Timeline of cosmological theories: Difference between revisions

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
imported>OAbot
m Open access bot: doi updated in citation with #oabot.
imported>3Nerv0usP0ssums
m Antiquity: Fixed grammar
 
Line 16: Line 16:
* {{cite journal |last1=Cornford |first1=F. M. |title=Innumerable Worlds in Presocratic Philosophy |journal=The Classical Quarterly |date=1934 |volume=28 |issue=1 |pages=1–16 |doi=10.1017/S0009838800009897 |s2cid=170168443 |language=en |issn=1471-6844}}
* {{cite journal |last1=Cornford |first1=F. M. |title=Innumerable Worlds in Presocratic Philosophy |journal=The Classical Quarterly |date=1934 |volume=28 |issue=1 |pages=1–16 |doi=10.1017/S0009838800009897 |s2cid=170168443 |language=en |issn=1471-6844}}
* {{cite book |last1=Curd |first1=Patricia |last2=Graham |first2=Daniel W. |title=The Oxford Handbook of Presocratic Philosophy |date=2008 |publisher=Oxford University Press |isbn=978-0-19-972244-0 |pages=239–41 |url=https://books.google.com/books?id=lDvRCwAAQBAJ&pg=PA239 |language=en}}
* {{cite book |last1=Curd |first1=Patricia |last2=Graham |first2=Daniel W. |title=The Oxford Handbook of Presocratic Philosophy |date=2008 |publisher=Oxford University Press |isbn=978-0-19-972244-0 |pages=239–41 |url=https://books.google.com/books?id=lDvRCwAAQBAJ&pg=PA239 |language=en}}
* {{cite book |last1=Gregory |first1=Andrew |title=Anaximander: A Re-assessment |date=2016 |publisher=Bloomsbury Publishing |isbn=978-1472506252 |pages=121–142 |chapter-url=https://books.google.com/books?id=7TE0CwAAQBAJ&pg=PA121 |language=en |chapter=7 Anaximander: One Cosmos or Many?}}</ref> introduce the idea of multiple or even infinite universes.<ref>
* {{cite book |last1=Gregory |first1=Andrew |title=Anaximander: A Re-assessment |date=2016 |publisher=Bloomsbury Publishing |isbn=978-1-4725-0625-2 |pages=121–142 |chapter-url=https://books.google.com/books?id=7TE0CwAAQBAJ&pg=PA121 |language=en |chapter=7 Anaximander: One Cosmos or Many?}}</ref> introduce the idea of multiple or even infinite universes.<ref>
* {{cite web |last1=Siegfried |first1=Tom |title=Long Live the Multiverse! |url=https://blogs.scientificamerican.com/observations/long-live-the-multiverse/ |website=Scientific American |language=en}}
* {{cite web |last1=Siegfried |first1=Tom |title=Long Live the Multiverse! |url=https://blogs.scientificamerican.com/observations/long-live-the-multiverse/ |website=Scientific American |language=en}}
* {{cite book |last1=Siegfried |first1=Tom |title=The number of the heavens : a history of the multiverse and the quest to understand the cosmos |date=2019 |publisher=Harvard |isbn=978-0674975880 |url=https://www.hup.harvard.edu/catalog.php?isbn=978-0674975880 |chapter=Aristotle versus the Atomists |language=en}}</ref> [[Democritus]] further detailed that these worlds varied in distance, size; the presence, number and size of their suns and moons; and that they are subject to destructive collisions.<ref>"there are innumerable worlds of different sizes. In some there is neither sun nor moon, in others they are larger than in ours and others have more than one. These worlds are at irregular distances, more in one direction and less in another, and some are flourishing, others declining. Here they come into being, there they die, and they are destroyed by collision with one another. Some of the worlds have no animal or vegetable life nor any water."
