carney R.S. |year = 1993 |title = Chemosynthetic bacterial mats at cold hydrocarbon seeps, Gulf of Mexico continental slope |doi = 10.1016/0146-6380(93)90083-N |journal = Organic Geochemistry |pages = 77–89 |volume=20 |issue = 1 | bibcode = 1993OrGeo..20...77S}}</ref> While the hydrocarbon reservoirs are broad areas several kilometers beneath the Gulf, chemosynthetic communities occur in isolated areas with thin veneers of sediment only a few meters thick.<ref name="MMS 2006" /> | There is a clear relationship between known hydrocarbon discoveries at great depth in the Gulf slope and chemosynthetic communities, hydrocarbon seepage, and [[Authigenesis|authigenic]] minerals including carbonates at the seafloor.<ref name=Sassen1993>{{cite journal |author1 = Sassen R. | author2 = Roberts H.| author3= Aharon P. | author4= Larkin J. | author5= Chinn E.W. | author6= Carney R.S. |year = 1993 |title = Chemosynthetic bacterial mats at cold hydrocarbon seeps, Gulf of Mexico continental slope |doi = 10.1016/0146-6380(93)90083-N |journal = Organic Geochemistry |pages = 77–89 |volume=20 |issue = 1 | bibcode = 1993OrGeo..20...77S}}</ref> While the hydrocarbon reservoirs are broad areas several kilometers beneath the Gulf, chemosynthetic communities occur in isolated areas with thin veneers of sediment only a few meters thick.<ref name="MMS 2006" /> | ||
The northern Gulf of Mexico slope includes a [[stratigraphic section]] more than 10 | The northern Gulf of Mexico slope includes a [[stratigraphic section]] more than {{convert|10|km|mi|abbr=on}} thick and has been profoundly influenced by [[Salt tectonics|salt movement]]. [[Mesozoic]] source rocks from [[Upper Jurassic]] to [[Upper Cretaceous]] generate oil in most of the Gulf slope fields.<ref name=Sassen1993/> Migration conduits supply fresh hydrocarbon materials through a vertical scale of {{convert|6|–|8|km|mi|abbr=on}} toward the surface. The surface expressions of hydrocarbon migration are called seeps. Geological evidence demonstrates that hydrocarbon and brine seepage persists in spatially discrete areas for thousands of years.<ref name="MMS 2006" /> | ||
The time scale for oil and gas migration from source systems is on the scale of millions of years (Sassen, 1997). Seepage from hydrocarbon sources through faults towards the surface tends to be diffused through the overlying sediment, carbonate outcroppings, and [[hydrate]] deposits, so the corresponding hydrocarbon seep communities tend to be larger (a few hundred meters wide) than chemosynthetic communities found around the hydrothermal vents of the [[Eastern Pacific]] (MacDonald, 1992).<ref name="MMS 2006" /> There are large differences in the concentrations of hydrocarbons at seep sites. Roberts (2001) presented a spectrum of responses to be expected under a variety of flux rate conditions varying from very slow seepage to rapid venting.<ref name="MMS 2006" /><ref>{{cite book|last=Roberts |first=H. H. |year=2001 |chapter-url=http://www.agu.org/books/gm/v124/GM124p0145/GM124p0145.shtml |chapter=Fluid and gas expulsion on the northern Gulf of Mexico continental slope: Mud-prone to mineral-prone responses |doi=10.1029/GM124p0145 |volume=124 |publisher=[[American Geophysical Union]] |pages=145–161 |access-date=26 March 2012 |url-status=dead |archive-url=https://web.archive.org/web/20121028142946/http://www.agu.org/books/gm/v124/GM124p0145/GM124p0145.shtml |archive-date=28 October 2012 |df=dmy |bibcode=2001GMS...124..145R |series=Geophysical Monograph Series |isbn=9781118668412 |title=Natural Gas Hydrates }}</ref> Very-slow-seepage sites do not support complex chemosynthetic communities; rather, they usually only support simple [[bacterial mat|microbial mats]] (''[[Beggiatoa]]'' sp.).<ref name="MMS 2006" /> | The time scale for oil and gas migration from source systems is on the scale of millions of years (Sassen, 1997). Seepage from hydrocarbon sources through faults towards the surface tends to be diffused through the overlying sediment, carbonate outcroppings, and [[hydrate]] deposits, so the corresponding hydrocarbon seep communities tend to be larger (a few hundred meters wide) than chemosynthetic communities found around the hydrothermal vents of the [[Eastern Pacific]] (MacDonald, 1992).<ref name="MMS 2006" /> There are large differences in the concentrations of hydrocarbons at seep sites. Roberts (2001) presented a spectrum of responses to be expected under a variety of flux rate conditions varying from very slow seepage to rapid venting.<ref name="MMS 2006" /><ref>{{cite book|last=Roberts |first=H. H. |year=2001 |chapter-url=http://www.agu.org/books/gm/v124/GM124p0145/GM124p0145.shtml |chapter=Fluid and gas expulsion on the northern Gulf of Mexico continental slope: Mud-prone to mineral-prone responses |doi=10.1029/GM124p0145 |volume=124 |publisher=[[American Geophysical Union]] |pages=145–161 |access-date=26 March 2012 |url-status=dead |archive-url=https://web.archive.org/web/20121028142946/http://www.agu.org/books/gm/v124/GM124p0145/GM124p0145.shtml |archive-date=28 October 2012 |df=dmy |bibcode=2001GMS...124..145R |series=Geophysical Monograph Series |isbn=9781118668412 |title=Natural Gas Hydrates }}</ref> Very-slow-seepage sites do not support complex chemosynthetic communities; rather, they usually only support simple [[bacterial mat|microbial mats]] (''[[Beggiatoa]]'' sp.).<ref name="MMS 2006" /> | ||
| Line 105: | Line 105: | ||
[[File:Chemosynthetic communities in the Gulf of Mexico 2006.png|thumb|Chemosynthetic communities in the northern part of Gulf of Mexico around cold seeps known in 2006 include more than 50 communities]] | [[File:Chemosynthetic communities in the Gulf of Mexico 2006.png|thumb|Chemosynthetic communities in the northern part of Gulf of Mexico around cold seeps known in 2006 include more than 50 communities]] | ||
The widespread nature of Gulf of Mexico chemosynthetic communities was first documented during contracted investigations by the Geological and Environmental Research Group (GERG) of Texas A&M University for the Offshore Operators Committee.<ref>{{cite journal |author1= Brooks J. |author2 = Cox H.B. |author3 = Bryant W. |author4 = Kennicutt M. |author5 = Mann R.G. |author6 = McDonald T.J. |year = 1986 |title = Association of Gas Hydrates and Oil Seepage in the Gulf-of-Mexico |doi = 10.1016/0146-6380(86)90025-2|journal = Organic Geochemistry |pages = | The widespread nature of Gulf of Mexico chemosynthetic communities was first documented during contracted investigations by the Geological and Environmental Research Group (GERG) of Texas A&M University for the Offshore Operators Committee.<ref>{{cite journal |author1= Brooks J. |author2 = Cox H.B. |author3 = Bryant W. |author4 = Kennicutt M. |author5 = Mann R.G. |author6 = McDonald T.J. |year = 1986 |title = Association of Gas Hydrates and Oil Seepage in the Gulf-of-Mexico |doi = 10.1016/0146-6380(86)90025-2|journal = Organic Geochemistry |pages = 221–234 |volume=10 |issue = 1-3 }}</ref><ref name="MMS 2006" /> This survey remains the most widespread and comprehensive, although numerous additional communities have been documented since that time.<ref name="MMS 2006" /> Industry exploration for [[Offshore oil and gas in the US Gulf of Mexico|energy reserves in the Gulf of Mexico]] has also documented numerous new communities through a wide range of depths, including the deepest-known occurrence in the Central Gulf of Mexico in Alaminos Canyon Block 818 at a depth of {{convert|2,750|m|ft|abbr=off}}.<ref name="MMS 2006" /> The occurrence of chemosynthetic organisms dependent on hydrocarbon seepage has been documented in water depths as shallow as {{convert|290|m|ft|abbr=off}}<ref>{{cite journal |author1= Roberts H. |author2 = Aharon P. |author3 = Carney R.S. |author4 = Larkin J. |author5 = Sassen R. |date = 1990 |title = Sea floor responses to hydrocarbon seeps, Louisiana continental slope |doi = 10.1007/BF02431070|journal = Geo-Marine Letters |pages = 232–243 |volume=10 |issue= 4 }}</ref> and as deep as {{convert|2,744|m|ft|abbr=off}}.<ref name="MMS 2006" /> This depth range specifically places chemosynthetic communities in the deepwater region of the Gulf of Mexico, which is defined as water depths greater than {{convert|305|m|ft|abbr=off}}.<ref name="MMS 2006" /> | ||
Chemosynthetic communities are not found on the [[continental shelf]], although they do appear in the fossil record in water shallower than 200 | Chemosynthetic communities are not found on the [[continental shelf]], although they do appear in the fossil record in water shallower than {{convert|200|m|ft|abbr=off}}.<ref name="MMS 2006" /> One theory explaining this is that [[predation]] pressure has varied substantially over the time period involved (Callender and Powell 1999).<ref name="MMS 2006" /><ref>{{cite journal |last = Callender |first = W. Russell |author2 = E. N. Powell |year = 1999 |title = Why did ancient chemosynthetic seep and vent assemblages occur in shallower water than they do today? |doi = 10.1007/s005310050273 |journal = International Journal of Earth Sciences |pages = 377–391 |volume=88|issue = 3 |bibcode = 1999IJEaS..88..377C |s2cid = 140681313 }}</ref> More than 50 communities are now known to exist in 43 [[Outer Continental Shelf]] (OCS) blocks.<ref name="MMS 2006" /> Although a systematic survey has not been done to identify all chemosynthetic communities in the Gulf of Mexico, there is evidence indicating that many more such communities may exist.<ref name="MMS 2006" /> The depth limits of discoveries probably reflect the limits of exploration (lack of [[submersibles]] capable of depths over {{convert|1,000|m|ft|abbr=off}}).<ref name="MMS 2006" /> | ||
MacDonald et al. (1993 and 1996) have analyzed [[remote-sensing]] images from space that reveal the presence of [[oil slick]]s across the north-central Gulf of Mexico.<ref name="MMS 2006" /><ref>{{cite journal |doi=10.1029/93JC01289 |bibcode=1993JGR....9816351M |title=Natural oil slicks in the Gulf of Mexico visible from space |journal=Journal of Geophysical Research |volume=98 |issue=C9 |pages=16351 |year=1993 |last1=MacDonald |first1=I. R. |last2=Guinasso |first2=N. L. |last3=Ackleson |first3=S. G. |last4=Amos |first4=J. F. |last5=Duckworth |first5=R. |last6=Sassen |first6=R. |last7=Brooks |first7=J. M. }}</ref><ref name=McDonald96>{{Cite book |last = MacDonald |first = I.R. |author2 = J.F. Reilly Jr. |author3 = W.E. Best |author4 = R. Vnkataramaiah |author5 = R. Sassen |author6 = N.S. Guinasso Jr. |author7 = J. Amos |year = 1996 |title = Remote sensing inventory of active oil seeps and chemosynthetic communities in the northern |work = Gulf of Mexico. In: Schumacher, D. and M.A. Abrams, eds. Hydrocarbon migration and its nearsurface expression. American Association of Petroleum Geologists Memoir 6 |publisher = Amer Association of Petroleum Geologists |isbn = 978-0-89181-345-3 |pages = 27–37 }}</ref> Results confirmed extensive natural oil seepage in the Gulf of Mexico, especially in water depths greater than 1,000 | MacDonald et al. (1993 and 1996) have analyzed [[remote-sensing]] images from space that reveal the presence of [[oil slick]]s across the north-central Gulf of Mexico.<ref name="MMS 2006" /><ref>{{cite journal |doi=10.1029/93JC01289 |bibcode=1993JGR....9816351M |title=Natural oil slicks in the Gulf of Mexico visible from space |journal=Journal of Geophysical Research |volume=98 |issue=C9 |pages=16351 |year=1993 |last1=MacDonald |first1=I. R. |last2=Guinasso |first2=N. L. |last3=Ackleson |first3=S. G. |last4=Amos |first4=J. F. |last5=Duckworth |first5=R. |last6=Sassen |first6=R. |last7=Brooks |first7=J. M. }}</ref><ref name=McDonald96>{{Cite book |last = MacDonald |first = I.R. |author2 = J.F. Reilly Jr. |author3 = W.E. Best |author4 = R. Vnkataramaiah |author5 = R. Sassen |author6 = N.S. Guinasso Jr. |author7 = J. Amos |year = 1996 |title = Remote sensing inventory of active oil seeps and chemosynthetic communities in the northern |work = Gulf of Mexico. In: Schumacher, D. and M.A. Abrams, eds. Hydrocarbon migration and its nearsurface expression. American Association of Petroleum Geologists Memoir 6 |publisher = Amer Association of Petroleum Geologists |isbn = 978-0-89181-345-3 |pages = 27–37 }}</ref> Results confirmed extensive natural oil seepage in the Gulf of Mexico, especially in water depths greater than {{convert|1,000|m|ft|abbr=off}}.<ref name="MMS 2006" /> A total of 58 additional potential locations were documented where seafloor sources were capable of producing perennial oil slicks.<ref name=McDonald96/><ref name="MMS 2006" /> Estimated seepage rates ranged from {{convert|4|oilbbl/d|abbr=on}} to {{convert|70|oilbbl/d|abbr=on}} compared to less than {{convert|0.1|oilbbl/d|abbr=on}} for ship discharges (both normalized for 1,000 mi<sup>2</sup> (640,000 ac)).<ref name="MMS 2006" /> This evidence considerably increases the area where chemosynthetic communities dependent on hydrocarbon seepage may be expected.<ref name="MMS 2006" /> | ||
The densest aggregations of chemosynthetic organisms have been found at water depths of around 500 | The densest aggregations of chemosynthetic organisms have been found at water depths of around {{convert|500|m|ft|abbr=off}} and deeper. The best known of these communities was named Bush Hill by the investigators who first described it.<ref name=Macdonald89>{{cite journal |title=Gulf of Mexico hydrocarbon seep communities: II. Spatial distribution of seep organisms and hydrocarbons at Bush Hill |journal=Marine Biology |volume=101 |pages=235–247 |year=1989 |last1=MacDonald |first1=I. R. |last2=Boland |first2=G. S. |last3=Baker |first3=J. S. |last4=Brooks |first4=J. M. |last5=Kennicutt II |first5=M. C. |last6=Bidigare |first6=R. R. }}</ref><ref name="MMS 2006" /> It is a surprisingly large and dense community of chemosynthetic tube worms and mussels at a site of natural petroleum and gas seepage over a [[salt diapir]] in Green Canyon Block 185. The seep site is a small knoll that rises about {{convert|40|m|ft|abbr=off}} above the surrounding seafloor in about {{convert|580|m|ft|abbr=off|adj=on}} water depth.<ref name="MMS 2006" /> | ||
==== Stability ==== | ==== Stability ==== | ||
According to Sassen (1997) the role of [[hydrate]]s at chemosynthetic communities has been greatly underestimated.<ref name="MMS 2006" /> The biological alteration of frozen [[gas hydrate]]s was first discovered during the [[Minerals Management Service|MMS]] study entitled "Stability and Change in Gulf of Mexico Chemosynthetic Communities".<ref name="ir mcdonald">{{cite web |editor1 = I. R. McDonald |title = Stability and Change in Gulf of Mexico Chemosynthetic Communities |url = https://www.data.boem.gov/PI/PDFImages/ESPIS/3/3227.pdf |publisher = U.S. Department of the Interior: OCS Study MMS 98-0034: Prepared by the Geochemical and Environmental Research Group: Texas A&M University |access-date = 17 July 2016 |date = 1998 |archive-date = 29 December 2016 |archive-url = https://web.archive.org/web/20161229022053/https://www.data.boem.gov/PI/PDFImages/ESPIS/3/3227.pdf |url-status = dead }}</ref> It is hypothesized<ref name=Macdonald89/> that the dynamics of hydrate alteration could play a major role as a mechanism for regulation of the release of hydrocarbon gases to fuel biogeochemical processes and could also play a substantial role in community stability. Recorded bottom-water temperature excursions of several degrees in some areas such as the Bush Hill site (4–5 °C at 500 | According to Sassen (1997) the role of [[hydrate]]s at chemosynthetic communities has been greatly underestimated.<ref name="MMS 2006" /> The biological alteration of frozen [[gas hydrate]]s was first discovered during the [[Minerals Management Service|MMS]] study entitled "Stability and Change in Gulf of Mexico Chemosynthetic Communities".<ref name="ir mcdonald">{{cite web |editor1 = I. R. McDonald |title = Stability and Change in Gulf of Mexico Chemosynthetic Communities |url = https://www.data.boem.gov/PI/PDFImages/ESPIS/3/3227.pdf |publisher = U.S. Department of the Interior: OCS Study MMS 98-0034: Prepared by the Geochemical and Environmental Research Group: Texas A&M University |access-date = 17 July 2016 |date = 1998 |archive-date = 29 December 2016 |archive-url = https://web.archive.org/web/20161229022053/https://www.data.boem.gov/PI/PDFImages/ESPIS/3/3227.pdf |url-status = dead }}</ref> It is hypothesized<ref name=Macdonald89/> that the dynamics of hydrate alteration could play a major role as a mechanism for regulation of the release of hydrocarbon gases to fuel biogeochemical processes and could also play a substantial role in community stability. Recorded bottom-water temperature excursions of several degrees in some areas such as the Bush Hill site (4–5 °C at {{convert|500|m|ft|abbr=off|adj=on}} depth) are believed to result in dissociation of hydrates, resulting in an increase in gas fluxes (MacDonald et al., 1994). Although not as destructive as the [[volcanism]] at vent sites of the [[mid-ocean ridge]]s, the dynamics of shallow hydrate formation and movement will clearly affect [[Sessility (motility)|sessile animals]] that form part of the seepage barrier. There is potential of a catastrophic event where an entire layer of shallow hydrate could break free of the bottom and considerably affect local communities of chemosynthetic fauna.<ref name="MMS 2006" /> At deeper depths (>{{convert|1,000|m|ft|abbr=off}}), the bottom-water temperature is colder (by approximately 3 °C) and undergoes less fluctuation. The formation of more stable and probably-deeper hydrates influences the flux of light hydrocarbon gases to the sediment surface, thus influencing the surface morphology and characteristics of chemosynthetic communities. Within complex communities such as Bush Hill, <!--oil-->[[petroleum]] seems less important than previously thought (MacDonald, 1998b).<ref name="MMS 2006" /> | ||
