Xiaolin Wu's line algorithm: Difference between revisions

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
imported>OAbot
m Open access bot: url-access updated in citation with #oabot.
 
imported>Weetapix
Algorithm: Replaced ipart() with floor() to avoid ambiguity around rounding.
Line 21: Line 21:
function plot(x, y, c) is
function plot(x, y, c) is
     plot the pixel at (x, y) with brightness c (where 0 ≤ c ≤ 1)
     plot the pixel at (x, y) with brightness c (where 0 ≤ c ≤ 1)
// integer part of x
function ipart(x) is
    return floor(x)
function round(x) is
    return ipart(x + 0.5)


// fractional part of x
// fractional part of x
function fpart(x) is
function fpart(x) is
     return x - ipart(x)
     return x - floor(x)


function rfpart(x) is
function rfpart(x) is
Line 58: Line 51:


     // handle first endpoint
     // handle first endpoint
     xend := round(x0)
     xend := floor(x0)
     yend := y0 + gradient * (xend - x0)
     yend := y0 + gradient * (xend - x0)
     xgap := rfpart(x0 + 0.5)
     xgap := 1 - (x0 - xend)
     xpxl1 := xend // this will be used in the main loop
     xpxl1 := xend // this will be used in the main loop
     ypxl1 := ipart(yend)
     ypxl1 := floor(yend)
     if steep then
     if steep then
         plot(ypxl1,  xpxl1, rfpart(yend) * xgap)
         plot(ypxl1,  xpxl1, rfpart(yend) * xgap)
Line 73: Line 66:
      
      
     // handle second endpoint
     // handle second endpoint
     xend := round(x1)
     xend := ceil(x1)
     yend := y1 + gradient * (xend - x1)
     yend := y1 + gradient * (xend - x1)
     xgap := fpart(x1 + 0.5)
     xgap := 1 - (xend - x1)
     xpxl2 := xend //this will be used in the main loop
     xpxl2 := xend //this will be used in the main loop
     ypxl2 := ipart(yend)
     ypxl2 := floor(yend)
     if steep then
     if steep then
         plot(ypxl2  , xpxl2, rfpart(yend) * xgap)
         plot(ypxl2  , xpxl2, rfpart(yend) * xgap)
Line 90: Line 83:
         for x from xpxl1 + 1 to xpxl2 - 1 do
         for x from xpxl1 + 1 to xpxl2 - 1 do
           begin
           begin
                 plot(ipart(intery)  , x, rfpart(intery))
                 plot(floor(intery)  , x, rfpart(intery))
                 plot(ipart(intery)+1, x,  fpart(intery))
                 plot(floor(intery)+1, x,  fpart(intery))
                 intery := intery + gradient
                 intery := intery + gradient
           end
           end
Line 97: Line 90:
         for x from xpxl1 + 1 to xpxl2 - 1 do
         for x from xpxl1 + 1 to xpxl2 - 1 do
           begin
           begin
                 plot(x, ipart(intery),  rfpart(intery))
                 plot(x, floor(intery),  rfpart(intery))
                 plot(x, ipart(intery)+1, fpart(intery))
                 plot(x, floor(intery)+1, fpart(intery))
                 intery := intery + gradient
                 intery := intery + gradient
           end
           end

Revision as of 17:00, 16 June 2025

Template:Short description Template:Multiple

File:LineXiaolinWu.gif
Demonstration of Xiaolin Wu's algorithm

Xiaolin Wu's line algorithm is an algorithm for line antialiasing.

File:Xiaolin anti-aliased line comparison.png
Anti-Aliased Lines (blue) generated with Xiaolin Wu's line algorithm alongside standard lines (red) generated with Bresenham's line algorithm

Antialiasing technique

Xiaolin Wu's line algorithm was presented in the article "An Efficient Antialiasing Technique" in the July 1991 issue of Computer Graphics, as well as in the article "Fast Antialiasing" in the June 1992 issue of Dr. Dobb's Journal.

Bresenham's algorithm draws lines extremely quickly, but it does not perform anti-aliasing. In addition, it cannot handle any cases where the line endpoints do not lie exactly on integer points of the pixel grid. A naive approach to anti-aliasing the line would take an extremely long time. Wu's algorithm is comparatively fast, but is still slower than Bresenham's algorithm. The algorithm consists of drawing pairs of pixels straddling the line, each coloured according to its distance from the line. Pixels at the line ends are handled separately. Lines less than one pixel long are handled as a special case.

An extension to the algorithm for circle drawing was presented by Xiaolin Wu in the book Graphics Gems II. Just as the line drawing algorithm is a replacement for Bresenham's line drawing algorithm, the circle drawing algorithm is a replacement for Bresenham's circle drawing algorithm.

Algorithm

function plot(x, y, c) is
    plot the pixel at (x, y) with brightness c (where 0  c  1)

// fractional part of x
function fpart(x) is
    return x - floor(x)

function rfpart(x) is
    return 1 - fpart(x)

function drawLine(x0,y0,x1,y1) is
    boolean steep := abs(y1 - y0) > abs(x1 - x0)
    
    if steep then
        swap(x0, y0)
        swap(x1, y1)
    end if
    if x0 > x1 then
        swap(x0, x1)
        swap(y0, y1)
    end if
    
    dx := x1 - x0
    dy := y1 - y0

    if dx == 0.0 then
        gradient := 1.0
    else
        gradient := dy / dx
    end if

    // handle first endpoint
    xend := floor(x0)
    yend := y0 + gradient * (xend - x0)
    xgap := 1 - (x0 - xend)
    xpxl1 := xend // this will be used in the main loop
    ypxl1 := floor(yend)
    if steep then
        plot(ypxl1,   xpxl1, rfpart(yend) * xgap)
        plot(ypxl1+1, xpxl1,  fpart(yend) * xgap)
    else
        plot(xpxl1, ypxl1  , rfpart(yend) * xgap)
        plot(xpxl1, ypxl1+1,  fpart(yend) * xgap)
    end if
    intery := yend + gradient // first y-intersection for the main loop
    
    // handle second endpoint
    xend := ceil(x1)
    yend := y1 + gradient * (xend - x1)
    xgap := 1 - (xend - x1)
    xpxl2 := xend //this will be used in the main loop
    ypxl2 := floor(yend)
    if steep then
        plot(ypxl2  , xpxl2, rfpart(yend) * xgap)
        plot(ypxl2+1, xpxl2,  fpart(yend) * xgap)
    else
        plot(xpxl2, ypxl2,  rfpart(yend) * xgap)
        plot(xpxl2, ypxl2+1, fpart(yend) * xgap)
    end if
    
    // main loop
    if steep then
        for x from xpxl1 + 1 to xpxl2 - 1 do
           begin
                plot(floor(intery)  , x, rfpart(intery))
                plot(floor(intery)+1, x,  fpart(intery))
                intery := intery + gradient
           end
    else
        for x from xpxl1 + 1 to xpxl2 - 1 do
           begin
                plot(x, floor(intery),  rfpart(intery))
                plot(x, floor(intery)+1, fpart(intery))
                intery := intery + gradient
           end
    end if
end function

References

  • Script error: No such module "Citation/CS1".
  • Script error: No such module "Citation/CS1".
  • Script error: No such module "citation/CS1".

External links