* {{cite book |last1=Siegfried |first1=Tom |title=The number of the heavens: a history of the multiverse and the quest to understand the cosmos |date=2019 |publisher=Harvard |isbn=978-0-674-97588-0 |url=https://www.hup.harvard.edu/catalog.php?isbn=978-0674975880 |chapter=Aristotle versus the Atomists |language=en}}</ref> [[Democritus]] further detailed that these worlds varied in distance, size; the presence, number and size of their suns and moons; and that they are subject to destructive collisions.<ref>"there are innumerable worlds of different sizes. In some there is neither sun nor moon, in others they are larger than in ours and others have more than one. These worlds are at irregular distances, more in one direction and less in another, and some are flourishing, others declining. Here they come into being, there they die, and they are destroyed by collision with one another. Some of the worlds have no animal or vegetable life nor any water."
* {{cite book |last1=Guthrie |first1=W. K. C. |last2=Guthrie |first2=William Keith Chambers |title=A History of Greek Philosophy: Volume 2, The Presocratic Tradition from Parmenides to Democritus |date=1962 |publisher=Cambridge University Press |isbn=978-0-521-29421-8 |pages=404–06 |url=https://books.google.com/books?id=__sIfvwqVWwC&q=%22innumerable+worlds%22&pg=PA405 |language=en}}
* {{cite book |last1=Guthrie |first1=W. K. C. |last2=Guthrie |first2=William Keith Chambers |title=A History of Greek Philosophy: Volume 2, The Presocratic Tradition from Parmenides to Democritus |date=1962 |publisher=Cambridge University Press |isbn=978-0-521-29421-8 |pages=404–06 |url=https://books.google.com/books?id=__sIfvwqVWwC&q=%22innumerable+worlds%22&pg=PA405 |language=en}}
* {{cite book |last1=Vamvacas |first1=Constantine J. |title=The Founders of Western Thought – The Presocratics: A diachronic parallelism between Presocratic Thought and Philosophy and the Natural Sciences |date=2009 |publisher=Springer Science & Business Media |isbn=978-1-4020-9791-1 |pages=219–20 |url=https://books.google.com/books?id=eS-CjaJspBMC&q=%22innumerable+worlds%22&pg=PA219 |language=en}}</ref> Also during this time period, the Greeks established that the Earth is spherical rather than flat.<ref>{{cite web |title=Ancient Greek Astronomy and Cosmology {{!}} Modeling the Cosmos {{!}} Articles and Essays {{!}} Finding Our Place in the Cosmos: From Galileo to Sagan and Beyond {{!}} Digital Collections {{!}} Library of Congress |url=https://www.loc.gov/collections/finding-our-place-in-the-cosmos-with-carl-sagan/articles-and-essays/modeling-the-cosmos/ancient-greek-astronomy-and-cosmology |website=Library of Congress|location=Washington, DC}}</ref><ref>{{cite web |last1=Blakemore |first1=Erin |title=Christopher Columbus Never Set Out to Prove the Earth was Round |url=https://www.history.com/news/christopher-columbus-never-set-out-to-prove-the-earth-was-round |website=History.com |date=10 August 2023 |language=en}}</ref>
* {{cite book |last1=Vamvacas |first1=Constantine J. |title=The Founders of Western Thought – The Presocratics: A diachronic parallelism between Presocratic Thought and Philosophy and the Natural Sciences |date=2009 |publisher=Springer Science & Business Media |isbn=978-1-4020-9791-1 |pages=219–20 |url=https://books.google.com/books?id=eS-CjaJspBMC&q=%22innumerable+worlds%22&pg=PA219 |language=en}}</ref> Also during this time period, the Greeks established that the Earth is spherical rather than flat.<ref>{{cite web |title=Ancient Greek Astronomy and Cosmology {{!}} Modeling the Cosmos {{!}} Articles and Essays {{!}} Finding Our Place in the Cosmos: From Galileo to Sagan and Beyond {{!}} Digital Collections {{!}} Library of Congress |url=https://www.loc.gov/collections/finding-our-place-in-the-cosmos-with-carl-sagan/articles-and-essays/modeling-the-cosmos/ancient-greek-astronomy-and-cosmology |website=Library of Congress|location=Washington, DC}}</ref><ref>{{cite web |last1=Blakemore |first1=Erin |title=Christopher Columbus Never Set Out to Prove the Earth was Round |url=https://www.history.com/news/christopher-columbus-never-set-out-to-prove-the-earth-was-round |website=History.com |date=10 August 2023 |language=en}}</ref>