Through [[taphonomy|taphonomic]] studies (death assemblages of shells) and interpretation of seep assemblage composition from cores, Powell et al. (1998) reported that, overall, seep communities were persistent over periods of 500–1,000 years and probably throughout the entire [[Pleistocene]]{{Dubious|date=April 2024}}. Some sites retained optimal [[habitat]] over [[geological time scale]]s. Powell reported evidence of mussel and clam communities persisting in the same sites for 500–4,000 years. Powell also found that both the composition of species and [[Trophic level|trophic]] tiering of hydrocarbon seep communities tend to be fairly constant across time, with temporal variations only in numerical abundance. He found few cases in which the community type changed (from mussel to clam communities, for example) or had disappeared completely. Faunal [[Ecological succession|succession]] was not observed. Surprisingly, when recovery occurred after a past destructive event, the same chemosynthetic species reoccupied a site. There was little evidence of catastrophic burial events, but two instances were found in mussel communities in Green Canyon Block 234. The most notable observation reported by Powell (1995) was the uniqueness of each chemosynthetic community site.<ref name="MMS 2006" /> | Through [[taphonomy|taphonomic]] studies (death assemblages of shells) and interpretation of seep assemblage composition from cores, Powell et al. (1998) reported that, overall, seep communities were persistent over periods of 500–1,000 years and probably throughout the entire [[Pleistocene]]{{Dubious|date=April 2024}}. Some sites retained optimal [[habitat]] over [[geological time scale]]s. Powell reported evidence of mussel and clam communities persisting in the same sites for 500–4,000 years. Powell also found that both the composition of species and [[Trophic level|trophic]] tiering of hydrocarbon seep communities tend to be fairly constant across time, with temporal variations only in numerical abundance. He found few cases in which the community type changed (from mussel to clam communities, for example) or had disappeared completely. Faunal [[Ecological succession|succession]] was not observed. Surprisingly, when recovery occurred after a past destructive event, the same chemosynthetic species reoccupied a site. There was little evidence of catastrophic burial events, but two instances were found in mussel communities in Green Canyon Block 234. The most notable observation reported by Powell (1995) was the uniqueness of each chemosynthetic community site.<ref name="MMS 2006" /> | ||
| Line 129: | Line 129: | ||
MacDonald et al. (1990) has described four general community types. These are communities dominated by [[Vestimentifera]]n tube worms (''[[Lamellibrachia]]'' c.f. ''[[Lamellibrachia barhami|barhami]]'' and ''[[Escarpia]]'' spp.), [[Mytilidae|mytilid]] mussels (Seep Mytilid Ia, Ib, and III, and others), [[Vesicomyidae|vesicomyid]] clams (''Vesicomya cordata'' and ''Calyptogena ponderosa''), and infaunal [[Lucinidae|lucinid]] or [[Thyasiridae|thyasirid]] clams (''[[Lucinoma]]'' sp. or ''[[Thyasira]]'' sp.). [[Bacterial mat]]s are present at all sites visited to date. These faunal groups tend to display distinctive characteristics in terms of how they aggregate, the size of aggregations, the geological and chemical properties of the habitats in which they occur, and, to some degree, the heterotrophic fauna that occur with them. Many of the species found at these cold seep communities in the Gulf of Mexico are new to science and remain [[undescribed species|undescribed]].<ref name="MMS 2006" /> | MacDonald et al. (1990) has described four general community types. These are communities dominated by [[Vestimentifera]]n tube worms (''[[Lamellibrachia]]'' c.f. ''[[Lamellibrachia barhami|barhami]]'' and ''[[Escarpia]]'' spp.), [[Mytilidae|mytilid]] mussels (Seep Mytilid Ia, Ib, and III, and others), [[Vesicomyidae|vesicomyid]] clams (''Vesicomya cordata'' and ''Calyptogena ponderosa''), and infaunal [[Lucinidae|lucinid]] or [[Thyasiridae|thyasirid]] clams (''[[Lucinoma]]'' sp. or ''[[Thyasira]]'' sp.). [[Bacterial mat]]s are present at all sites visited to date. These faunal groups tend to display distinctive characteristics in terms of how they aggregate, the size of aggregations, the geological and chemical properties of the habitats in which they occur, and, to some degree, the heterotrophic fauna that occur with them. Many of the species found at these cold seep communities in the Gulf of Mexico are new to science and remain [[undescribed species|undescribed]].<ref name="MMS 2006" /> | ||
Individual lamellibrachid [[Lamellibrachia|tube worms]], the longer of two taxa found at seeps, can reach lengths of 3 | Individual lamellibrachid [[Lamellibrachia|tube worms]], the longer of two taxa found at seeps, can reach lengths of {{convert|3|m|ft|abbr=off}} and live hundreds of years (Fisher et al., 1997; Bergquist et al., 2000). [[Population growth rate|Growth rates]] determined from recovered marked tube worms have been variable, ranging from no growth of 13 individuals measured one year to a maximum growth of 9.6 cm/yr (3.8 in/yr) in a ''[[Lamellibrachia]]'' individual (MacDonald, 2002). Average growth rate was 2.19 cm/yr (0.86 in/yr) for the ''[[Escarpia]]''-like species and 2.92 cm/yr (1.15 in/yr) for lamellibrachids. These are slower growth rates than those of their [[hydrothermal vent]] relatives, but ''Lamellibrachia'' individuals can reach lengths 2–3 times that of the largest known hydrothermal vent species.<ref name="MMS 2006" /> Individuals of ''Lamellibrachia'' sp. in excess of {{convert|3|m|ft|abbr=off}} have been collected on several occasions, representing probable ages in excess of 400 years (Fisher, 1995). Vestimentiferan tube worm spawning is not seasonal, and recruitment is episodic.<ref name="MMS 2006" /> | ||
Tubeworms are either male or female. One recent discovery indicates that the spawning of female ''Lamellibrachia'' appears to have produced a unique association with the large bivalve ''Acesta bullisi'', which lives permanently attached to the anterior tube opening of the tubeworm, and feeds on the periodic egg release (Järnegren et al., 2005). This close association between the bivalves and tubeworms was discovered in 1984 (Boland, 1986) but not fully explained. Virtually all mature ''[[Acesta]]'' individuals are found on female rather than male tubeworms. This evidence and other experiments by Järnegren et al. (2005) seem to have solved this mystery.<ref name="MMS 2006" /> | Tubeworms are either male or female. One recent discovery indicates that the spawning of female ''Lamellibrachia'' appears to have produced a unique association with the large bivalve ''Acesta bullisi'', which lives permanently attached to the anterior tube opening of the tubeworm, and feeds on the periodic egg release (Järnegren et al., 2005). This close association between the bivalves and tubeworms was discovered in 1984 (Boland, 1986) but not fully explained. Virtually all mature ''[[Acesta]]'' individuals are found on female rather than male tubeworms. This evidence and other experiments by Järnegren et al. (2005) seem to have solved this mystery.<ref name="MMS 2006" /> | ||
| Line 154: | Line 154: | ||
Extensive faunal sampling has been conducted from {{convert|400|and(-)|3300|m|ft|abbr=on}} in the [[Atlantic Equatorial Belt]] from the Gulf of Mexico to the Gulf of Guinea including the Barbados accretionary prism, the Blake Ridge diapir, and in the Eastern Atlantic from the Congo and Gabon margins and the recently explored Nigeria margin during [[Census of Marine Life]] [[Biogeography of Deep-Water Chemosynthetic Ecosystems|ChEss]] project. Of the 72 taxa identified at the species level, a total of 9 species or species complexes are identified as amphi-Atlantic.<ref name="Olu 2010" /> | Extensive faunal sampling has been conducted from {{convert|400|and(-)|3300|m|ft|abbr=on}} in the [[Atlantic Equatorial Belt]] from the Gulf of Mexico to the Gulf of Guinea including the Barbados accretionary prism, the Blake Ridge diapir, and in the Eastern Atlantic from the Congo and Gabon margins and the recently explored Nigeria margin during [[Census of Marine Life]] [[Biogeography of Deep-Water Chemosynthetic Ecosystems|ChEss]] project. Of the 72 taxa identified at the species level, a total of 9 species or species complexes are identified as amphi-Atlantic.<ref name="Olu 2010" /> | ||
The Atlantic Equatorial Belt seep megafauna community structure is influenced primarily by depth rather than by geographic distance. The bivalves [[Bathymodiolinae]] (within [[Mytilidae]]) species or complexes of species are the most widespread in the Atlantic. The ''[[Bathymodiolus boomerang]]'' complex is found at the Florida escarpment site, the Blake Ridge diapir, the Barbados prism, and the Regab site of Congo. The ''[[Bathymodiolus childressi]]'' complex is also widely distributed along the Atlantic Equatorial Belt from the Gulf of Mexico across to the Nigerian Margin, although not on the Regab or Blake Ridge sites. The commensal [[polynoid]] ''[[Branchipolynoe seepensis]]'' is known from the Gulf of Mexico, Gulf of Guinea, and Barbados. Other species with distributions extending from the eastern to western Atlantic are: gastropod <!--the gastropods ''[[Phymorhynchus cingulata]]'' DOUBTFUL GASTROPOD NAME REMOVED--><!--spelled in Olu 2010 as Phymorhynchus cingulatus Warén & Bouchet, 2009, but corerct name is either Phymorhynchus cingulata Warén & Bouchet, 2009 or | The Atlantic Equatorial Belt seep megafauna community structure is influenced primarily by depth rather than by geographic distance. The bivalves [[Bathymodiolinae]] (within [[Mytilidae]]) species or complexes of species are the most widespread in the Atlantic. The ''[[Bathymodiolus boomerang]]'' complex is found at the Florida escarpment site, the Blake Ridge diapir, the Barbados prism, and the Regab site of Congo. The ''[[Bathymodiolus childressi]]'' complex is also widely distributed along the Atlantic Equatorial Belt from the Gulf of Mexico across to the Nigerian Margin, although not on the Regab or Blake Ridge sites. The commensal [[polynoid]] ''[[Branchipolynoe seepensis]]'' is known from the Gulf of Mexico, Gulf of Guinea, and Barbados. Other species with distributions extending from the eastern to western Atlantic are: gastropod <!--the gastropods ''[[Phymorhynchus cingulata]]'' DOUBTFUL GASTROPOD NAME REMOVED--><!--spelled in Olu 2010 as Phymorhynchus cingulatus Warén & Bouchet, 2009, but corerct name is either Phymorhynchus cingulata Warén & Bouchet, 2009 or Phymorhynchus cingulatus (Dall, 1890)--> ''[[Cordesia provannoides]]'', the shrimp ''[[Alvinocaris muricola]]'', the galatheids ''[[Munidopsis geyeri]]'' and ''[[Munidopsis livida]],'' and probably the holothurid ''[[Chiridota hydrothermica]]''.<ref name="Olu 2010" /> | ||
There have been found cold seeps also in the [[Amazon River|Amazon]] deepsea fan. High-resolution seismic profiles near the shelf edge show evidence of near-surface slumps and faulting {{convert|20|-|50|m|ft|abbr=on}} in the subsurface and concentrations (about {{convert|500|m2|ft2|abbr=on|disp=or}}) of methane gas. Several studies (e.g., Amazon Shelf Study—[[AMASEDS]], [[LEPLAC]], [[REMAC]], GLORIA, [[Ocean Drilling Program]]) indicate that there is evidence for gas seepage on the slope off the Amazon fan based on the incidence of bottom-simulating reflections (BSRs), mud volcanoes, pockmarks, gas in sediments, and deeper hydrocarbon occurrences. The existence of methane at relatively shallow depths and extensive areas of gas hydrates have been mapped in this region. Also, [[Methane chimney|gas chimneys]] have been reported, and exploratory wells have discovered sub-commercial gas accumulations and pockmarks along fault planes. A sound geological and geophysical understanding of the [[Foz do Amazonas Basin]] is already available and used by the energy companies.<ref name="Miloslavich 2011">{{cite journal | last1 = Miloslavich | first1 = P. | last2 = Klein | first2 = E. | last3 = Díaz | first3 = J. M. | last4 = Hernández | first4 = C. E. | last5 = Bigatti | first5 = G. | There have been found cold seeps also in the [[Amazon River|Amazon]] deepsea fan. High-resolution seismic profiles near the shelf edge show evidence of near-surface slumps and faulting {{convert|20|-|50|m|ft|abbr=on}} in the subsurface and concentrations (about {{convert|500|m2|ft2|abbr=on|disp=or}}) of methane gas. Several studies (e.g., Amazon Shelf Study—[[AMASEDS]], [[LEPLAC]], [[REMAC]], GLORIA, [[Ocean Drilling Program]]) indicate that there is evidence for gas seepage on the slope off the Amazon fan based on the incidence of bottom-simulating reflections (BSRs), mud volcanoes, pockmarks, gas in sediments, and deeper hydrocarbon occurrences. The existence of methane at relatively shallow depths and extensive areas of gas hydrates have been mapped in this region. Also, [[Methane chimney|gas chimneys]] have been reported, and exploratory wells have discovered sub-commercial gas accumulations and pockmarks along fault planes. A sound geological and geophysical understanding of the [[Foz do Amazonas Basin]] is already available and used by the energy companies.<ref name="Miloslavich 2011">{{cite journal | last1 = Miloslavich | first1 = P. | last2 = Klein | first2 = E. | last3 = Díaz | first3 = J. M. | last4 = Hernández | first4 = C. E. | last5 = Bigatti | first5 = G. | year = 2011 | title = Marine Biodiversity in the Atlantic and Pacific Coasts of South America: Knowledge and Gaps | journal = [[PLoS ONE]] | volume = 6 | issue = 1| page = e14631 | doi = 10.1371/journal.pone.0014631 | pmid = 21304960 | bibcode = 2011PLoSO...614631M | pmc = 3031619 | doi-access = free }}</ref> | ||
Exploration of new areas, such as potential seep sites off of the east coast of the U.S. and the [[Laurentian Abyss|Laurentian]] fan where chemosynthetic communities are known deeper than {{convert|3500|m|ft|abbr=on}}, and shallower sites in the Gulf of Guinea are need to study in the future.<ref name="Olu 2010" />{{Clarify|date=April 2024}} | Exploration of new areas, such as potential seep sites off of the east coast of the U.S. and the [[Laurentian Abyss|Laurentian]] fan where chemosynthetic communities are known deeper than {{convert|3500|m|ft|abbr=on}}, and shallower sites in the Gulf of Guinea are need to study in the future.<ref name="Olu 2010" />{{Clarify|date=April 2024}} | ||