Line 24: Line 24:
: "[The Sun] is a circle twenty-eight times as big as the Earth, with the outline similar to that of a fire-filled chariot wheel, on which appears a mouth in certain places and through which it exposes its fire, as through the hole on a flute. [...] the Sun is equal to the Earth, but the circle on which it breathes and on which it's borne is twenty-seven times as big as the whole earth. [...] [The eclipse] is when the mouth from which comes the fire heat is closed. [...] [The Moon] is a circle nineteen times as big as the whole earth, all filled with fire, like that of the Sun".</ref>
: "[The Sun] is a circle twenty-eight times as big as the Earth, with the outline similar to that of a fire-filled chariot wheel, on which appears a mouth in certain places and through which it exposes its fire, as through the hole on a flute. [...] the Sun is equal to the Earth, but the circle on which it breathes and on which it's borne is twenty-seven times as big as the whole earth. [...] [The eclipse] is when the mouth from which comes the fire heat is closed. [...] [The Moon] is a circle nineteen times as big as the whole earth, all filled with fire, like that of the Sun".</ref>
* '''5th century BCE'''&nbsp;– [[Parmenides]] is credited to be the first Greek who declared that the Earth is spherical and is situated in [[Geocentrism|the centre of the universe]].<ref>{{cite LotEP |chapter=Parmenides|ref={{sfnref|DK 28A1}}}}</ref>
* '''5th century BCE'''&nbsp;– [[Parmenides]] is credited to be the first Greek who declared that the Earth is spherical and is situated in [[Geocentrism|the centre of the universe]].<ref>{{cite LotEP |chapter=Parmenides|ref={{sfnref|DK 28A1}}}}</ref>
* '''5th century BCE'''&nbsp;– [[Pythagoreanism|Pythagoreans]] as [[Philolaus]] believed the [[Pythagorean astronomical system|motion of planets is caused]] by an out-of-sight "fire" at the centre of the universe (not the Sun) that powers them, and Sun and Earth orbit that ''Central Fire'' at different distances. The Earth's inhabited side is always opposite to the Central Fire, rendering it invisible to people. They also claimed that the Moon and the planets orbit the Earth.<ref>{{Cite book|title=Early astronomy|last=Thurston|first=Hugh|publisher=Springer-Verlag New York|year=1994|isbn=0-387-94107-X|location=New York|page=111}}</ref> This model depicts a moving Earth, simultaneously self-rotating and orbiting around an external point (but not around the Sun), thus not being geocentrical, contrary to common [[intuition]]. Due to philosophical concerns about the number 10 (a "[[Tetractys|perfect number]]" for the Pythagorians), they also added a tenth "hidden body" or [[Counter-Earth]] (''Antichthon''), always in the opposite side of the invisible Central Fire and therefore also invisible from Earth.<ref name=Dreyer>{{cite book|last=Dreyer|first=John Louis Emil|title=History of the planetary systems from Thales to Kepler|year=1906|page=42|quote=To complete the number ten, Philolaus created the antichthon, or counter-earth. This tenth planet is always invisible to us, because it is between us and the central fire and always keeps pace with the Earth.|url=https://books.google.com/books?id=OgRAAQAAIAAJ&q=counter-earth+Antichthon+mysterious&pg=PA42}}</ref>