| Line 164: | Line 164: | ||
The first biological evidence for reduced environments in the [[Mediterranean Sea]] was the presence of [[Lucinidae]] and [[Vesicomyidae]] [[bivalve shell]]s cored on the top of the Napoli [[mud volcano]] ({{coord|33|43|52|N|24|40|52|E|name=Napoli mud Volcano}}; "Napoli" is only a name of a seamount. It is located south of Crete), located at 1,900 m deep on the [[Mediterranean Ridge]] in the [[subduction zone]] of the [[African Plate]]. This was followed by the description of a new Lucinidae bivalve species, ''[[Lucinoma kazani]]'', associated with bacterial [[endosymbiont]]s. In the southeastern Mediterranean, communities of [[polychaete]]s and bivalves were also found associated with cold seeps and carbonates near [[Egypt]] and the [[Gaza Strip]] at depths of 500–800 m, but no living fauna was collected. The first [[in situ]] observations of extensive living chemosynthetic communities in the eastern Mediterranean Sea prompted cooperation between biologists, [[geochemist]]s, and geologists. During [[submersible]] dives, communities comprising large fields of small bivalves (dead and alive), large [[siboglinid]] tube worms, isolated or forming dense aggregations, large [[sponge]]s, and associated endemic fauna were observed in various cold seep habitats associated with carbonate crusts at 1,700–2,000 m depth. Two mud volcano fields were first explored, one along the Mediterranean Ridge, where most of them were partially (Napoli, Milano mud volcanoes) or totally (Urania, Maidstone mud volcanoes) affected by [[brine pool|brines]], and the other on the [[Anaximander mound]]s south of [[Turkey]]. The latter area includes the large Amsterdam mud volcano, which is affected by recent [[mudflow]]s, and the smaller Kazan or Kula mud volcanoes. [[Gas hydrate]]s have been sampled at the Amsterdam and Kazan mud volcanoes, and high methane levels have been recorded above the seafloor. Several provinces of the [[Nile]] deep-sea fan have been explored recently. These include the very active brine seepage named the [[Menes Caldera]] in the eastern province between 2,500 m and 3,000 m, the pockmarks in the central area along middle and lower slopes, and the mud volcanoes of the eastern province, as well as one in the central upper slope ([[North Alex]] area) at 500 m depth.<ref name="Danovaro 2010" /> | The first biological evidence for reduced environments in the [[Mediterranean Sea]] was the presence of [[Lucinidae]] and [[Vesicomyidae]] [[bivalve shell]]s cored on the top of the Napoli [[mud volcano]] ({{coord|33|43|52|N|24|40|52|E|name=Napoli mud Volcano}}; "Napoli" is only a name of a seamount. It is located south of Crete), located at 1,900 m deep on the [[Mediterranean Ridge]] in the [[subduction zone]] of the [[African Plate]]. This was followed by the description of a new Lucinidae bivalve species, ''[[Lucinoma kazani]]'', associated with bacterial [[endosymbiont]]s. In the southeastern Mediterranean, communities of [[polychaete]]s and bivalves were also found associated with cold seeps and carbonates near [[Egypt]] and the [[Gaza Strip]] at depths of 500–800 m, but no living fauna was collected. The first [[in situ]] observations of extensive living chemosynthetic communities in the eastern Mediterranean Sea prompted cooperation between biologists, [[geochemist]]s, and geologists. During [[submersible]] dives, communities comprising large fields of small bivalves (dead and alive), large [[siboglinid]] tube worms, isolated or forming dense aggregations, large [[sponge]]s, and associated endemic fauna were observed in various cold seep habitats associated with carbonate crusts at 1,700–2,000 m depth. Two mud volcano fields were first explored, one along the Mediterranean Ridge, where most of them were partially (Napoli, Milano mud volcanoes) or totally (Urania, Maidstone mud volcanoes) affected by [[brine pool|brines]], and the other on the [[Anaximander mound]]s south of [[Turkey]]. The latter area includes the large Amsterdam mud volcano, which is affected by recent [[mudflow]]s, and the smaller Kazan or Kula mud volcanoes. [[Gas hydrate]]s have been sampled at the Amsterdam and Kazan mud volcanoes, and high methane levels have been recorded above the seafloor. Several provinces of the [[Nile]] deep-sea fan have been explored recently. These include the very active brine seepage named the [[Menes Caldera]] in the eastern province between 2,500 m and 3,000 m, the pockmarks in the central area along middle and lower slopes, and the mud volcanoes of the eastern province, as well as one in the central upper slope ([[North Alex]] area) at 500 m depth.<ref name="Danovaro 2010" /> | ||
During these first exploratory dives, symbiont-bearing taxa that are similar to those observed on the Olimpi and Anaximander mud fields were sampled and identified. This similarity is not surprising, as most of these taxa were originally described from dredging in the Nile fan.<ref name="Danovaro 2010" /> Up to five species of bivalves harboring bacterial symbionts colonized these methane- and sulfide-rich environments. A new species of [[Siboglinidae]] polychaete, ''[[Lamellibrachia anaximandri]]'', the tubeworm colonizing cold seeps from the Mediterranean ridge to the Nile deep-sea fan, has just been described in 2010.<ref name="Danovaro 2010" /><ref>Southward E., Andersen A., Hourdez S. (submitted 2010). "''Lamellibrachia anaximandri'' n.sp., a new vestimentiferan tubeworm from the Mediterranean (Annelida)". ''[[Zoosystema]]''.</ref> Moreover, the study of symbioses revealed associations with chemoautotrophic [[Sulfur-reducing bacteria|bacteria, sulfur oxidizers]] in Vesicomyidae and Lucinidae bivalves and Siboglinidae tubeworms, and highlighted the exceptional diversity of bacteria living in symbiosis with small Mytilidae. The Mediterranean seeps appear to represent a rich habitat characterized by megafauna [[species richness]] (e.g., [[gastropod]]s) or the exceptional size of some species such as sponges (''[[Rhizaxinella pyrifera]]'') and crabs (''[[Chaceon mediterraneus]]''), compared with their background counterparts. This contrasts with the low macro- and mega-faunal abundance and diversity of the deep [[eastern Mediterranean]]. Seep communities in the Mediterranean that include endemic chemosynthetic species and associated fauna differ from the other known seep communities in the world at the species level but also by the absence of the large-size bivalve genera ''[[Calyptogena]]'' or ''[[Bathymodiolus]]''. The isolation of the Mediterranean seeps from the Atlantic Ocean after the [[Messinian crisis]] led to the development of unique communities, which are likely to differ in composition and structure from those in the Atlantic Ocean. Further expeditions involved quantitative sampling of habitats in different areas, from the Mediterranean Ridge to the eastern Nile deep-sea fan.<ref name="Danovaro 2010" /> Cold seeps discovered in the [[Sea of Marmara]] in 2008<ref>{{cite journal | last1 = Zitter | first1 = T. A. C | last2 = Henry | first2 = P. | last3 = Aloisi | first3 = G. | last4 = Delaygue | first4 = G. | last5 = Çagatay | first5 = M. N. | During these first exploratory dives, symbiont-bearing taxa that are similar to those observed on the Olimpi and Anaximander mud fields were sampled and identified. This similarity is not surprising, as most of these taxa were originally described from dredging in the Nile fan.<ref name="Danovaro 2010" /> Up to five species of bivalves harboring bacterial symbionts colonized these methane- and sulfide-rich environments. A new species of [[Siboglinidae]] polychaete, ''[[Lamellibrachia anaximandri]]'', the tubeworm colonizing cold seeps from the Mediterranean ridge to the Nile deep-sea fan, has just been described in 2010.<ref name="Danovaro 2010" /><ref>Southward E., Andersen A., Hourdez S. (submitted 2010). "''Lamellibrachia anaximandri'' n.sp., a new vestimentiferan tubeworm from the Mediterranean (Annelida)". ''[[Zoosystema]]''.</ref> Moreover, the study of symbioses revealed associations with chemoautotrophic [[Sulfur-reducing bacteria|bacteria, sulfur oxidizers]] in Vesicomyidae and Lucinidae bivalves and Siboglinidae tubeworms, and highlighted the exceptional diversity of bacteria living in symbiosis with small Mytilidae. The Mediterranean seeps appear to represent a rich habitat characterized by megafauna [[species richness]] (e.g., [[gastropod]]s) or the exceptional size of some species such as sponges (''[[Rhizaxinella pyrifera]]'') and crabs (''[[Chaceon mediterraneus]]''), compared with their background counterparts. This contrasts with the low macro- and mega-faunal abundance and diversity of the deep [[eastern Mediterranean]]. Seep communities in the Mediterranean that include endemic chemosynthetic species and associated fauna differ from the other known seep communities in the world at the species level but also by the absence of the large-size bivalve genera ''[[Calyptogena]]'' or ''[[Bathymodiolus]]''. The isolation of the Mediterranean seeps from the Atlantic Ocean after the [[Messinian crisis]] led to the development of unique communities, which are likely to differ in composition and structure from those in the Atlantic Ocean. Further expeditions involved quantitative sampling of habitats in different areas, from the Mediterranean Ridge to the eastern Nile deep-sea fan.<ref name="Danovaro 2010" /> Cold seeps discovered in the [[Sea of Marmara]] in 2008<ref>{{cite journal | last1 = Zitter | first1 = T. A. C | last2 = Henry | first2 = P. | last3 = Aloisi | first3 = G. | last4 = Delaygue | first4 = G. | last5 = Çagatay | first5 = M. N. | year = 2008 | title = Cold seeps along the main Marmara Fault in the Sea of Marmara (Turkey) | url = https://archimer.ifremer.fr/doc/2008/publication-4065.pdf| journal = Deep-Sea Research Part I: Oceanographic Research Papers | volume = 55 | issue = 4| pages = 552–570 | doi = 10.1016/j.dsr.2008.01.002 | bibcode = 2008DSRI...55..552Z }}</ref> have also revealed chemosynthesis-based communities that showed a considerable similarity to the symbiont-bearing fauna of eastern Mediterranean cold seeps.<ref name="Danovaro 2010" /> | ||
=== In the Indian Ocean === | === In the Indian Ocean === | ||
In the [[Makran Trench]], | In the [[Makran Trench]], a subduction zone along the northeastern margin of the [[Gulf of Oman]] adjacent to the southwestern coast of [[Pakistan]] and the southeastern coast of [[Iran]], compression of an accretionary wedge has resulted in the formation of cold seeps and mud volcanoes.<ref>Fischer, D. ; Bohrmann, G. ; Zabel, M. ; Kasten, S. (April 2009): [https://ui.adsabs.harvard.edu/abs/2009EGUGA..11.6836F/abstract Geochemical zonation and characteristics of cold seeps along the Makran continental margin off Pakistan] EGU General Assembly Conference Abstracts. Retrieved 19 November 2020.</ref> | ||
=== In the West Pacific === | === In the West Pacific === | ||
| Line 216: | Line 216: | ||
==== New Zealand ==== | ==== New Zealand ==== | ||
Off the mainland coast of [[New Zealand]], shelf-edge instability is enhanced in some locations by cold seeps of methane-rich fluids that likewise support chemosynthetic faunas and carbonate concretions.<ref name="Gordon 2010" /><ref>{{cite journal | last1 = Lewis | first1 = K. B. | last2 = Marshall | first2 = B. A. | year = 1996 | title = Seep faunas and other indicators of methane-rich dewatering on New Zealand convergent margins | journal = [[New Zealand Journal of Geology and Geophysics]] | volume = 39 | issue = 2| pages = 181–200 | doi = 10.1080/00288306.1996.9514704 | bibcode = 1996NZJGG..39..181L }}</ref><ref>{{cite journal | last1 = Orpin | first1 = A. R. | year = 1997 | title = Dolomite chimneys as possible evidence of coastal fluid expulsion, uppermost Otago continental slope, southern New Zealand | journal = Marine Geology | volume = 138 | issue = 1–2| pages = 51–67 | doi = 10.1016/S0025-3227(96)00101-6 | bibcode = 1997MGeol.138...51O }}</ref><ref name="Baco 2009">{{cite journal | last1 = Baco | first1 = A. R. | last2 = Rowden | first2 = A. A. | last3 = Levin | first3 = L. A. | last4 = Smith | first4 = C. R. | last5 = Bowden | first5 = D. | Off the mainland coast of [[New Zealand]], shelf-edge instability is enhanced in some locations by cold seeps of methane-rich fluids that likewise support chemosynthetic faunas and carbonate concretions.<ref name="Gordon 2010" /><ref>{{cite journal | last1 = Lewis | first1 = K. B. | last2 = Marshall | first2 = B. A. | year = 1996 | title = Seep faunas and other indicators of methane-rich dewatering on New Zealand convergent margins | journal = [[New Zealand Journal of Geology and Geophysics]] | volume = 39 | issue = 2| pages = 181–200 | doi = 10.1080/00288306.1996.9514704 | bibcode = 1996NZJGG..39..181L }}</ref><ref>{{cite journal | last1 = Orpin | first1 = A. R. | year = 1997 | title = Dolomite chimneys as possible evidence of coastal fluid expulsion, uppermost Otago continental slope, southern New Zealand | journal = Marine Geology | volume = 138 | issue = 1–2| pages = 51–67 | doi = 10.1016/S0025-3227(96)00101-6 | bibcode = 1997MGeol.138...51O }}</ref><ref name="Baco 2009">{{cite journal | last1 = Baco | first1 = A. R. | last2 = Rowden | first2 = A. A. | last3 = Levin | first3 = L. A. | last4 = Smith | first4 = C. R. | last5 = Bowden | first5 = D. | year = 2009 | title = Initial characterization of cold seep faunal communities on the New Zealand margin | journal = Marine Geology | volume = 272 | issue = 1–4| pages = 251–259 | doi = 10.1016/j.margeo.2009.06.015 | bibcode = 2010MGeol.272..251B }}</ref> Dominant animals are tubeworms of the family [[Siboglinidae]] and bivalves of families [[Vesicomyidae]] and [[Mytilidae]] (''[[Bathymodiolus]]''). Many of its species appear to be endemic. Deep [[bottom trawling]] has [[Environmental effects of fishing|severely damaged]] cold seep communities, and those ecosystems are threatened. Cold seeps are found at depths down to 2,000 m, and the topographic and chemical complexity of the habitats are not yet mapped{{When|date=April 2024}}. The scale of new-species discovery in these poorly-studied or unexplored ecosystems is likely to be high.<ref name="Baco 2009" /><ref name="Gordon 2010" /> | ||
=== In the East Pacific === | === In the East Pacific === | ||
| Line 222: | Line 222: | ||
[[File:ROV Ventana on Point Lobos.jpg|thumb|[[Monterey Bay Aquarium Research Institute]] has used [[remotely operated underwater vehicle]] ''Ventana'' in the research of [[Monterey Bay]] cold seeps.]] | [[File:ROV Ventana on Point Lobos.jpg|thumb|[[Monterey Bay Aquarium Research Institute]] has used [[remotely operated underwater vehicle]] ''Ventana'' in the research of [[Monterey Bay]] cold seeps.]] | ||
In the deep sea, the [[COMARGE]] project has studied the biodiversity patterns along and across the [[Chile]]an margin through a complexity of ecosystems such as methane seeps and [[oxygen minimum zone]]s, reporting that such habitat [[heterogeneity]] may influence the biodiversity patterns of the local fauna.<ref name="Miloslavich 2011" /><ref>{{cite journal | last1 = Sellanes | first1 = J. | last2 = Neira | first2 = C. | last3 = Quiroga | first3 = E. | last4 = Teixido | first4 = N. | year = 2010 | title = Diversity patterns along and across the Chilean margin: a continental slope encompassing oxygen gradients and methane seep benthic habitats | journal = Marine Ecology | volume = 31 | issue = 1| pages = 111–124 | doi = 10.1111/j.1439-0485.2009.00332.x | bibcode = 2010MarEc..31..111S | hdl = 10261/56612 | hdl-access = free }}</ref><ref name="Sellanes 2008">{{cite journal | last1 = Sellanes | first1 = J. | last2 = Quiroga | first2 = E. | last3 = Neira | first3 = C. | year = 2008 | title = Megafauna community structure and trophic relationships at the recently discovered Concepción Methane Seep Area, Chile, ~36°S | journal = [[ICES Journal of Marine Science]] | volume = 65 | issue = 7| pages = 1102–1111 | doi = 10.1093/icesjms/fsn099 | doi-access = free }}</ref><ref>{{cite journal | last1 = Sellanes | first1 = J. | last2 = Quiroga | first2 = E. | last3 = Gallardo | first3 = V. A. | year = 2004 | title = First direct evidence of methane seepage and associated chemosynthetic communities in the bathyal zone off Chile | journal = [[Journal of the Marine Biological Association of the UK]] | volume = 84 | issue = 5| pages = 1065–1066 | doi = 10.1017/S0025315404010422h | bibcode = 2004JMBUK..84.1065S | s2cid = 85948533 }}</ref> Seep fauna include bivalves of families [[Lucinidae]], [[Thyasiridae]], [[Solemyidae]] (''[[Acharax]]'' sp.), and [[Vesicomyidae]] (''[[Calyptogena gallardoi]]'') and polychaetes (''[[Lamellibrachia]]'' sp. and two other polychaete species).<ref name="Sellanes 2008" /> Furthermore, in these soft reduced [[sediment]]s below the oxygen minimum zone off the Chilean margin, a diverse microbial community composed by a variety of large [[prokaryote]]s (mainly large multi-cellular filamentous "mega bacteria" of the genera ''[[Thioploca]]'' and ''[[Beggiatoa]]'', and of "macrobacteria" including a diversity of phenotypes), [[protist]]s (ciliates, flagellates, and foraminifers), as well as small metazoans (mostly nematodes and polychaetes) has been found.<ref name="Miloslavich 2011" /><ref name="Gallardo 2007">{{cite journal | last1 = Gallardo | first1 = V. A. | last2 = Espinoza | first2 = C. | editor4-first = Paul C. W | editor4-last = Davies | editor3-first = Alexei Y | editor3-last = Rozanov | editor2-first = Gilbert V | editor2-last = Levin | editor1-first = Richard B | editor1-last = Hoover | year = 2007 | title = Large multicellular filamentous bacteria under the oxygen minimum zone of the eastern South Pacific: a forgotten biosphere | journal = Proc. SPIE | volume = 6694 | pages = 66941H–11 | doi = 10.1117/12.782209 | series = Instruments, Methods, and Missions for Astrobiology X | bibcode = 2007SPIE.6694E..1HG | s2cid = 121829940 }}</ref> Gallardo et al. (2007)<ref name="Gallardo 2007" /> argue that the likely chemolithotrophic metabolism of most of these mega- and macrobacteria offer an alternative explanation to [[fossil]] findings, in particular to those from obvious non-littoral origins, suggesting that traditional hypotheses on the cyanobacterial origin of some fossils may have to be revised.<ref name="Miloslavich 2011" /> | In the deep sea, the [[COMARGE]] project has studied the biodiversity patterns along and across the [[Chile]]an margin through a complexity of ecosystems such as methane seeps and [[oxygen minimum zone]]s, reporting that such habitat [[heterogeneity]] may influence the biodiversity patterns of the local fauna.<ref name="Miloslavich 2011" /><ref>{{cite journal | last1 = Sellanes | first1 = J. | last2 = Neira | first2 = C. | last3 = Quiroga | first3 = E. | last4 = Teixido | first4 = N. | year = 2010 | title = Diversity patterns along and across the Chilean margin: a continental slope encompassing oxygen gradients and methane seep benthic habitats | journal = Marine Ecology | volume = 31 | issue = 1| pages = 111–124 | doi = 10.1111/j.1439-0485.2009.00332.x | bibcode = 2010MarEc..31..111S | hdl = 10261/56612 | hdl-access = free }}</ref><ref name="Sellanes 2008">{{cite journal | last1 = Sellanes | first1 = J. | last2 = Quiroga | first2 = E. | last3 = Neira | first3 = C. | year = 2008 | title = Megafauna community structure and trophic relationships at the recently discovered Concepción Methane Seep Area, Chile, ~36°S | journal = [[ICES Journal of Marine Science]] | volume = 65 | issue = 7| pages = 1102–1111 | doi = 10.1093/icesjms/fsn099 | doi-access = free | hdl = 10533/198010 | hdl-access = free }}</ref><ref>{{cite journal | last1 = Sellanes | first1 = J. | last2 = Quiroga | first2 = E. | last3 = Gallardo | first3 = V. A. | year = 2004 | title = First direct evidence of methane seepage and associated chemosynthetic communities in the bathyal zone off Chile | journal = [[Journal of the Marine Biological Association of the UK]] | volume = 84 | issue = 5| pages = 1065–1066 | doi = 10.1017/S0025315404010422h | bibcode = 2004JMBUK..84.1065S | s2cid = 85948533 }}</ref> Seep fauna include bivalves of families [[Lucinidae]], [[Thyasiridae]], [[Solemyidae]] (''[[Acharax]]'' sp.), and [[Vesicomyidae]] (''[[Calyptogena gallardoi]]'') and polychaetes (''[[Lamellibrachia]]'' sp. and two other polychaete species).<ref name="Sellanes 2008" /> Furthermore, in these soft reduced [[sediment]]s below the oxygen minimum zone off the Chilean margin, a diverse microbial community composed by a variety of large [[prokaryote]]s (mainly large multi-cellular filamentous "mega bacteria" of the genera ''[[Thioploca]]'' and ''[[Beggiatoa]]'', and of "macrobacteria" including a diversity of phenotypes), [[protist]]s (ciliates, flagellates, and foraminifers), as well as small metazoans (mostly nematodes and polychaetes) has been found.<ref name="Miloslavich 2011" /><ref name="Gallardo 2007">{{cite journal | last1 = Gallardo | first1 = V. A. | last2 = Espinoza | first2 = C. | editor4-first = Paul C. W | editor4-last = Davies | editor3-first = Alexei Y | editor3-last = Rozanov | editor2-first = Gilbert V | editor2-last = Levin | editor1-first = Richard B | editor1-last = Hoover | year = 2007 | title = Large multicellular filamentous bacteria under the oxygen minimum zone of the eastern South Pacific: a forgotten biosphere | journal = Proc. SPIE | volume = 6694 | pages = 66941H–11 | doi = 10.1117/12.782209 | series = Instruments, Methods, and Missions for Astrobiology X | bibcode = 2007SPIE.6694E..1HG | s2cid = 121829940 }}</ref> Gallardo et al. (2007)<ref name="Gallardo 2007" /> argue that the likely chemolithotrophic metabolism of most of these mega- and macrobacteria offer an alternative explanation to [[fossil]] findings, in particular to those from obvious non-littoral origins, suggesting that traditional hypotheses on the cyanobacterial origin of some fossils may have to be revised.<ref name="Miloslavich 2011" /> | ||
Cold seeps ([[Pockmark (geology)|pockmarks]]) are also known from depths of 130 m in the [[Hecate Strait]], [[British Columbia]], Canada.<ref name="Barrie 2010">{{cite journal | last1 = Barrie | first1 = J. V. | last2 = Cook | first2 = S. | last3 = Conway | first3 = K. W. | year = 2010 | title = Cold seeps and benthic habitat on the Pacific margin of Canada | journal = [[Continental Shelf Research]] | volume = 31 | issue = 2 Supplement 1| pages = S85–S92 | doi = 10.1016/j.csr.2010.02.013 | bibcode = 2011CSR....31S..85V }}</ref> Unobvious fauna (also unobvious for cold seeps) have been found there with these dominating species: sea snail ''[[Fusitriton oregonensis]]'', anemone ''[[Metridium giganteum]]'', encrusting sponges, and bivalve ''[[Solemya reidi]]''.<ref name="Barrie 2010" /> | Cold seeps ([[Pockmark (geology)|pockmarks]]) are also known from depths of 130 m in the [[Hecate Strait]], [[British Columbia]], Canada.<ref name="Barrie 2010">{{cite journal | last1 = Barrie | first1 = J. V. | last2 = Cook | first2 = S. | last3 = Conway | first3 = K. W. | year = 2010 | title = Cold seeps and benthic habitat on the Pacific margin of Canada | journal = [[Continental Shelf Research]] | volume = 31 | issue = 2 Supplement 1| pages = S85–S92 | doi = 10.1016/j.csr.2010.02.013 | bibcode = 2011CSR....31S..85V }}</ref> Unobvious fauna (also unobvious for cold seeps) have been found there with these dominating species: sea snail ''[[Fusitriton oregonensis]]'', anemone ''[[Metridium giganteum]]'', encrusting sponges, and bivalve ''[[Solemya reidi]]''.<ref name="Barrie 2010" /> | ||
Cold seeps with chemosynthetic communities along the USA Pacific coast occur in [[Monterey Canyon]], just off [[Monterey Bay]], California on a [[mud volcano]].<ref name="Lorenson 1999">Lorenson T. D., Kvenvolden K. A., Hostettler F. D., | Cold seeps with chemosynthetic communities along the USA Pacific coast occur in [[Monterey Canyon]], just off [[Monterey Bay]], California on a [[mud volcano]].<ref name="Lorenson 1999">Lorenson T. D., Kvenvolden K. A., Hostettler F. D., Rosenbauer R. J., Martin J. B. & Orange D. L. (1999). [http://walrus.wr.usgs.gov/monterey/hydrocarbons/sitemap.html "Hydrocarbons Associated with Fluid Venting Process in Monterey Bay, California"]. [[USGS]] [[Pacific Coastal & Marine Science Center]].</ref> There have been found, for example, ''[[Calyptogena]]'' clams ''[[Calyptogena kilmeri]]'' and ''[[Calyptogena pacifica]]''<ref>Goffredi S. K. & Barry J. P. (2000). "Factors regulating productivity in chemoautotrophic symbioses; with emphasis on ''Calyptogena kilmeri'' and ''Calyptogena pacifica''". Poster, [[Monterey Bay Aquarium Research Institute]]. accessed 3 February 2011. [http://www.mbari.org/benthic/sposter.pdf PDF].</ref> and [[foraminifera]]n ''[[Spiroplectammina biformis]]''.<ref>{{cite journal | last1 = Bernhard | first1 = J. M. | last2 = Buck | first2 = K. R. | last3 = Barry | first3 = J. P. | year = 2001 | title = Monterey Bay cold-seep biota: Assemblages, abundance, and ultrastructure of living foraminifera | journal = Deep-Sea Research Part I: Oceanographic Research Papers | volume = 48 | issue = 10| pages = 2233–2249 | doi = 10.1016/S0967-0637(01)00017-6 | bibcode = 2001DSRI...48.2233B }}</ref> | ||
* [http://www.mbari.org/benthic/coldseeploc.htm map of cold seeps in the Monterey Bay] | * [http://www.mbari.org/benthic/coldseeploc.htm map of cold seeps in the Monterey Bay] | ||
Additionally, seeps have been discovered offshore southern California in the inner California Borderlands along several fault systems including the San Clemente fault,<ref>{{Cite journal |title = A deep-sea hydrothermal site on a strike-slip fault |date = 1979 |journal = Nature |volume = 281 |issue = 5732 |pages = 531–534 |doi = 10.1038/281531a0 |last = Lonsdale, P. |bibcode =1979Natur.281..531L|s2cid = 4310057 }}</ref> San Pedro fault,<ref>{{Cite journal |title = Association among active seafloor deformation, mound formation, and gas hydrate growth and accumulation within the seafloor of the Santa Monica Basin, offshore California |author1 = Paull, C. K. |author2 = W. R. Normark |author3 = W. Ussler III |author4 = D. W. Caress |author5 = R. Keaten |name-list-style=amp|date = 2008 |journal = Marine Geology |volume = 250 |issue = 3–4 |pages = 258–275 |doi = 10.1016/j.margeo.2008.01.011 |bibcode = 2008MGeol.250..258P }}</ref> and [[San Diego Trough Fault Zone|San Diego Trough fault]].<ref name=":0">{{Cite journal |url =https://authors.library.caltech.edu/58911/1/grl52960.pdf |title = Transpressional segment boundaries in strike-slip fault systems offshore southern California: Implications for fluid expulsion and cold-seep habitats |last1 = Maloney |first1 = J.M. |first2 = B.M. |last2 = Grupe |first3 = A.L. |last3 = Pasulka |first4 = K.S. |last4 = Dawson |first5 = D.H. |last5 = Case |first6 = C.A. |last6 = Frieder |first7 = L.A. |last7 = Levin |first8 = N.W. |last8 = Driscoll |date = 2015 |journal = Geophysical Research Letters |volume = 42 |issue = 10 |pages = 4080–4088 |doi = 10.1002/2015GL063778 |bibcode = 2015GeoRL..42.4080M |doi-access = free }}</ref> Fluid flow at the seeps along the San Pedro and San Diego Trough faults appears controlled by localized restraining bends in the faults.<ref name=":0" /> | Additionally, seeps have been discovered offshore southern California in the inner California Borderlands along several fault systems including the San Clemente fault,<ref>{{Cite journal |title = A deep-sea hydrothermal site on a strike-slip fault |date = 1979 |journal = Nature |volume = 281 |issue = 5732 |pages = 531–534 |doi = 10.1038/281531a0 |last = Lonsdale, P. |bibcode =1979Natur.281..531L|s2cid = 4310057 }}</ref> San Pedro fault,<ref>{{Cite journal |title = Association among active seafloor deformation, mound formation, and gas hydrate growth and accumulation within the seafloor of the Santa Monica Basin, offshore California |author1 = Paull, C. K. |author2 = W. R. Normark |author3 = W. Ussler III |author4 = D. W. Caress |author5 = R. Keaten |name-list-style=amp|date = 2008 |journal = Marine Geology |volume = 250 |issue = 3–4 |pages = 258–275 |doi = 10.1016/j.margeo.2008.01.011 |bibcode = 2008MGeol.250..258P }}</ref> and [[San Diego Trough Fault Zone|San Diego Trough fault]].<ref name=":0">{{Cite journal |url =https://authors.library.caltech.edu/58911/1/grl52960.pdf |title = Transpressional segment boundaries in strike-slip fault systems offshore southern California: Implications for fluid expulsion and cold-seep habitats |last1 = Maloney |first1 = J.M. |first2 = B.M. |last2 = Grupe |first3 = A.L. |last3 = Pasulka |first4 = K.S. |last4 = Dawson |first5 = D.H. |last5 = Case |first6 = C.A. |last6 = Frieder |first7 = L.A. |last7 = Levin |first8 = N.W. |last8 = Driscoll |date = 2015 |journal = Geophysical Research Letters |volume = 42 |issue = 10 |pages = 4080–4088 |doi = 10.1002/2015GL063778 |bibcode = 2015GeoRL..42.4080M |doi-access = free }}</ref> Fluid flow at the seeps along the San Pedro and San Diego Trough faults appears controlled by localized restraining bends in the faults.<ref name=":0" /> | ||
| Line 242: | Line 242: | ||
[[File:CretaceousSeep17.jpg|thumb|Late [[Cretaceous]] cold seep deposit in the [[Pierre Shale]], southwest South Dakota]] | [[File:CretaceousSeep17.jpg|thumb|Late [[Cretaceous]] cold seep deposit in the [[Pierre Shale]], southwest South Dakota]] | ||
Cold seep deposits are found throughout the [[Phanerozoic]] geologic record, especially in the Late [[Mesozoic]] and [[Cenozoic]]. Notable examples can be found in the Permian of Tibet,<ref>{{cite journal |last1=Liu |first1=Chao |last2=An |first2=Xianyin |last3=Algeo |first3=Thomas J. |last4=Munnecke |first4=Axel |last5=Zhang |first5=Yujie |last6=Zhu |first6=Tongxing |date=February 2021 |title=Hydrocarbon-seep deposits in the lower Permian Angie Formation, Central Lhasa Block, Tibet |url=https://www.sciencedirect.com/science/article/abs/pii/S1342937X20303063 |journal=[[Gondwana Research]] |volume=90 |pages=258–272 |doi=10.1016/j.gr.2020.10.017 |bibcode=2021GondR..90..258L |s2cid=230530430 |access-date=15 March 2023|url-access=subscription }}</ref> the Cretaceous of [[Colorado]]<ref name="RussellScottShapiro2004">{{Cite journal |last=Scott Shapiro |first=Russell |date=20 December 2004 |title=Recognition of Fossil Prokaryotes in Cretaceous Methane Seep Carbonates: Relevance to Astrobiology |url=http://www.liebertpub.com/doi/10.1089/ast.2004.4.438 |journal=[[Astrobiology (journal)|Astrobiology]] |language=en |volume=4 |issue=4 |pages=438–449 |doi=10.1089/ast.2004.4.438 |pmid=15684725 |bibcode=2004AsBio...4..438S |issn=1531-1074 |access-date=23 October 2024 |via=Mary Ann Liebert, Inc. Publishers|url-access=subscription }}</ref> and [[Hokkaido]],<ref name="KaimEtAl2008">{{cite journal | last1 = Kaim | first1 = A. | last2 = Jenkins | first2 = R. | last3 = Warén | first3 = A. | year = 2008 | title = Provannid and provannid-like gastropods from the Late Cretaceous cold seeps of Hokkaido (Japan) and the fossil record of the Provannidae (Gastropoda: Abyssochrysoidea) | journal = [[Zoological Journal of the Linnean Society]] | volume = 154 | issue = 3| pages = 421–436 | doi = 10.1111/j.1096-3642.2008.00431.x | doi-access = free }}</ref> the [[Palaeogene]] of [[Honshu]],<ref name="AmanuEtAl2013">{{cite journal |last1=Amanu |first1=Kazutaka |last2=Jenkins |first2=Robert G. |last3=Sako |first3=Yukio |last4=Ohara |first4=Masaaki |last5=Kiel |first5=Steffen |date=1 October 2013 |title=A Paleogene deep-sea methane-seep community from Honshu, Japan |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018213003362 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=387 |pages=126–133 |doi=10.1016/j.palaeo.2013.07.015 |bibcode=2013PPP...387..126A |access-date=16 November 2022|url-access=subscription }}</ref> the [[Neogene]] of [[Northern Italy]],<ref name="ContiEtAl2017">{{cite journal | last1 = Conti | first1 = S. | last2 = Fioroni | first2 = C. | last3 = Fontana | first3 = D. | year = 2017 | title = Correlating shelf carbonate evolutive phases with fluid eexpulsion episodes in the foredeep Miocene, northern Apennines, Italy | journal = [[Marine and Petroleum Geology]] | volume = 79 | pages = 351–359 | doi=10.1016/j.marpetgeo.2016.11.003| bibcode = 2017MarPG..79..351C | hdl = 11380/1119044 }}</ref> and the [[Pleistocene]] of [[California]].