* '''5th century BCE'''&nbsp;– [[Pythagoreanism|Pythagoreans]] such as [[Philolaus]] believed the [[Pythagorean astronomical system|motion of planets is caused]] by an out-of-sight "fire" at the centre of the universe (not the Sun) that powers them, and Sun and Earth orbit that ''Central Fire'' at different distances. The Earth's inhabited side is always opposite to the Central Fire, rendering it invisible to people. They also claimed that the Moon and the planets orbit the Earth.<ref>{{Cite book|title=Early astronomy|last=Thurston|first=Hugh|publisher=Springer-Verlag New York|year=1994|isbn=0-387-94107-X|location=New York|page=111}}</ref> This model depicts a moving Earth, simultaneously self-rotating and orbiting around an external point (but not around the Sun), thus not being geocentrical, contrary to common [[intuition]]. Due to philosophical concerns about the number 10 (a "[[Tetractys|perfect number]]" for the Pythagorians), they also added a tenth "hidden body" or [[Counter-Earth]] (''Antichthon''), always in the opposite side of the invisible Central Fire and therefore also invisible from Earth.<ref name=Dreyer>{{cite book|last=Dreyer|first=John Louis Emil|title=History of the planetary systems from Thales to Kepler|year=1906|page=42|quote=To complete the number ten, Philolaus created the antichthon, or counter-earth. This tenth planet is always invisible to us, because it is between us and the central fire and always keeps pace with the Earth.|url=https://books.google.com/books?id=OgRAAQAAIAAJ&q=counter-earth+Antichthon+mysterious&pg=PA42}}</ref>
* '''4th century BCE'''&nbsp;– [[Plato]] claimed in his ''[[Timaeus (dialogue)|Timaeus]]'' that [[Celestial spheres|circles and spheres]] are the preferred shape of the universe, that [[Geocentrism|the Earth is at the center]] and is circled by, ordered in-to-outwards: Moon, Sun, Venus, Mercury, Mars, Jupiter, Saturn, and finally the [[fixed stars]] located on the [[celestial sphere]].<ref>{{Cite book|title=Early physics and astronomy. A historical introduction|last=Pedersen|first=Olaf|publisher=Cambridge University Press|year=1993|isbn=0-521-40340-5|location=Cambridge (UK)}}</ref> In Plato's complex [[cosmogony]],<ref>"The components from which he made the soul and the way in which he made it were as follows: In between the ''Being'' that is indivisible and always changeless, and the one that is divisible and comes to be in the corporeal realm, he mixed a third, intermediate form of being, derived from the other two. Similarly, he made a mixture of the ''Same,'' and then one of the ''Different,'' in between their indivisible and their corporeal, divisible counterparts. And he took the three mixtures and mixed them together to make a uniform mixture, forcing the Different, which was hard to mix, into conformity with the Same. Now when he had mixed these two with Being, and from the three had made a single mixture, he redivided the whole mixture into as many parts as his task required, each part remaining a mixture of the Same, the Different and Being." (35a-b), translation Donald J. Zeyl</ref> the [[demiurge]] gave the primacy to the motion of Sameness and left it undivided; but he divided the motion of Difference in six parts, to have seven unequal circles. He prescribed these circles to move in opposite directions, three of them with equal speeds, the others with unequal speeds, but always in proportion. These circles are the orbits of the heavenly bodies: the three moving at equal speeds are the Sun, Venus and Mercury, while the four moving at unequal speeds are the Moon, Mars, Jupiter and Saturn.<ref>[https://www.perseus.tufts.edu/cgi-bin/ptext?lookup=Plat.+Tim.+36c Plato, Timaeus, 36c]</ref><ref>[https://www.perseus.tufts.edu/cgi-bin/ptext?lookup=Plat.+Tim.+36d Plato, Timaeus, 36d]</ref> The complicated pattern of these movements is bound to be repeated again after a period called a 'complete' or [[Platonic year|'perfect' year]].<ref>[https://www.perseus.tufts.edu/cgi-bin/ptext?lookup=Plat.+Tim.+39d Plato, Timaeus, 39d]</ref> However, others like [[Philolaus]] and Hicetas had rejected geocentrism.<ref>{{cite web |last1=Encyclopædia Britannica |title=heliocentrism {{!}} Definition, History, & Facts |url=https://www.britannica.com/science/heliocentrism |website=Encyclopedia Britannica |publisher=Encyclopædia Britannica |language=en |date=2019}}</ref>
* '''4th century BCE'''&nbsp;– [[Plato]] claimed in his ''[[Timaeus (dialogue)|Timaeus]]'' that [[Celestial spheres|circles and spheres]] are the preferred shape of the universe, that [[Geocentrism|the Earth is at the center]] and is circled by, ordered in-to-outwards: Moon, Sun, Venus, Mercury, Mars, Jupiter, Saturn, and finally the [[fixed stars]] located on the [[celestial sphere]].<ref>{{Cite book|title=Early physics and astronomy. A historical introduction|last=Pedersen|first=Olaf|publisher=Cambridge University Press|year=1993|isbn=0-521-40340-5|location=Cambridge (UK)}}</ref> In Plato's complex [[cosmogony]],<ref>"The components from which he made the soul and the way in which he made it were as follows: In between the ''Being'' that is indivisible and always changeless, and the one that is divisible and comes to be in the corporeal realm, he mixed a third, intermediate form of being, derived from the other two. Similarly, he made a mixture of the ''Same,'' and then one of the ''Different,'' in between their indivisible and their corporeal, divisible counterparts. And he took the three mixtures and mixed them together to make a uniform mixture, forcing the Different, which was hard to mix, into conformity with the Same. Now when he had mixed these two with Being, and from the three had made a single mixture, he redivided the whole mixture into as many parts as his task required, each part remaining a mixture of the Same, the Different and Being." (35a-b), translation Donald J. Zeyl</ref> the [[demiurge]] gave the primacy to the motion of Sameness and left it undivided; but he divided the motion of Difference in six parts, to have seven unequal circles. He prescribed these circles to move in opposite directions, three of them with equal speeds, the others with unequal speeds, but always in proportion. These circles are the orbits of the heavenly bodies: the three moving at equal speeds are the Sun, Venus and Mercury, while the four moving at unequal speeds are the Moon, Mars, Jupiter and Saturn.<ref>[https://www.perseus.tufts.edu/cgi-bin/ptext?lookup=Plat.+Tim.+36c Plato, Timaeus, 36c]</ref><ref>[https://www.perseus.tufts.edu/cgi-bin/ptext?lookup=Plat.+Tim.+36d Plato, Timaeus, 36d]</ref> The complicated pattern of these movements is bound to be repeated again after a period called a 'complete' or [[Platonic year|'perfect' year]].<ref>[https://www.perseus.tufts.edu/cgi-bin/ptext?lookup=Plat.+Tim.+39d Plato, Timaeus, 39d]</ref> However, others like [[Philolaus]] and Hicetas had rejected geocentrism.<ref>{{cite web |last1=Encyclopædia Britannica |title=heliocentrism {{!}} Definition, History, & Facts |url=https://www.britannica.com/science/heliocentrism |website=Encyclopedia Britannica |publisher=Encyclopædia Britannica |language=en |date=2019}}</ref>
* '''4th century BCE'''&nbsp;– [[Eudoxus of Cnidus]] devised a geometric-mathematical model for the movements of the planets, the first known effort in this sense, based on (conceptual) [[concentric spheres]] centered on Earth.<ref>{{cite journal|last1=Yavetz|first1=Ido|title=On the Homocentric Spheres of Eudoxus|journal=Archive for History of Exact Sciences|date=February 1998|volume=52|issue=3|pages=222–225|jstor=41134047|bibcode = 1998AHES...52..222Y|doi=10.1007/s004070050017|s2cid=121186044}}</ref> To explain the [[Apparent retrograde motion|complexity of the movements of the planets]] along with that of the Sun and the Moon, Eudoxus thought they move as if they were attached to a number of [[Concentric spheres|concentrical, invisible spheres]], every of them rotating around its own and different axis and at different paces. His model had twenty-seven homocentric spheres with each sphere explaining a type of observable motion for each celestial object. Eudoxus emphasised that this is a purely mathematical construct of the model in the sense that the spheres of each celestial body do not exist, it just shows the possible positions of the bodies.<ref>{{cite book|last1=Crowe|first1=Michael|title=Theories of the World from Antiquity to the Copernican Revolution|date=2001|publisher=Dover|location=Mineola, NY|isbn=0-486-41444-2|page=23}}</ref> His model was later refined and expanded by [[Callippus]].