<ref>{{cite journal |last1=Georgieva |first1=Magdalena N. |last2=Paull |first2=Charles K. |last3=Little |first3=Crispin T. S. |last4=McGann |first4=Mary |last5=Sahy |first5=Diana |last6=Condon |first6=Daniel |last7=Lundsten |first7=Lonny |last8=Pewsey |first8=Jack |last9=Caress |first9=David W. |last10=Vrijenhoek |first10=Robert C. |date=19 March 2019 |title=Discovery of an Extensive Deep-Sea Fossil Serpulid Reef Associated With a Cold Seep, Santa Monica Basin, California |journal=[[Frontiers in Marine Science]] |volume=6 |pages=1–21 |doi=10.3389/fmars.2019.00115 |doi-access=free }}</ref> These [[fossil]] cold seeps are characterized by mound-like topography (where preserved), coarsely crystalline carbonates, and abundant mollusks and [[brachiopod]]s. | Cold seep deposits are found throughout the [[Phanerozoic]] geologic record, especially in the Late [[Mesozoic]] and [[Cenozoic]]. Notable examples can be found in the Permian of Tibet,<ref>{{cite journal |last1=Liu |first1=Chao |last2=An |first2=Xianyin |last3=Algeo |first3=Thomas J. |last4=Munnecke |first4=Axel |last5=Zhang |first5=Yujie |last6=Zhu |first6=Tongxing |date=February 2021 |title=Hydrocarbon-seep deposits in the lower Permian Angie Formation, Central Lhasa Block, Tibet |url=https://www.sciencedirect.com/science/article/abs/pii/S1342937X20303063 |journal=[[Gondwana Research]] |volume=90 |pages=258–272 |doi=10.1016/j.gr.2020.10.017 |bibcode=2021GondR..90..258L |s2cid=230530430 |access-date=15 March 2023|url-access=subscription }}</ref> the Cretaceous of [[Colorado]]<ref name="RussellScottShapiro2004">{{Cite journal |last=Scott Shapiro |first=Russell |date=20 December 2004 |title=Recognition of Fossil Prokaryotes in Cretaceous Methane Seep Carbonates: Relevance to Astrobiology |url=http://www.liebertpub.com/doi/10.1089/ast.2004.4.438 |journal=[[Astrobiology (journal)|Astrobiology]] |language=en |volume=4 |issue=4 |pages=438–449 |doi=10.1089/ast.2004.4.438 |pmid=15684725 |bibcode=2004AsBio...4..438S |issn=1531-1074 |access-date=23 October 2024 |via=Mary Ann Liebert, Inc. Publishers|url-access=subscription }}</ref> and [[Hokkaido]],<ref name="KaimEtAl2008">{{cite journal | last1 = Kaim | first1 = A. | last2 = Jenkins | first2 = R. | last3 = Warén | first3 = A. | year = 2008 | title = Provannid and provannid-like gastropods from the Late Cretaceous cold seeps of Hokkaido (Japan) and the fossil record of the Provannidae (Gastropoda: Abyssochrysoidea) | journal = [[Zoological Journal of the Linnean Society]] | volume = 154 | issue = 3| pages = 421–436 | doi = 10.1111/j.1096-3642.2008.00431.x | doi-access = free }}</ref> the [[Palaeogene]] of [[Honshu]],<ref name="AmanuEtAl2013">{{cite journal |last1=Amanu |first1=Kazutaka |last2=Jenkins |first2=Robert G. |last3=Sako |first3=Yukio |last4=Ohara |first4=Masaaki |last5=Kiel |first5=Steffen |date=1 October 2013 |title=A Paleogene deep-sea methane-seep community from Honshu, Japan |url=https://www.sciencedirect.com/science/article/abs/pii/S0031018213003362 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=387 |pages=126–133 |doi=10.1016/j.palaeo.2013.07.015 |bibcode=2013PPP...387..126A |access-date=16 November 2022|url-access=subscription }}</ref> the [[Neogene]] of [[Northern Italy]],<ref name="ContiEtAl2017">{{cite journal | last1 = Conti | first1 = S. | last2 = Fioroni | first2 = C. | last3 = Fontana | first3 = D. | year = 2017 | title = Correlating shelf carbonate evolutive phases with fluid eexpulsion episodes in the foredeep Miocene, northern Apennines, Italy | journal = [[Marine and Petroleum Geology]] | volume = 79 | pages = 351–359 | doi=10.1016/j.marpetgeo.2016.11.003| bibcode = 2017MarPG..79..351C | hdl = 11380/1119044 | hdl-access = free }}</ref> and the [[Pleistocene]] of [[California]].<ref>{{cite journal |last1=Georgieva |first1=Magdalena N. |last2=Paull |first2=Charles K. |last3=Little |first3=Crispin T. S. |last4=McGann |first4=Mary |last5=Sahy |first5=Diana |last6=Condon |first6=Daniel |last7=Lundsten |first7=Lonny |last8=Pewsey |first8=Jack |last9=Caress |first9=David W. |last10=Vrijenhoek |first10=Robert C. |date=19 March 2019 |title=Discovery of an Extensive Deep-Sea Fossil Serpulid Reef Associated With a Cold Seep, Santa Monica Basin, California |journal=[[Frontiers in Marine Science]] |volume=6 |pages=1–21 |doi=10.3389/fmars.2019.00115 |doi-access=free |hdl=10141/622448 |hdl-access=free }}</ref> These [[fossil]] cold seeps are characterized by mound-like topography (where preserved), coarsely crystalline carbonates, and abundant mollusks and [[brachiopod]]s. | ||
== Environmental impacts == | == Environmental impacts == | ||
| Line 250: | Line 250: | ||
Weapons and bombs have also been discarded at sea, and their dumping in open waters contributes to seafloor contamination. Another major threat to the benthic fauna is the presence of lost fishing gear, such as nets and longlines, which contribute to [[Ghost net|ghost fishing]] and can damage fragile ecosystems such as cold-water corals. | Weapons and bombs have also been discarded at sea, and their dumping in open waters contributes to seafloor contamination. Another major threat to the benthic fauna is the presence of lost fishing gear, such as nets and longlines, which contribute to [[Ghost net|ghost fishing]] and can damage fragile ecosystems such as cold-water corals. | ||
Chemical contaminants such as [[persistent organic pollutants]], toxic metals (e.g., Hg, Cd, Pb, Ni), radioactive compounds, pesticides, herbicides, and pharmaceuticals are also accumulating in deep-sea sediments.<ref>{{cite journal | last1 = Richter | first1 = T.O. | last2 = de Stigter | first2 = H.C. | last3 = Boer | first3 = W. | last4 = Jesus | first4 = C.C. | last5 = van Weering | first5 = T.C.E. | year = 2009 | title = Dispersal of natural and anthropogenic lead through submarine canyons in the Portuguese margin | journal = Deep-Sea Research Part I | volume = 56 | issue = 2| pages = 267–282 | doi=10.1016/j.dsr.2008.09.006| bibcode = 2009DSRI...56..267R }}</ref> Topography (such as canyons) and hydrography (such as cascading events) play a major role in the transportation and accumulation of these chemicals from the coast and shelf to the deep basins, affecting the local fauna. Recent studies have detected the presence of significant levels of [[Dioxins and dioxin-like compounds|dioxins]] in the commercial shrimp ''Aristeus antennatus'' <ref>{{cite journal | last1 = Rotllant | first1 = G. | last2 = Holgado | first2 = A.E. | last3 = Sarda | first3 = F. | last4 = Abalos | first4 = M. | last5 = Company | first5 = J.B. | Chemical contaminants such as [[persistent organic pollutants]], toxic metals (e.g., Hg, Cd, Pb, Ni), radioactive compounds, pesticides, herbicides, and pharmaceuticals are also accumulating in deep-sea sediments.<ref>{{cite journal | last1 = Richter | first1 = T.O. | last2 = de Stigter | first2 = H.C. | last3 = Boer | first3 = W. | last4 = Jesus | first4 = C.C. | last5 = van Weering | first5 = T.C.E. | year = 2009 | title = Dispersal of natural and anthropogenic lead through submarine canyons in the Portuguese margin | journal = Deep-Sea Research Part I | volume = 56 | issue = 2| pages = 267–282 | doi=10.1016/j.dsr.2008.09.006| bibcode = 2009DSRI...56..267R }}</ref> Topography (such as canyons) and hydrography (such as cascading events) play a major role in the transportation and accumulation of these chemicals from the coast and shelf to the deep basins, affecting the local fauna. Recent studies have detected the presence of significant levels of [[Dioxins and dioxin-like compounds|dioxins]] in the commercial shrimp ''Aristeus antennatus'' <ref>{{cite journal | last1 = Rotllant | first1 = G. | last2 = Holgado | first2 = A.E. | last3 = Sarda | first3 = F. | last4 = Abalos | first4 = M. | last5 = Company | first5 = J.B. | year = 2006 | title = Dioxin compounds in the deep-sea rose shrimp ''Aristeus antennatus'' (Risso, 1816) throughout the Mediterranean Sea | journal = Deep-Sea Research Part I | volume = 53 | issue = 12| pages = 1895–1906 | doi=10.1016/j.dsr.2006.09.004| bibcode = 2006DSRI...53.1895R }}</ref> and significant levels of [[persistent organic pollutant]]s in mesopelagic and bathypelagic cephalopods.<ref>{{cite journal | last1 = Unger | first1 = MA | last2 = Harvey | first2 = E. | last3 = Vadas | first3 = GG | last4 = Vecchione | first4 = M. | year = 2008 | title = Persistent pollutants in nine species of deep-sea cephalopods | journal = Marine Pollution Bulletin | volume = 56 | issue = 8| pages = 1486–1512 | doi=10.1016/j.marpolbul.2008.04.018| pmid = 18501382 | bibcode = 2008MarPB..56.1498U }}</ref> | ||
Climate-driven processes and climate change will affect the frequency and intensity of cascading, with unknown effects on the benthic fauna. Another potential effect of climate change is related to energy transport from surface waters to the seafloor.<ref>{{cite journal | last1 = Smith | first1 = K.L. | last2 = Ruhl | first2 = H.A. | last3 = Bett | first3 = B.J. | last4 = Billet | first4 = D.S.M. | last5 = Lampitt | first5 = R.S. | Climate-driven processes and climate change will affect the frequency and intensity of cascading, with unknown effects on the benthic fauna. Another potential effect of climate change is related to energy transport from surface waters to the seafloor.<ref>{{cite journal | last1 = Smith | first1 = K.L. | last2 = Ruhl | first2 = H.A. | last3 = Bett | first3 = B.J. | last4 = Billet | first4 = D.S.M. | last5 = Lampitt | first5 = R.S. | year = 2009 | title = Climate, carbon cycling, and deep ocean ecosystems | journal = PNAS | volume = 106 | issue = 46| pages = 19211–19218 | doi=10.1073/pnas.0908322106| pmid = 19901326 | pmc = 2780780 | bibcode = 2009PNAS..10619211S | doi-access = free }}</ref> Primary production will change in the surface layers according to sun exposure, water temperature, major stratification of water masses, and other effects, and this will affect the food chain down to the deep seafloor, which will be subject to differences in quantity, quality, and timing of organic matter input. As commercial fisheries move into deeper waters, all of these effects will affect the communities and populations of organisms in cold seeps and the deep sea in general. | ||
== See also == | == See also == | ||
| Line 262: | Line 262: | ||
== References == | == References == | ||
This article incorporates a [[public domain]] [[work of the United States Government]] from references<ref name="Hsing 2010">Hsing P.-Y. (19 October 2010). [http://oceanexplorer.noaa.gov/explorations/10lophelia/logs/oct18/oct18.html "Gas-powered Circle of Life – Succession in a Deep-sea Ecosystem"]. [[NOAA]] Ocean Explorer | Lophelia II 2010: Oil Seeps and Deep Reefs | 18 October Log. Retrieved 25 January 2011.</ref><ref name="MMS 2006">{{cite web|website=[[Minerals Management Service]] Gulf of Mexico OCS Region, New Orleans |date=November 2006 |title=Gulf of Mexico OCS Oil and Gas Lease Sales: 2007–2012. Western Planning Area Sales 204, 207, 210, 215, and 218. Central Planning Area Sales 205, 206, 208, 213, 216, and 222. Draft Environmental Impact Statement. Volume I: Chapters 1–8 and Appendices|publisher= U.S. Department of the Interior |pages= 3–27, 3–31 |url=http://www.gomr.mms.gov/PDFs/2006/2006-062-Vol1.pdf |archive-url=https://web.archive.org/web/20090326005638/http://www.gomr.mms.gov/PDFs/2006/2006-062-Vol1.pdf |archive-date=26 March 2009 }}</ref> and CC-BY-2.5 from references<ref name="Vanreusel 2010">{{cite journal | last1 = Vanreusel | first1 = A. | last2 = De Groote | first2 = A. | last3 = Gollner | first3 = S. | last4 = Bright | first4 = M. | year = 2010 | title = Ecology and Biogeography of Free-Living Nematodes Associated with Chemosynthetic Environments in the Deep Sea: A Review | journal = [[PLoS ONE]] | volume = 5 | issue = 8| page = e12449 | doi = 10.1371/journal.pone.0012449 | pmid = 20805986 | pmc = 2929199 | bibcode = 2010PLoSO...512449V | doi-access = free }}</ref><ref name="Bernardino 2012">{{cite journal | last1 = Bernardino | first1 = A. F. | last2 = Levin | first2 = L. A. | last3 = Thurber | first3 = A. R. | last4 = Smith | first4 = C. R. | year = 2012 | title = Comparative Composition, Diversity and Trophic Ecology of Sediment Macrofauna at Vents, Seeps and Organic Falls | journal = PLOS ONE | volume = 7 | issue = 4| page = e33515 | doi = 10.1371/journal.pone.0033515 | pmid = 22496753 | pmc = 3319539 | bibcode = 2012PLoSO...733515B | doi-access = free }}</ref><ref name="Boetius 2005">{{cite journal | last1 = Boetius | first1 = A | year = 2005 | title = Microfauna–Macrofauna Interaction in the Seafloor: Lessons from the Tubeworm | journal = [[PLOS Biology]] | volume = 3 | issue = 3| page = e102 | doi = 10.1371/journal.pbio.0030102 | pmid = 15760275 | pmc = 1065708 | doi-access = free }}</ref><ref name="Olu 2010">{{cite journal | last1 = Olu | first1 = K. | last2 = Cordes | first2 = E. E. | last3 = Fisher | first3 = C. R. | last4 = Brooks | first4 = J. M. | last5 = Sibuet | first5 = M. | last6 = Desbruyères | first6 = D. | year = 2010 | title = Biogeography and Potential Exchanges Among the Atlantic Equatorial Belt Cold-Seep Faunas | journal = [[PLoS ONE]] | volume = 5 | issue = 8| page = e11967 | doi = 10.1371/journal.pone.0011967 | pmid = 20700528 | pmc = 2916822 | bibcode = 2010PLoSO...511967O | doi-access = free }}</ref><ref name="Miloslavich 2011" /><ref name="Danovaro 2010">{{cite journal | last1 = Danovaro | first1 = R. | last2 = Company | first2 = J. B. | last3 = Corinaldesi | first3 = C. | last4 = D'Onghia | first4 = G. | last5 = Galil | first5 = B. | This article incorporates a [[public domain]] [[work of the United States Government]] from references<ref name="Hsing 2010">Hsing P.-Y. (19 October 2010). [http://oceanexplorer.noaa.gov/explorations/10lophelia/logs/oct18/oct18.html "Gas-powered Circle of Life – Succession in a Deep-sea Ecosystem"]. [[NOAA]] Ocean Explorer | Lophelia II 2010: Oil Seeps and Deep Reefs | 18 October Log. Retrieved 25 January 2011.</ref><ref name="MMS 2006">{{cite web|website=[[Minerals Management Service]] Gulf of Mexico OCS Region, New Orleans |date=November 2006 |title=Gulf of Mexico OCS Oil and Gas Lease Sales: 2007–2012. Western Planning Area Sales 204, 207, 210, 215, and 218. Central Planning Area Sales 205, 206, 208, 213, 216, and 222. Draft Environmental Impact Statement. Volume I: Chapters 1–8 and Appendices|publisher= U.S. Department of the Interior |pages= 3–27, 3–31 |url=http://www.gomr.mms.gov/PDFs/2006/2006-062-Vol1.pdf |archive-url=https://web.archive.org/web/20090326005638/http://www.gomr.mms.gov/PDFs/2006/2006-062-Vol1.pdf |archive-date=26 March 2009 }}</ref> and CC-BY-2.5 from references<ref name="Vanreusel 2010">{{cite journal | last1 = Vanreusel | first1 = A. | last2 = De Groote | first2 = A. | last3 = Gollner | first3 = S. | last4 = Bright | first4 = M. | year = 2010 | title = Ecology and Biogeography of Free-Living Nematodes Associated with Chemosynthetic Environments in the Deep Sea: A Review | journal = [[PLoS ONE]] | volume = 5 | issue = 8| page = e12449 | doi = 10.1371/journal.pone.0012449 | pmid = 20805986 | pmc = 2929199 | bibcode = 2010PLoSO...512449V | doi-access = free }}</ref><ref name="Bernardino 2012">{{cite journal | last1 = Bernardino | first1 = A. F. | last2 = Levin | first2 = L. A. | last3 = Thurber | first3 = A. R. | last4 = Smith | first4 = C. R. | year = 2012 | title = Comparative Composition, Diversity and Trophic Ecology of Sediment Macrofauna at Vents, Seeps and Organic Falls | journal = PLOS ONE | volume = 7 | issue = 4| page = e33515 | doi = 10.1371/journal.pone.0033515 | pmid = 22496753 | pmc = 3319539 | bibcode = 2012PLoSO...733515B | doi-access = free }}</ref><ref name="Boetius 2005">{{cite journal | last1 = Boetius | first1 = A | year = 2005 | title = Microfauna–Macrofauna Interaction in the Seafloor: Lessons from the Tubeworm | journal = [[PLOS Biology]] | volume = 3 | issue = 3| page = e102 | doi = 10.1371/journal.pbio.0030102 | pmid = 15760275 | pmc = 1065708 | doi-access = free }}</ref><ref name="Olu 2010">{{cite journal | last1 = Olu | first1 = K. | last2 = Cordes | first2 = E. E. | last3 = Fisher | first3 = C. R. | last4 = Brooks | first4 = J. M. | last5 = Sibuet | first5 = M. | last6 = Desbruyères | first6 = D. | year = 2010 | title = Biogeography and Potential Exchanges Among the Atlantic Equatorial Belt Cold-Seep Faunas | journal = [[PLoS ONE]] | volume = 5 | issue = 8| page = e11967 | doi = 10.1371/journal.pone.0011967 | pmid = 20700528 | pmc = 2916822 | bibcode = 2010PLoSO...511967O | doi-access = free }}</ref><ref name="Miloslavich 2011" /><ref name="Danovaro 2010">{{cite journal | last1 = Danovaro | first1 = R. | last2 = Company | first2 = J. B. | last3 = Corinaldesi | first3 = C. | last4 = D'Onghia | first4 = G. | last5 = Galil | first5 = B. | year = 2010 | title = Deep-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable | journal = [[PLoS ONE]] | volume = 5 | issue = 8| page = e11832 | doi = 10.1371/journal.pone.0011832 | pmid = 20689848 | pmc = 2914020 | bibcode = 2010PLoSO...511832D | doi-access = free }}</ref><ref name="Fujikura 2010">{{cite journal | last1 = Fujikura | first1 = K. | last2 = Lindsay | first2 = D. | last3 = Kitazato | first3 = H. | last4 = Nishida | first4 = S. | last5 = Shirayama | first5 = Y. | year = 2010 | title = Marine Biodiversity in Japanese Waters | journal = [[PLoS ONE]] | volume = 5 | issue = 8| page = e11836 | doi = 10.1371/journal.pone.0011836 | pmid = 20689840 | pmc = 2914005 | bibcode = 2010PLoSO...511836F | doi-access = free }}</ref><ref name="Gordon 2010">{{cite journal | last1 = Gordon | first1 = D. P. | last2 = Beaumont | first2 = J. | last3 = MacDiarmid | first3 = A. | last4 = Robertson | first4 = D. A. | last5 = Ahyong | first5 = S. T | year = 2010 | title = Marine Biodiversity of Aotearoa New Zealand | journal = [[PLoS ONE]] | volume = 5 | issue = 8| page = e10905 | doi = 10.1371/journal.pone.0010905 | pmid = 20689846 | pmc = 2914018 | bibcode = 2010PLoSO...510905G | doi-access = free }}</ref><ref name="Griffiths 2010" /> and CC-BY-3.0 text from the reference<ref name="Oliver 2011">{{cite journal | last1 = Oliver | first1 = G. | last2 = Rodrigues | first2 = C | last3 = Cunha | first3 = M. R. | year = 2011 | title = Chemosymbiotic bivalves from the mud volcanoes of the Gulf of Cadiz, NE Atlantic, with descriptions of new species of Solemyidae, Lucinidae and Vesicomyidae | journal = [[ZooKeys]] | issue = 113 | pages = 1–38 | doi = 10.3897/ZooKeys.113.1402 | pmid = 21976991 | pmc = 3187628 | doi-access = free | bibcode = 2011ZooK..113....1O }}</ref> | ||
{{Reflist|30em}} | {{Reflist|30em}} | ||
| Line 269: | Line 269: | ||
* {{cite journal | last1 = Bright | first1 = M. | last2 = Plum | first2 = C. | last3 = Riavitz | first3 = L. A. | last4 = Nikolov | first4 = N. | last5 = Martínez Arbizu | first5 = P. | last6 = Cordes | first6 = E. E. | last7 = Gollner | first7 = S. | year = 2010 | title = Epizooic metazoan meiobenthos associated with tubeworm and mussel aggregations from cold seeps of the Northern Gulf of Mexico | journal = Deep-Sea Research Part II: Topical Studies in Oceanography | volume = 57 | issue = 21–23| pages = 1982–1989 | doi = 10.1016/j.dsr2.2010.05.003 | pmid = 21264038 | pmc = 2995211 | bibcode = 2010DSRII..57.1982B }} | * {{cite journal | last1 = Bright | first1 = M. | last2 = Plum | first2 = C. | last3 = Riavitz | first3 = L. A. | last4 = Nikolov | first4 = N. | last5 = Martínez Arbizu | first5 = P. | last6 = Cordes | first6 = E. E. | last7 = Gollner | first7 = S. | year = 2010 | title = Epizooic metazoan meiobenthos associated with tubeworm and mussel aggregations from cold seeps of the Northern Gulf of Mexico | journal = Deep-Sea Research Part II: Topical Studies in Oceanography | volume = 57 | issue = 21–23| pages = 1982–1989 | doi = 10.1016/j.dsr2.2010.05.003 | pmid = 21264038 | pmc = 2995211 | bibcode = 2010DSRII..57.1982B }} | ||
* {{cite journal | last1 = German | first1 = C. R. | last2 = Ramirez-Llodra | first2 = E. | last3 = Baker | first3 = M. C. | last4 = Tyler | first4 = P. A. | author5 = the [[Biogeography of Deep-Water Chemosynthetic Ecosystems|ChEss]] Scientific Steering Committee | * {{cite journal | last1 = German | first1 = C. R. | last2 = Ramirez-Llodra | first2 = E. | last3 = Baker | first3 = M. C. | last4 = Tyler | first4 = P. A. | author5 = the [[Biogeography of Deep-Water Chemosynthetic Ecosystems|ChEss]] Scientific Steering Committee | year = 2011 | title = Deep-Water Chemosynthetic Ecosystem Research during the Census of Marine Life Decade and Beyond: A Proposed Deep-Ocean Road Map | journal = [[PLoS ONE]] | volume = 6 | issue = 8| page = e23259 | doi = 10.1371/journal.pone.0023259 | pmid = 21829722 | pmc = 3150416 | bibcode = 2011PLoSO...623259G | doi-access = free }} | ||
* {{cite journal | last1 = Lloyd | first1 = K. G. | last2 = Albert | first2 = D. B. | last3 = Biddle | first3 = J. F. | last4 = Chanton | first4 = J. P. | last5 = Pizarro | first5 = O. | last6 = Teske | first6 = A. | year = 2010 | title = Spatial Structure and Activity of Sedimentary Microbial Communities Underlying a ''Beggiatoa'' spp. Mat in a Gulf of Mexico Hydrocarbon Seep | journal = [[PLoS ONE]] | volume = 5 | issue = 1| page = e8738 | doi = 10.1371/journal.pone.0008738 | pmid = 20090951 | pmc = 2806916 | bibcode = 2010PLoSO...5.8738L | doi-access = free }} | * {{cite journal | last1 = Lloyd | first1 = K. G. | last2 = Albert | first2 = D. B. | last3 = Biddle | first3 = J. F. | last4 = Chanton | first4 = J. P. | last5 = Pizarro | first5 = O. | last6 = Teske | first6 = A. | year = 2010 | title = Spatial Structure and Activity of Sedimentary Microbial Communities Underlying a ''Beggiatoa'' spp. Mat in a Gulf of Mexico Hydrocarbon Seep | journal = [[PLoS ONE]] | volume = 5 | issue = 1| page = e8738 | doi = 10.1371/journal.pone.0008738 | pmid = 20090951 | pmc = 2806916 | bibcode = 2010PLoSO...5.8738L | doi-access = free }} | ||
* {{cite journal | last1 = Metaxas | first1 = A. | last2 = Kelly | first2 = N. E. | year = 2010 | title = Do Larval Supply and Recruitment Vary among Chemosynthetic Environments of the Deep Sea? | journal = [[PLoS ONE]] | volume = 5 | issue = 7| page = e11646 | doi = 10.1371/journal.pone.0011646 | pmid = 20657831 | pmc = 2906503 | bibcode = 2010PLoSO...511646M | doi-access = free }} | * {{cite journal | last1 = Metaxas | first1 = A. | last2 = Kelly | first2 = N. E. | year = 2010 | title = Do Larval Supply and Recruitment Vary among Chemosynthetic Environments of the Deep Sea? | journal = [[PLoS ONE]] | volume = 5 | issue = 7| page = e11646 | doi = 10.1371/journal.pone.0011646 | pmid = 20657831 | pmc = 2906503 | bibcode = 2010PLoSO...511646M | doi-access = free }} | ||
Latest revision as of 20:55, 17 June 2025
Template:Short description Template:Use dmy dates Template:Use American English
A cold seep (sometimes called a cold vent) is an area of the ocean floor where seepage of fluids rich in hydrogen sulfide, methane, and other hydrocarbons occurs, often in the form of a brine pool. Cold does not mean that the temperature of the seepage is lower than that of the surrounding sea water; on the contrary, its temperature is often slightly higher.[1] The "cold" is relative to the very warm (at least Template:Convert) conditions of a hydrothermal vent. Cold seeps constitute a biome supporting several endemic species.
Cold seeps develop unique topography over time, where reactions between methane and seawater create carbonate rock formations and reefs. These reactions may also be dependent on bacterial activity. Ikaite, a hydrous calcium carbonate, can be associated with oxidizing methane at cold seeps.
Types
Script error: No such module "Labelled list hatnote".
Types of cold seeps can be distinguished according to the depth, as shallow cold seeps and deep cold seeps.[2] Cold seeps can also be distinguished in detail, as follows:
- oil/gas seeps[2]
- gas seeps:[2] methane seeps
- gas hydrate seeps[2]
- brine seeps[2] are formed in brine pools
- pockmarks[2]
- mud volcanoes[2]
Formation and ecological succession
Cold seeps occur over fissures on the seafloor caused by tectonic activity. Oil and methane "seep" out of those fissures, get diffused by sediment, and emerge over an area several hundred meters wide.[3]
Methane (Template:Chem) is the main component of natural gas.[3] But in addition to being an important energy source for humans, methane also forms the basis of a cold seep ecosystem.[3] Cold seep biota below Template:Convert typically exhibit much greater systematic specialization and reliance on chemoautotrophy than those from shelf depths.[4] Deep-sea seeps sediments are highly heterogeneous.[4] They sustain different geochemical and microbial processes that are reflected in a complex mosaic of habitats inhabited by a mixture of specialist (heterotrophic and symbiont-associated) and background fauna.[4]
Chemosynthetic communities
Biological research in cold seeps and hydrothermal vents has been mostly focused on the microbiology and the prominent macro-invertebrates thriving on chemosynthetic microorganisms.[2] Much less research has been done on the smaller benthic fraction at the size of the meiofauna (<1 mm).[2]
A community composition's orderly shift from one set of species to another is called ecological succession.[3]
The first type of organism to take advantage of this deep-sea energy source is bacteria.[3] Aggregating into bacterial mats at cold seeps, these bacteria metabolize methane and hydrogen sulfide (another gas that emerges from seeps) for energy.[3] This process of obtaining energy from chemicals is known as chemosynthesis.[3]
During this initial stage, when methane is relatively abundant, dense mussel beds also form near the cold seep.[3] Mostly composed of species in the genus Bathymodiolus, these mussels do not directly consume food;[3] Instead, they are nourished by symbiotic bacteria that also produce energy from methane, similar to their relatives that form mats.[3] Chemosynthetic bivalves are prominent constituents of the fauna of cold seeps and are represented in that setting by five families: Solemyidae, Lucinidae, Vesicomyidae, Thyasiridae, and Mytilidae.[5]
This microbial activity produces calcium carbonate, which is deposited on the seafloor and forms a layer of rock.[3] During a period lasting up to several decades, these rock formations attract siboglinid tubeworms, which settle and grow along with the mussels.[3] Like the mussels, tubeworms rely on chemosynthetic bacteria (in this case, a type that needs hydrogen sulfide instead of methane) for survival.[3] True to any symbiotic relationship, a tubeworm also provides for its bacteria by appropriating hydrogen sulfide from the environment.[3] The sulfide not only comes from the water, but is also mined from the sediment through an extensive "root" system that a tubeworm "bush" establishes in the hard, carbonate substrate.[3] A tubeworm bush can contain hundreds of individual worms, which can grow a meter or more above the sediment.[3]
Cold seeps do not last indefinitely. As the rate of gas seepage slowly decreases, the shorter-lived, methane-hungry mussels (or more precisely, their methane-hungry bacterial symbionts) start to die off.[3] At this stage, tubeworms become the dominant organism in a seep community.[3] As long as there is some sulfide in the sediment, the sulfide-mining tubeworms can persist.[3] Individuals of one tubeworm species Lamellibrachia luymesi have been estimated to live for over 250 years in such conditions.[3]
The Benthic Filter
The organisms living at cold seeps have a large impact on the carbon cycle and on climate. Chemosynthetic organisms, specifically methanogenic (methane-consuming) organisms, prohibit the methane seeping up from beneath the seafloor from being released into the water above. Since methane is such a potent greenhouse gas, methane release could cause global warming when gas hydrate reservoirs destabilized.[7] The consumption of methane by aerobic and anaerobic seafloor life is called "the benthic filter".[8] The first part of this filter is the anaerobic bacteria and archaea underneath the seafloor that consume methane through the anaerobic oxidation of methane (AOM).[8] If the flux of methane flowing through the sediment is too large, and the anaerobic bacteria and archaea are consuming the maximum amount of methane, then the excess methane is consumed by free-floating or symbiotic aerobic bacteria above the sediment at the seafloor. The symbiotic bacteria have been found in organisms such as tube worms and clams living at cold seeps; these organisms provide oxygen to the aerobic bacteria as the bacteria provide energy they obtain from the consumption of methane. Understanding how efficient the benthic filter is can help predict how much methane escapes the seafloor at cold seeps and enters the water column and eventually the atmosphere. Studies have shown that 50–90% of methane is consumed at cold seeps with bacterial mats. Areas with clam beds have less than 15% of methane escaping.[7] Efficiency is determined by a number of factors. The benthic layer is more efficient with low flow of methane, and efficiency decreases as methane flow or the speed of flow increases.[8] Oxygen demand for cold seep ecosystems is much higher than other benthic ecosystems, so if the bottom water does not have enough oxygen, then the efficiency of aerobic microbes in removing methane is reduced.[7] The benthic filter cannot affect methane that is not traveling through the sediment. Methane can bypass the benthic filter if it bubbles to the surface or travels through cracks and fissures in the sediment.[7] These organisms are the only biological sink of methane in the ocean.[8]
Comparison with other communities
Script error: No such module "Labelled list hatnote".
Cold seeps and hydrothermal vents of deep oceans are communities that do not rely on photosynthesis for food and energy production.[2] These systems are largely driven by chemosynthetic derived energy.[2] Both systems share common characteristics such as the presence of reduced chemical compounds (H2S and hydrocarbonates), local hypoxia or even anoxia, a high abundance and metabolic activity of bacterial populations, and the production of autochthonous, organic material by chemoautotrophic bacteria.[2] Both hydrothermal vents and cold seeps show highly increased levels of metazoan biomass in association with a low local diversity.[2] This is explained through the presence of dense aggregations of foundation species and epizoic animals living within these aggregations.[2] Community-level comparisons reveal that vent, seep, and organic-fall macrofauna are very distinct in terms of composition at the family level, although they share many dominant taxa among highly sulphidic habitats.[4]
However, hydrothermal vents and cold seeps also differ in many ways. Compared to the more stable cold seeps, vents are characterized by locally-high temperatures, strongly fluctuating temperatures, pH, sulfide and oxygen concentrations, often the absence of sediments, a relatively young age, and often-unpredictable conditions, such as waxing and waning of vent fluids or volcanic eruptions.[2] Unlike hydrothermal vents, which are volatile and ephemeral environments, cold seeps emit at a slow and dependable rate. Likely owing to the cooler temperatures and stability, many cold seep organisms are much longer-lived than those inhabiting hydrothermal vents.
End of cold seep community
Script error: No such module "Labelled list hatnote".