* '''4th century BCE'''&nbsp;– [[Eudoxus of Cnidus]] devised a geometric-mathematical model for the movements of the planets, the first known effort in this sense, based on (conceptual) [[concentric spheres]] centered on Earth.<ref>{{cite journal|last1=Yavetz|first1=Ido|title=On the Homocentric Spheres of Eudoxus|journal=Archive for History of Exact Sciences|date=February 1998|volume=52|issue=3|pages=222–225|jstor=41134047|bibcode = 1998AHES...52..222Y|doi=10.1007/s004070050017|s2cid=121186044}}</ref> To explain the [[Apparent retrograde motion|complexity of the movements of the planets]] along with that of the Sun and the Moon, Eudoxus thought they move as if they were attached to a number of [[Concentric spheres|concentrical, invisible spheres]], every of them rotating around its own and different axis and at different paces. His model had twenty-seven homocentric spheres with each sphere explaining a type of observable motion for each celestial object. Eudoxus emphasised that this is a purely mathematical construct of the model in the sense that the spheres of each celestial body do not exist, it just shows the possible positions of the bodies.<ref>{{cite book|last1=Crowe|first1=Michael|title=Theories of the World from Antiquity to the Copernican Revolution|date=2001|publisher=Dover|location=Mineola, NY|isbn=0-486-41444-2|page=23}}</ref> His model was later refined and expanded by [[Callippus]].
[[File:Ptolemaicsystem-small.png|thumb|Geocentric celestial spheres; [[Petrus Apianus|Peter Apian's]] ''Cosmographia'' (Antwerp, 1539)]]
[[File:Ptolemaicsystem-small.png|thumb|Geocentric celestial spheres; [[Petrus Apianus|Peter Apian's]] ''Cosmographia'' (Antwerp, 1539)]]
* '''4th century BCE'''&nbsp;– [[Aristotle]] follows the Plato's [[Geocentric model|Earth-centered universe]] in which the Earth is stationary and the [[cosmos]] (or universe) is finite in extent but infinite in time. He argued for a spherical Earth using [[lunar eclipse]]s<ref>''De caelo'', 297b31–298a10</ref> and other observations. Aristotle adopted and expanded even more the previous Eudoxus' and Callippus' model, but by supposing the spheres were material and crystalline.<ref>{{cite journal|last1=Easterling|first1=H|title=Homocentric Spheres in De Caelo|journal=Phronesis|date=1961|volume=6|issue=2|pages=138–141|jstor=4181694|doi=10.1163/156852861x00161}}</ref> Aristotle also tried to determine whether the Earth moves and concluded that all the celestial bodies fall towards Earth by natural tendency and since Earth is the centre of that tendency, it is stationary.<ref>{{Cite book|title=Early astronomy|last=Thurston|first=Hugh|publisher=Springer-Verlag New York|year=1994|isbn=0-387-94107-X|location=New York|page=118}}</ref> Plato seems to have obscurely argued that the universe did have a beginning, but Aristotle and others interpreted his words differently.<ref>{{cite book |last1=Sorabji |first1=Richard |title=The Philosophy of the Commentators, 200–600 AD: Physics |date=2005 |publisher=Cornell University Press |isbn=978-0-8014-8988-4 |page=175 |url=https://books.google.com/books?id=0QpQw8JDgQcC&pg=PA175 |language=en}}</ref>
* '''4th century BCE'''&nbsp;– [[Aristotle]] follows the Plato's [[Geocentrism|Earth-centered universe]] in which the Earth is stationary and the [[cosmos]] (or universe) is finite in extent but infinite in time. He argued for a spherical Earth using [[lunar eclipse]]s<ref>''De caelo'', 297b31–298a10</ref> and other observations. Aristotle adopted and expanded even more the previous Eudoxus' and Callippus' model, but by supposing the spheres were material and crystalline.<ref>{{cite journal|last1=Easterling|first1=H|title=Homocentric Spheres in De Caelo|journal=Phronesis|date=1961|volume=6|issue=2|pages=138–141|jstor=4181694|doi=10.1163/156852861x00161}}</ref> Aristotle also tried to determine whether the Earth moves and concluded that all the celestial bodies fall towards Earth by natural tendency and since Earth is the centre of that tendency, it is stationary.