Finally, as cold seeps become inactive, tubeworms also start to disappear, clearing the way for corals to settle on the now-exposed carbonate substrate.[3] The corals do not rely on hydrocarbons seeping out of the seafloor.[3] Studies on Lophelia pertusa suggest they derive their nutrition primarily from the ocean surface.[3] Chemosynthesis plays only a very small role, if any, in their settlement and growth.[3] While deepwater corals do not seem to be chemosynthesis-based organisms, the chemosynthetic organisms that come before them enable the corals' existence.[3] This hypothesis about establishment of deep water coral reefs is called hydraulic theory.[9][10]
Distribution
Cold seeps were discovered in 1983 by Charles Paull and colleagues on the Florida Escarpment in the Gulf of Mexico at a depth of Template:Convert.[11] Since then, seeps have been discovered in many other parts of the world's oceans. Most have been grouped into five biogeographic provinces: Gulf of Mexico, Atlantic, Mediterranean, East Pacific, and West Pacific,[12] but cold seeps are also known from under the ice shelf in Antarctica,[13] the Arctic Ocean, the North Sea, Skagerrak, Kattegat, the Gulf of California, the Red Sea, the Indian Ocean, off southern Australia, and in the inland Caspian Sea.[14] In the Pacific Northwest, a cold seep called Pythia's Oasis was discovered in 2015.[15] With the recent discovery of a methane seep in the Southern Ocean,[16] cold seeps are now known in all major oceans.[4] Cold seeps are common along continental margins in areas of high primary productivity and tectonic activity, where crustal deformation and compaction drive emissions of methane-rich fluid.[4] Cold seeps are patchily distributed, and they occur most frequently near ocean margins from intertidal to hadal depths.[4] In Chile, cold seeps are known from the intertidal zone,[17] in Kattegat, the methane seeps are known as "bubbling reefs" and are typically at depths of Template:Convert,[18] and off northern California, they can be found as shallow as Template:Convert.[14] Most cold seeps are located considerably deeper, well beyond the reach of ordinary scuba diving, and the deepest seep community known is found in the Japan Trench at a depth of Template:Convert.[19]
In addition to cold seeps existing today, the fossil remains of ancient seep systems have been found in several parts of the world. Some of these are located far inland in places formerly covered by prehistoric oceans.[14][20]
In the Gulf of Mexico
Discoveries
The chemosynthetic communities of the Gulf of Mexico have been studied extensively since the 1990s, and communities first discovered on the upper slope are likely the best understood seep communities in the world. The history of the discovery of these remarkable animals has all occurred since the 1980s. Each major discovery was unexpected―from the first hydrothermal vent communities anywhere in the world to the first cold seep communities in the Gulf of Mexico.[21]
Communities were discovered in the eastern Gulf of Mexico in 1983 using the crewed submersible DSV Alvin, during a cruise investigating the bottom of the Florida Escarpment in areas of "cold" brine seepage, where they unexpectedly discovered tubeworms and mussels.[22][21] Two groups fortuitously discovered chemosynthetic communities in the central Gulf of Mexico nearly concurrently in November and December 1984. During investigations in late December on the research vessel R/V Gyre cruise 84-G-12, by Texas A&M University, two bottom trawls were conducted to determine the effects of oil seepage on benthic ecology (until this investigation, all effects of oil seepage were assumed to be detrimental). Trawls unexpectedly recovered extensive collections of chemosynthetic organisms, including tubeworms and clams.[23] a month earlier, LGL Ecological Research Associates was conducting a research cruise as part of the multiyear MMS Northern Gulf of Mexico Continental Slope Study (Gallaway et al., 1988[24]). Bottom photography as part of this project obtained images from the end of a film roll of a deep-sea camera sled (processed on board the vessel November 14, 1984) that resulted in clear images of vesicomyid clam chemosynthetic communities (Rossman et al., 1987[25]) coincidentally in the same manner as the first documentation of chemosynthetic communities at the Galapagos Rift investigating hot water plumes by camera sled in the Pacific in 1976 (Lonsdale 1977[26]). Photography during the same LGL/MMS cruise also documented tube-worm communities in situ in the Central Gulf of Mexico for the first time (not processed until after the cruise; Boland, 1986[27]) prior to the initial submersible investigations and firsthand descriptions of Bush Hill (Template:Coord) in 1986.[28][29] The Bush Hill site was targeted by acoustic "wipeout" zones or lack of substrate structure caused by seeping hydrocarbons. This was determined using an acoustic pinger system during the same cruise on the R/V Edwin Link (renamed from Sea Diver and only Template:Convert), which used one of the Johnson Sea Link submersibles. This site represents the first eyes-on human observations of chemosynthetic communities in the northern Gulf of Mexico and is characterized by dense tubeworm and mussel accumulations, as well as exposed carbonate outcrops with numerous gorgonian and Lophelia coral colonies. Bush Hill has become one of the most thoroughly-studied chemosynthetic sites in the world.[21]
Distribution
There is a clear relationship between known hydrocarbon discoveries at great depth in the Gulf slope and chemosynthetic communities, hydrocarbon seepage, and authigenic minerals including carbonates at the seafloor.[30] While the hydrocarbon reservoirs are broad areas several kilometers beneath the Gulf, chemosynthetic communities occur in isolated areas with thin veneers of sediment only a few meters thick.[21]
The northern Gulf of Mexico slope includes a stratigraphic section more than Template:Convert thick and has been profoundly influenced by salt movement. Mesozoic source rocks from Upper Jurassic to Upper Cretaceous generate oil in most of the Gulf slope fields.[30] Migration conduits supply fresh hydrocarbon materials through a vertical scale of Template:Convert toward the surface. The surface expressions of hydrocarbon migration are called seeps. Geological evidence demonstrates that hydrocarbon and brine seepage persists in spatially discrete areas for thousands of years.[21]
The time scale for oil and gas migration from source systems is on the scale of millions of years (Sassen, 1997). Seepage from hydrocarbon sources through faults towards the surface tends to be diffused through the overlying sediment, carbonate outcroppings, and hydrate deposits, so the corresponding hydrocarbon seep communities tend to be larger (a few hundred meters wide) than chemosynthetic communities found around the hydrothermal vents of the Eastern Pacific (MacDonald, 1992).[21] There are large differences in the concentrations of hydrocarbons at seep sites. Roberts (2001) presented a spectrum of responses to be expected under a variety of flux rate conditions varying from very slow seepage to rapid venting.[21][31] Very-slow-seepage sites do not support complex chemosynthetic communities; rather, they usually only support simple microbial mats (Beggiatoa sp.).[21]
In the upper slope environment, the hard substrates resulting from carbonate precipitation can have associated communities of non-chemosynthetic animals, including a variety of sessile cnidarians such as corals and sea anemones. At the rapid flux end of the spectrum, fluidized sediment generally accompanies hydrocarbons and formation fluids arriving at the seafloor. Mud volcanoes and mud flows result. Somewhere between these two end members exists the conditions that support densely populated and diverse communities of chemosynthetic organisms (microbial mats, siboglinid tube worms, bathymodioline mussels, lucinid and vesicomyid clams, and associated organisms). These areas are frequently associated with surface or near-surface gas hydrate deposits. They also have localized areas of lithified seafloor, generally authigenic carbonates but sometimes more exotic minerals such as barite are present.[21]
The widespread nature of Gulf of Mexico chemosynthetic communities was first documented during contracted investigations by the Geological and Environmental Research Group (GERG) of Texas A&M University for the Offshore Operators Committee.[32][21] This survey remains the most widespread and comprehensive, although numerous additional communities have been documented since that time.[21] Industry exploration for energy reserves in the Gulf of Mexico has also documented numerous new communities through a wide range of depths, including the deepest-known occurrence in the Central Gulf of Mexico in Alaminos Canyon Block 818 at a depth of Template:Convert.[21] The occurrence of chemosynthetic organisms dependent on hydrocarbon seepage has been documented in water depths as shallow as Template:Convert[33] and as deep as Template:Convert.[21] This depth range specifically places chemosynthetic communities in the deepwater region of the Gulf of Mexico, which is defined as water depths greater than Template:Convert.[21]
Chemosynthetic communities are not found on the continental shelf, although they do appear in the fossil record in water shallower than Template:Convert.[21] One theory explaining this is that predation pressure has varied substantially over the time period involved (Callender and Powell 1999).[21][34] More than 50 communities are now known to exist in 43 Outer Continental Shelf (OCS) blocks.[21] Although a systematic survey has not been done to identify all chemosynthetic communities in the Gulf of Mexico, there is evidence indicating that many more such communities may exist.[21] The depth limits of discoveries probably reflect the limits of exploration (lack of submersibles capable of depths over Template:Convert).[21]
MacDonald et al. (1993 and 1996) have analyzed remote-sensing images from space that reveal the presence of oil slicks across the north-central Gulf of Mexico.[21][35][36] Results confirmed extensive natural oil seepage in the Gulf of Mexico, especially in water depths greater than Template:Convert.[21] A total of 58 additional potential locations were documented where seafloor sources were capable of producing perennial oil slicks.[36][21] Estimated seepage rates ranged from Template:Convert to Template:Convert compared to less than Template:Convert for ship discharges (both normalized for 1,000 mi2 (640,000 ac)).[21] This evidence considerably increases the area where chemosynthetic communities dependent on hydrocarbon seepage may be expected.[21]
The densest aggregations of chemosynthetic organisms have been found at water depths of around Template:Convert and deeper. The best known of these communities was named Bush Hill by the investigators who first described it.[37][21] It is a surprisingly large and dense community of chemosynthetic tube worms and mussels at a site of natural petroleum and gas seepage over a salt diapir in Green Canyon Block 185. The seep site is a small knoll that rises about Template:Convert above the surrounding seafloor in about Template:Convert water depth.[21]
Stability
According to Sassen (1997) the role of hydrates at chemosynthetic communities has been greatly underestimated.[21] The biological alteration of frozen gas hydrates was first discovered during the MMS study entitled "Stability and Change in Gulf of Mexico Chemosynthetic Communities".[38] It is hypothesized[37] that the dynamics of hydrate alteration could play a major role as a mechanism for regulation of the release of hydrocarbon gases to fuel biogeochemical processes and could also play a substantial role in community stability. Recorded bottom-water temperature excursions of several degrees in some areas such as the Bush Hill site (4–5 °C at Template:Convert depth) are believed to result in dissociation of hydrates, resulting in an increase in gas fluxes (MacDonald et al., 1994). Although not as destructive as the volcanism at vent sites of the mid-ocean ridges, the dynamics of shallow hydrate formation and movement will clearly affect sessile animals that form part of the seepage barrier. There is potential of a catastrophic event where an entire layer of shallow hydrate could break free of the bottom and considerably affect local communities of chemosynthetic fauna.[21] At deeper depths (>Template:Convert), the bottom-water temperature is colder (by approximately 3 °C) and undergoes less fluctuation. The formation of more stable and probably-deeper hydrates influences the flux of light hydrocarbon gases to the sediment surface, thus influencing the surface morphology and characteristics of chemosynthetic communities. Within complex communities such as Bush Hill, petroleum seems less important than previously thought (MacDonald, 1998b).[21]
Through taphonomic studies (death assemblages of shells) and interpretation of seep assemblage composition from cores, Powell et al. (1998) reported that, overall, seep communities were persistent over periods of 500–1,000 years and probably throughout the entire PleistoceneScript error: No such module "Unsubst".. Some sites retained optimal habitat over geological time scales. Powell reported evidence of mussel and clam communities persisting in the same sites for 500–4,000 years. Powell also found that both the composition of species and trophic tiering of hydrocarbon seep communities tend to be fairly constant across time, with temporal variations only in numerical abundance. He found few cases in which the community type changed (from mussel to clam communities, for example) or had disappeared completely. Faunal succession was not observed. Surprisingly, when recovery occurred after a past destructive event, the same chemosynthetic species reoccupied a site. There was little evidence of catastrophic burial events, but two instances were found in mussel communities in Green Canyon Block 234. The most notable observation reported by Powell (1995) was the uniqueness of each chemosynthetic community site.[21]
Precipitation of authigenic carbonates and other geologic events will undoubtedly alter surface seepage patterns over periods of many years, although through direct observation, no changes in chemosynthetic fauna distribution or composition were observed at seven separate study sites (MacDonald et al., 1995). A slightly longer period (19 years) can be referenced in the case of Bush Hill, the first Central Gulf of Mexico community described in situ in 1986. No mass die-offs or large-scale shifts in faunal composition have been observed (with the exception of collections for scientific purposes) over the 19-year history of research at this site.[21]
All chemosynthetic communities are located in water depths beyond the effect of severe storms, including hurricanes, and there would have been no alteration of these communities caused from surface storms, including hurricanes.[21]
Biology
MacDonald et al. (1990) has described four general community types. These are communities dominated by Vestimentiferan tube worms (Lamellibrachia c.f. barhami and Escarpia spp.), mytilid mussels (Seep Mytilid Ia, Ib, and III, and others), vesicomyid clams (Vesicomya cordata and Calyptogena ponderosa), and infaunal lucinid or thyasirid clams (Lucinoma sp. or Thyasira sp.). Bacterial mats are present at all sites visited to date. These faunal groups tend to display distinctive characteristics in terms of how they aggregate, the size of aggregations, the geological and chemical properties of the habitats in which they occur, and, to some degree, the heterotrophic fauna that occur with them. Many of the species found at these cold seep communities in the Gulf of Mexico are new to science and remain undescribed.[21]
Individual lamellibrachid tube worms, the longer of two taxa found at seeps, can reach lengths of Template:Convert and live hundreds of years (Fisher et al., 1997; Bergquist et al., 2000). Growth rates determined from recovered marked tube worms have been variable, ranging from no growth of 13 individuals measured one year to a maximum growth of 9.6 cm/yr (3.8 in/yr) in a Lamellibrachia individual (MacDonald, 2002). Average growth rate was 2.19 cm/yr (0.86 in/yr) for the Escarpia-like species and 2.92 cm/yr (1.15 in/yr) for lamellibrachids. These are slower growth rates than those of their hydrothermal vent relatives, but Lamellibrachia individuals can reach lengths 2–3 times that of the largest known hydrothermal vent species.[21] Individuals of Lamellibrachia sp. in excess of Template:Convert have been collected on several occasions, representing probable ages in excess of 400 years (Fisher, 1995). Vestimentiferan tube worm spawning is not seasonal, and recruitment is episodic.[21]
Tubeworms are either male or female. One recent discovery indicates that the spawning of female Lamellibrachia appears to have produced a unique association with the large bivalve Acesta bullisi, which lives permanently attached to the anterior tube opening of the tubeworm, and feeds on the periodic egg release (Järnegren et al., 2005). This close association between the bivalves and tubeworms was discovered in 1984 (Boland, 1986) but not fully explained. Virtually all mature Acesta individuals are found on female rather than male tubeworms. This evidence and other experiments by Järnegren et al. (2005) seem to have solved this mystery.[21]
Growth rates for methanotrophic mussels at cold seep sites have been reported (Fisher, 1995).[21] General growth rates were found to be relatively high. Adult mussel growth rates were similar to mussels from a littoral environment at similar temperatures. Fisher also found that juvenile mussels at hydrocarbon seeps initially grow rapidly, but the growth rate drops markedly in adults; they grow to reproductive size very quickly. Both individuals and communities appear to be very long-lived. These methane-dependent mussels have strict chemical requirements that tie them to areas of the most active seepage in the Gulf of Mexico. As a result of their rapid growth rates, mussel recolonization of a disturbed seep site could occur relatively rapidly. There is some evidence that mussels also have some requirement of a hard substrate and could increase in numbers if suitable substrate is increased on the seafloor (Fisher, 1995). Two associated species are always found associated with mussel beds—the gastropod Bathynerita naticoidea and a small Alvinocarid shrimp—suggesting these endemic species have excellent dispersal abilities and can tolerate a wide range of conditions (MacDonald, 2002).[21]
Unlike mussel beds, chemosynthetic clam beds may persist as a visual surface phenomenon for an extended period without input of new living individuals because of low dissolution rates and low sedimentation rates. Most clam beds investigated by Powell (1995) were inactive. Living individuals were rarely encountered. Powell reported that over a 50-year timespan, local extinctions and recolonization should be gradual and exceedingly rare. Contrasting these inactive beds, the first community discovered in the Central Gulf of Mexico consisted of numerous actively-plowing clams. The images obtained of this community were used to develop length/frequency and live/dead ratios as well as spatial patterns (Rosman et al., 1987a).[21]
Extensive bacterial mats of free-living bacteria are also evident at all hydrocarbon seep sites. These bacteria may compete with the major fauna for sulfide and methane energy sources and may also contribute substantially to overall production (MacDonald, 1998b). The white, nonpigmented mats were found to be an autotrophic sulfur bacteria Beggiatoa species, and the orange mats possessed an unidentified non-chemosynthetic metabolism (MacDonald, 1998b).[21]
Heterotrophic species at seep sites are a mixture of species unique to seeps (particularly molluscs and crustacean invertebrates) and those that are a normal component from the surrounding environment. Carney (1993) first reported a potential imbalance that could occur as a result of chronic disruption. Because of sporadic recruitment patterns, predators could gain an advantage, resulting in exterminations in local populations of mussel beds. It is clear that seep systems do interact with the background fauna, but conflicting evidence remains as to what degree outright predation on some specific community components such as tubeworms occurs (MacDonald, 2002). The more surprising results from this recent work is why background species do not utilize seep production more than seems to be evident. In fact, seep-associated consumers such as galatheid crabs and nerite gastropods had isotopic signatures, indicating that their diets were a mixture of seep and background production. At some sites, endemic seep invertebrates that would have been expected to obtain much if not all their diet from seep production actually consumed as much as 50 percent of their diets from the background.[21]
In the Atlantic Ocean
BR – Blake Ridge diapir
BT – Barbados trench
OR – Orenoque sectors
EP – El Pilar sector
NIG – Nigerian slope
GUI – Template:Not a typo area
REG – Regab pockmark.