<ref>{{Cite book|title=Early astronomy|last=Thurston|first=Hugh|publisher=Springer-Verlag New York|year=1994|isbn=0-387-94107-X|location=New York|page=118}}</ref> Plato seems to have obscurely argued that the universe did have a beginning, but Aristotle and others interpreted his words differently.<ref>{{cite book |last1=Sorabji |first1=Richard |title=The Philosophy of the Commentators, 200–600 AD: Physics |date=2005 |publisher=Cornell University Press |isbn=978-0-8014-8988-4 |page=175 |url=https://books.google.com/books?id=0QpQw8JDgQcC&pg=PA175 |language=en}}</ref>
* '''4th century BCE'''&nbsp;– ''[[De Mundo]]'' – [[Classical elements|Five elements]], situated in spheres in five regions, the less being in each case surrounded by the greater – namely, earth surrounded by water, water by air, air by fire, and fire by [[Aether (classical element)|aether]] – make up the whole Universe.<ref name=1908DeMundo>{{cite book|url=https://archive.org/details/demundoarisrich|title=De Mundo|year=1914|author=Aristotle; Forster, E. S. (Edward Seymour); Dobson, J. F. (John Frederic)|page=[https://archive.org/details/demundoarisrich/page/2 2]|location=Oxford |publisher=The Clarendon Press}}</ref>
* '''4th century BCE'''&nbsp;– ''[[De Mundo]]'' – [[Classical elements|Five elements]], situated in spheres in five regions, the less being in each case surrounded by the greater – namely, earth surrounded by water, water by air, air by fire, and fire by [[Aether (classical element)|aether]] – make up the whole Universe.<ref name=1908DeMundo>{{cite book|url=https://archive.org/details/demundoarisrich|title=De Mundo|year=1914|author=Aristotle; Forster, E. S. (Edward Seymour); Dobson, J. F. (John Frederic)|page=[https://archive.org/details/demundoarisrich/page/2 2]|location=Oxford |publisher=The Clarendon Press}}</ref>
* '''4th century BCE'''&nbsp;– [[Heraclides Ponticus]] is said to be the first Greek who proposes that the [[rotation of the Earth|Earth rotates]] on its axis, from west to east, once every 24 hours, contradicting Aristotle's teachings. [[Simplicius of Cilicia|Simplicius]] says that Heraclides proposed that the irregular movements of the planets can be explained if the Earth moves while the Sun stays still,<ref>{{cite book |author=Simplicius |author-link=Simplicius of Cilicia |title=On Aristotle's |year=2003 |url=https://archive.org/details/onaristotlescate00simp |url-access=registration |chapter=Physics 2 |pages=48 |translator-first=Barries |translator-last=Fleet |location=Ithaca |publisher=[[Cornell University Press]]|isbn=978-0-8014-4101-1 }}</ref> but these statements are disputed.<ref>{{cite journal |last=Eastwood |first=Bruce |year=1992 |title=Heraclides and Heliocentrism: Texts, Diagrams, and Interpretations |journal=Journal for the History of Astronomy |volume=23 |issue=4 |pages=253 |doi=10.1177/002182869202300401 |bibcode=1992JHA....23..233E |s2cid=118643709 }}</ref>
* '''4th century BCE'''&nbsp;– [[Heraclides Ponticus]] is said to be the first Greek who proposes that the [[rotation of the Earth|Earth rotates]] on its axis, from west to east, once every 24 hours, contradicting Aristotle's teachings. [[Simplicius of Cilicia|Simplicius]] says that Heraclides proposed that the irregular movements of the planets can be explained if the Earth moves while the Sun stays still,<ref>{{cite book |author=Simplicius |author-link=Simplicius of Cilicia |title=On Aristotle's |year=2003 |url=https://archive.org/details/onaristotlescate00simp |url-access=registration |chapter=Physics 2 |page=48 |translator-first=Barries |translator-last=Fleet |location=Ithaca |publisher=[[Cornell University Press]]|isbn=978-0-8014-4101-1 }}</ref> but these statements are disputed.<ref>{{cite journal |last=Eastwood |first=Bruce |year=1992 |title=Heraclides and Heliocentrism: Texts, Diagrams, and Interpretations |journal=Journal for the History of Astronomy |volume=23 |issue=4 |page=253 |doi=10.1177/002182869202300401 |bibcode=1992JHA....23..233E |s2cid=118643709 }}</ref>