Cold-seep communities in the western Atlantic Ocean have also been described from a few dives on mud volcanoes and diapirs between Template:Convert depth in the Barbados accretionary prism area and from the Blake Ridge diapir off North Carolina. More recently, seep communities have been discovered in the eastern Atlantic, on a giant pockmark cluster in the Gulf of Guinea near the Congo deep channel, and also on other pockmarks of the Congo margin, Gabon margin and Nigeria margin and in the Gulf of Cádiz.[12]
The occurrence of chemosymbiotic biota in the extensive mud volcano fields of the Gulf of Cádiz was first reported in 2003.[39] The chemosymbiotic bivalves collected from the mud volcanoes of the Gulf of Cadiz were reviewed in 2011.[5]
Cold seeps are also known from the Northern Atlantic Ocean,[2] even ranging into the Arctic Ocean, off Canada and Norway.[14]
Extensive faunal sampling has been conducted from Template:Convert in the Atlantic Equatorial Belt from the Gulf of Mexico to the Gulf of Guinea including the Barbados accretionary prism, the Blake Ridge diapir, and in the Eastern Atlantic from the Congo and Gabon margins and the recently explored Nigeria margin during Census of Marine Life ChEss project. Of the 72 taxa identified at the species level, a total of 9 species or species complexes are identified as amphi-Atlantic.[12]
The Atlantic Equatorial Belt seep megafauna community structure is influenced primarily by depth rather than by geographic distance. The bivalves Bathymodiolinae (within Mytilidae) species or complexes of species are the most widespread in the Atlantic. The Bathymodiolus boomerang complex is found at the Florida escarpment site, the Blake Ridge diapir, the Barbados prism, and the Regab site of Congo. The Bathymodiolus childressi complex is also widely distributed along the Atlantic Equatorial Belt from the Gulf of Mexico across to the Nigerian Margin, although not on the Regab or Blake Ridge sites. The commensal polynoid Branchipolynoe seepensis is known from the Gulf of Mexico, Gulf of Guinea, and Barbados. Other species with distributions extending from the eastern to western Atlantic are: gastropod Cordesia provannoides, the shrimp Alvinocaris muricola, the galatheids Munidopsis geyeri and Munidopsis livida, and probably the holothurid Chiridota hydrothermica.[12]
There have been found cold seeps also in the Amazon deepsea fan. High-resolution seismic profiles near the shelf edge show evidence of near-surface slumps and faulting Template:Convert in the subsurface and concentrations (about Template:Convert) of methane gas. Several studies (e.g., Amazon Shelf Study—AMASEDS, LEPLAC, REMAC, GLORIA, Ocean Drilling Program) indicate that there is evidence for gas seepage on the slope off the Amazon fan based on the incidence of bottom-simulating reflections (BSRs), mud volcanoes, pockmarks, gas in sediments, and deeper hydrocarbon occurrences. The existence of methane at relatively shallow depths and extensive areas of gas hydrates have been mapped in this region. Also, gas chimneys have been reported, and exploratory wells have discovered sub-commercial gas accumulations and pockmarks along fault planes. A sound geological and geophysical understanding of the Foz do Amazonas Basin is already available and used by the energy companies.[40]
Exploration of new areas, such as potential seep sites off of the east coast of the U.S. and the Laurentian fan where chemosynthetic communities are known deeper than Template:Convert, and shallower sites in the Gulf of Guinea are need to study in the future.[12]Template:Clarify
In the Mediterranean
The first biological evidence for reduced environments in the Mediterranean Sea was the presence of Lucinidae and Vesicomyidae bivalve shells cored on the top of the Napoli mud volcano (Template:Coord; "Napoli" is only a name of a seamount. It is located south of Crete), located at 1,900 m deep on the Mediterranean Ridge in the subduction zone of the African Plate. This was followed by the description of a new Lucinidae bivalve species, Lucinoma kazani, associated with bacterial endosymbionts. In the southeastern Mediterranean, communities of polychaetes and bivalves were also found associated with cold seeps and carbonates near Egypt and the Gaza Strip at depths of 500–800 m, but no living fauna was collected. The first in situ observations of extensive living chemosynthetic communities in the eastern Mediterranean Sea prompted cooperation between biologists, geochemists, and geologists. During submersible dives, communities comprising large fields of small bivalves (dead and alive), large siboglinid tube worms, isolated or forming dense aggregations, large sponges, and associated endemic fauna were observed in various cold seep habitats associated with carbonate crusts at 1,700–2,000 m depth. Two mud volcano fields were first explored, one along the Mediterranean Ridge, where most of them were partially (Napoli, Milano mud volcanoes) or totally (Urania, Maidstone mud volcanoes) affected by brines, and the other on the Anaximander mounds south of Turkey. The latter area includes the large Amsterdam mud volcano, which is affected by recent mudflows, and the smaller Kazan or Kula mud volcanoes. Gas hydrates have been sampled at the Amsterdam and Kazan mud volcanoes, and high methane levels have been recorded above the seafloor. Several provinces of the Nile deep-sea fan have been explored recently. These include the very active brine seepage named the Menes Caldera in the eastern province between 2,500 m and 3,000 m, the pockmarks in the central area along middle and lower slopes, and the mud volcanoes of the eastern province, as well as one in the central upper slope (North Alex area) at 500 m depth.[41]
During these first exploratory dives, symbiont-bearing taxa that are similar to those observed on the Olimpi and Anaximander mud fields were sampled and identified. This similarity is not surprising, as most of these taxa were originally described from dredging in the Nile fan.[41] Up to five species of bivalves harboring bacterial symbionts colonized these methane- and sulfide-rich environments. A new species of Siboglinidae polychaete, Lamellibrachia anaximandri, the tubeworm colonizing cold seeps from the Mediterranean ridge to the Nile deep-sea fan, has just been described in 2010.[41][42] Moreover, the study of symbioses revealed associations with chemoautotrophic bacteria, sulfur oxidizers in Vesicomyidae and Lucinidae bivalves and Siboglinidae tubeworms, and highlighted the exceptional diversity of bacteria living in symbiosis with small Mytilidae. The Mediterranean seeps appear to represent a rich habitat characterized by megafauna species richness (e.g., gastropods) or the exceptional size of some species such as sponges (Rhizaxinella pyrifera) and crabs (Chaceon mediterraneus), compared with their background counterparts. This contrasts with the low macro- and mega-faunal abundance and diversity of the deep eastern Mediterranean. Seep communities in the Mediterranean that include endemic chemosynthetic species and associated fauna differ from the other known seep communities in the world at the species level but also by the absence of the large-size bivalve genera Calyptogena or Bathymodiolus. The isolation of the Mediterranean seeps from the Atlantic Ocean after the Messinian crisis led to the development of unique communities, which are likely to differ in composition and structure from those in the Atlantic Ocean. Further expeditions involved quantitative sampling of habitats in different areas, from the Mediterranean Ridge to the eastern Nile deep-sea fan.[41] Cold seeps discovered in the Sea of Marmara in 2008[43] have also revealed chemosynthesis-based communities that showed a considerable similarity to the symbiont-bearing fauna of eastern Mediterranean cold seeps.[41]
In the Indian Ocean
In the Makran Trench, a subduction zone along the northeastern margin of the Gulf of Oman adjacent to the southwestern coast of Pakistan and the southeastern coast of Iran, compression of an accretionary wedge has resulted in the formation of cold seeps and mud volcanoes.[44]
In the West Pacific
Native aluminium has been reported also in cold seeps in the northeastern continental slope of the South China Sea and Chen et al. (2011)[45] have proposed a theory of its origin as resulting by reduction from tetrahydroxoaluminate Al(OH)4− to metallic aluminium by bacteria.[45]
Japan
| Cold seep | |
| Hydrothermal vent | |
| Whale fall |
|
Deep sea communities around Japan are mainly researched by Japan Agency for Marine-Earth Science and Technology (JAMSTEC). DSV Shinkai 6500, Kaikō, and other groups have discovered many sites.
Methane seep communities in Japan are distributed along plate convergence areas because of the accompanying tectonic activity. Many seeps have been found in the Japan Trench, Nankai Trough, Ryukyu Trench, Sagami Bay, Suruga Bay, and the Sea of Japan.[47]
Members of cold seep communities are similar to other regions in terms of family or genus, such as Polycheata, Lamellibrachia, Bivalavia, Solemyidae, Bathymodiolus in Mytilidae, Thyasiridae, Calyptogena in Vesicomyidae, and so forth.[46] Many of the species in Japan's cold seeps are endemic.[47]
In Kagoshima Bay, there are methane gas seepages called "tagiri" (boiling). Lamellibrachia satsuma live around there. The depth of this site is only 80 m, which is the shallowest point where Siboglinidae are known to live. L. satsuma may be kept in an aquarium for a long period at 1 atm. Two aquariums in Japan are keeping and displaying L. satsuma. An observation method to introduce it into a transparent vinyl tube is being developed.[48]
DSV Shinkai 6500 discovered vesicomyid clam communities in the Southern Mariana Forearc. They depend on methane, which originates in serpentinite. Other chemosynthetic communities would depend on hydrocarbon origins organic substance in crust, but these communities depend on methane originating from inorganic substances from the mantle.[49][50]
In 2011, the area around the Japan Trench suffered from the Tōhoku earthquake. There are cracks, methane seepages, and bacterial mats which were probably created by the earthquake.[51][52]
New Zealand
Off the mainland coast of New Zealand, shelf-edge instability is enhanced in some locations by cold seeps of methane-rich fluids that likewise support chemosynthetic faunas and carbonate concretions.[53][54][55][56] Dominant animals are tubeworms of the family Siboglinidae and bivalves of families Vesicomyidae and Mytilidae (Bathymodiolus). Many of its species appear to be endemic. Deep bottom trawling has severely damaged cold seep communities, and those ecosystems are threatened. Cold seeps are found at depths down to 2,000 m, and the topographic and chemical complexity of the habitats are not yet mappedTemplate:When. The scale of new-species discovery in these poorly-studied or unexplored ecosystems is likely to be high.[56][53]
In the East Pacific
In the deep sea, the COMARGE project has studied the biodiversity patterns along and across the Chilean margin through a complexity of ecosystems such as methane seeps and oxygen minimum zones, reporting that such habitat heterogeneity may influence the biodiversity patterns of the local fauna.[40][57][58][59] Seep fauna include bivalves of families Lucinidae, Thyasiridae, Solemyidae (Acharax sp.), and Vesicomyidae (Calyptogena gallardoi) and polychaetes (Lamellibrachia sp. and two other polychaete species).[58] Furthermore, in these soft reduced sediments below the oxygen minimum zone off the Chilean margin, a diverse microbial community composed by a variety of large prokaryotes (mainly large multi-cellular filamentous "mega bacteria" of the genera Thioploca and Beggiatoa, and of "macrobacteria" including a diversity of phenotypes), protists (ciliates, flagellates, and foraminifers), as well as small metazoans (mostly nematodes and polychaetes) has been found.[40][60] Gallardo et al. (2007)[60] argue that the likely chemolithotrophic metabolism of most of these mega- and macrobacteria offer an alternative explanation to fossil findings, in particular to those from obvious non-littoral origins, suggesting that traditional hypotheses on the cyanobacterial origin of some fossils may have to be revised.[40]
Cold seeps (pockmarks) are also known from depths of 130 m in the Hecate Strait, British Columbia, Canada.[61] Unobvious fauna (also unobvious for cold seeps) have been found there with these dominating species: sea snail Fusitriton oregonensis, anemone Metridium giganteum, encrusting sponges, and bivalve Solemya reidi.[61]
Cold seeps with chemosynthetic communities along the USA Pacific coast occur in Monterey Canyon, just off Monterey Bay, California on a mud volcano.[62] There have been found, for example, Calyptogena clams Calyptogena kilmeri and Calyptogena pacifica[63] and foraminiferan Spiroplectammina biformis.[64]
Additionally, seeps have been discovered offshore southern California in the inner California Borderlands along several fault systems including the San Clemente fault,[65] San Pedro fault,[66] and San Diego Trough fault.[67] Fluid flow at the seeps along the San Pedro and San Diego Trough faults appears controlled by localized restraining bends in the faults.[67]
In the Antarctic
The first cold seep from the Southern Ocean was reported in 2005.[16] The relatively few investigations to the Antarctic deep sea have shown the presence of deep-water habitats, including hydrothermal vents, cold seeps, and mud volcanoes.[68] Other than the Antarctic Benthic Deep-Sea Biodiversity Project (ANDEEP) cruises, little work has been done in the deep sea.[68] There are more species waiting to be described.[68]
Detection
With continuing experience, particularly on the upper continental slope in the Gulf of Mexico, the successful prediction of the presence of tubeworm communities continues to improve; however, chemosynthetic communities cannot be reliably detected directly using geophysical techniques. Hydrocarbon seeps that allow chemosynthetic communities (Guaymas Basin) to exist do modify the geological characteristics in ways that can be remotely detected, but the time scales of co-occurring active seepage and the presence of living communities is always uncertain. These known sediment modifications include (1) precipitation of authigenic carbonate in the form of micronodules, nodules, or rock masses; (2) formation of gas hydrates; (3) modification of sediment composition through concentration of hard chemosynthetic organism remains (such as shell fragments and layers); (4) formation of interstitial gas bubbles or hydrocarbons; and (5) formation of depressions or pockmarks by gas expulsion. These features give rise to acoustic effects such as wipeout zones (no echoes), hard bottoms (strongly reflective echoes), bright spots (reflection enhanced layers), or reverberant layers (Behrens, 1988; Roberts and Neurauter, 1990). Potential locations for most types of communities can be determined by careful interpretation of these various geophysical modifications, but to date, the process remains imperfect and confirmation of living communities requires direct visual techniques.[21]
Fossilized records
Cold seep deposits are found throughout the Phanerozoic geologic record, especially in the Late Mesozoic and Cenozoic. Notable examples can be found in the Permian of Tibet,[69] the Cretaceous of Colorado[70] and Hokkaido,[71] the Palaeogene of Honshu,[72] the Neogene of Northern Italy,[73] and the Pleistocene of California.[74] These fossil cold seeps are characterized by mound-like topography (where preserved), coarsely crystalline carbonates, and abundant mollusks and brachiopods.
Environmental impacts
Major threats that cold seep ecosystems and their communities face today are seafloor litter, chemical contaminants, and climate change. Seafloor litter alters the habitat by providing hard substrate where none was available before or by overlying the sediment, thereby inhibiting gas exchange and interfering with organisms on the bottom of the sea. Studies of marine litter in the Mediterranean include surveys of seabed debris on the continental shelf, slope, and bathyal plain.[75][76] In most studies, plastic items accounted for much of the debris, sometimes as much as 90% or more of the total, owing to their ubiquitous use and poor degradability.
Weapons and bombs have also been discarded at sea, and their dumping in open waters contributes to seafloor contamination. Another major threat to the benthic fauna is the presence of lost fishing gear, such as nets and longlines, which contribute to ghost fishing and can damage fragile ecosystems such as cold-water corals.
Chemical contaminants such as persistent organic pollutants, toxic metals (e.g., Hg, Cd, Pb, Ni), radioactive compounds, pesticides, herbicides, and pharmaceuticals are also accumulating in deep-sea sediments.[77] Topography (such as canyons) and hydrography (such as cascading events) play a major role in the transportation and accumulation of these chemicals from the coast and shelf to the deep basins, affecting the local fauna. Recent studies have detected the presence of significant levels of dioxins in the commercial shrimp Aristeus antennatus [78] and significant levels of persistent organic pollutants in mesopelagic and bathypelagic cephalopods.[79]
Climate-driven processes and climate change will affect the frequency and intensity of cascading, with unknown effects on the benthic fauna. Another potential effect of climate change is related to energy transport from surface waters to the seafloor.[80] Primary production will change in the surface layers according to sun exposure, water temperature, major stratification of water masses, and other effects, and this will affect the food chain down to the deep seafloor, which will be subject to differences in quantity, quality, and timing of organic matter input. As commercial fisheries move into deeper waters, all of these effects will affect the communities and populations of organisms in cold seeps and the deep sea in general.
See also
Script error: No such module "Portal".
References
This article incorporates a public domain work of the United States Government from references[3][21] and CC-BY-2.5 from references[2][4][6][12][40][41][47][53][68] and CC-BY-3.0 text from the reference[5]
Further reading
- Script error: No such module "Citation/CS1".
- Script error: No such module "Citation/CS1".
- Script error: No such module "Citation/CS1".
- Script error: No such module "Citation/CS1".
- Script error: No such module "Citation/CS1".
- Script error: No such module "Citation/CS1".
- Script error: No such module "Citation/CS1".
- Script error: No such module "Citation/CS1".
External links
- Paul Yancy's vents and seeps page
- Monterey Bay Aquarium Research Institute's seeps page
- ScienceDaily News: Tubeworms in deep sea discovered to have record long life spans
Template:Aquatic ecosystem topics Template:Authority control Template:Modelling ecosystems Template:Physical oceanography Template:Biomes
- ↑ Script error: No such module "citation/CS1". p. 20.
- ↑ a b c d e f g h i j k l m n o p q Script error: No such module "Citation/CS1".
- ↑ a b c d e f g h i j k l m n o p q r s t u v w x y z Hsing P.-Y. (19 October 2010). "Gas-powered Circle of Life – Succession in a Deep-sea Ecosystem". NOAA Ocean Explorer | Lophelia II 2010: Oil Seeps and Deep Reefs | 18 October Log. Retrieved 25 January 2011.
- ↑ a b c d e f g h Script error: No such module "Citation/CS1".
- ↑ a b c Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ a b c d Script error: No such module "Citation/CS1".
- ↑ a b c d Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Hovland M. (2008). Deep-water coral reefs: unique biodiversity hot-spots. 8.10 Summary and re-iteration of the hydraulic theory. Springer, 278 pp. Template:ISBN. Pages 204-205.
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b c d e f Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ a b c d Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Gallaway, B.J., L.R. Martin, L.R., Howard R.L. (Eds.). 1988a. Northern Gulf of Mexico Continental Slope Study, Annual Report: Year 3. Volume II: Technical Narrative. Annual report submitted to the Minerals Management Service, New Orleans, LA. Contract No. 14-12-0001-3212. OCS Study/MMS 87-0060. 586 pp. https://espis.boem.gov/final%20reports/3774.pdf
- ↑ Rosman, I., Boland, G.S., Baker, J.S. 1987. Aggregations of Vesicomyidae on the continental slope off Louisiana. Deep-Sea Res. 34(11): 1811-1820.
- ↑ Lonsdale, P. 1977. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Res., 24(9), 857-863.
- ↑ Boland, G.S. 1986. Discovery of co-occurring bivalve Acesta sp. and chemosynthetic tube worms Lamellibrachia sp. (Photograph and text). Nature, 323 (6091): 759
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b c d e Script error: No such module "Citation/CS1".
- ↑ a b c d e f Script error: No such module "Citation/CS1".
- ↑ Southward E., Andersen A., Hourdez S. (submitted 2010). "Lamellibrachia anaximandri n.sp., a new vestimentiferan tubeworm from the Mediterranean (Annelida)". Zoosystema.
- ↑ Script error: No such module "Citation/CS1".
- ↑ Fischer, D. ; Bohrmann, G. ; Zabel, M. ; Kasten, S. (April 2009): Geochemical zonation and characteristics of cold seeps along the Makran continental margin off Pakistan EGU General Assembly Conference Abstracts. Retrieved 19 November 2020.
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "citation/CS1".
- ↑ a b c Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b c Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Lorenson T. D., Kvenvolden K. A., Hostettler F. D., Rosenbauer R. J., Martin J. B. & Orange D. L. (1999). "Hydrocarbons Associated with Fluid Venting Process in Monterey Bay, California". USGS Pacific Coastal & Marine Science Center.
- ↑ Goffredi S. K. & Barry J. P. (2000). "Factors regulating productivity in chemoautotrophic symbioses; with emphasis on Calyptogena kilmeri and Calyptogena pacifica". Poster, Monterey Bay Aquarium Research Institute. accessed 3 February 2011. PDF.
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ a b c d Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".