* '''3rd century BCE'''&nbsp;– [[Aristarchus of Samos]] proposes a [[Heliocentrism|Sun-centered universe]] and Earth's rotation in its own axis. He also [[On the Sizes and Distances (Aristarchus)|provides evidences]] for his theory from his own observations.<ref>{{Cite journal |last=D. |first=J. L. E. |date=July 1913 |title=Aristarchus of Samos: The Ancient Copernicus |url=https://www.nature.com/articles/091499a0 |journal=Nature |language=en |volume=91 |issue=2281 |pages=499–500 |doi=10.1038/091499a0 |bibcode=1913Natur..91..499J |s2cid=3942458 |issn=1476-4687|url-access=subscription }}</ref>
* '''3rd century BCE'''&nbsp;– [[Aristarchus of Samos]] proposes a [[Heliocentrism|Sun-centered universe]] and Earth's rotation in its own axis. He also [[On the Sizes and Distances (Aristarchus)|provides evidences]] for his theory from his own observations.<ref>{{Cite journal |last=D. |first=J. L. E. |date=July 1913 |title=Aristarchus of Samos: The Ancient Copernicus |url=https://www.nature.com/articles/091499a0 |journal=Nature |language=en |volume=91 |issue=2281 |pages=499–500 |doi=10.1038/091499a0 |bibcode=1913Natur..91..499J |s2cid=3942458 |issn=1476-4687|url-access=subscription }}</ref>
* '''3rd century BCE'''&nbsp;– [[Archimedes]] in his essay ''[[The Sand Reckoner]]'', estimates the diameter of the cosmos to be the equivalent in [[Stadion (unit of length)|stadia]] of what would in modern times be called two [[light year]]s, if Aristarchus' theories were correct.
* '''3rd century BCE'''&nbsp;– [[Archimedes]] in his essay ''[[The Sand Reckoner]]'', estimates the diameter of the cosmos to be the equivalent in [[Stadion (unit of length)|stadia]] of what would in modern times be called two [[light year]]s, if Aristarchus' theories were correct.
* '''2nd century BCE'''&nbsp;– [[Seleucus of Seleucia]] elaborates on Aristarchus' heliocentric universe, using the phenomenon of [[tide]]s to explain heliocentrism. Seleucus was the first to prove the heliocentric system through reasoning. Seleucus' arguments for a heliocentric cosmology were probably related to the phenomenon of tides. According to Strabo (1.1.9), Seleucus was the first to state that the tides are due to the attraction of the Moon, and that the height of the tides depends on the Moon's position relative to the Sun. Alternatively, he may have proved heliocentricity by determining the constants of a geometric model for it.<ref>Russell, Bertrand — ''History of Western Philosophy'' (2004) &ndash; p. 215</ref>
* '''2nd century BCE'''&nbsp;– [[Seleucus of Seleucia]] elaborates on Aristarchus' heliocentric universe, using the phenomenon of [[tide]]s to explain heliocentrism. Seleucus was the first to prove the heliocentric system through reasoning. Seleucus' arguments for a heliocentric cosmology were probably related to the phenomenon of tides. According to Strabo (1.1.9), Seleucus was the first to state that the tides are due to the attraction of the Moon, and that the height of the tides depends on the Moon's position relative to the Sun. Alternatively, he may have proved heliocentricity by determining the constants of a geometric model for it.<ref>Russell, Bertrand — ''History of Western Philosophy'' (2004) &ndash; p. 215</ref>
* '''2nd century BCE'''&nbsp;– [[Apollonius of Perga]] shows the equivalence of two descriptions of the [[Apparent retrograde motion|apparent retrograde]] planet motions (assuming the geocentric model), one using eccentrics and another [[deferent and epicycle]]s.<ref>Carrol, Bradley and Ostlie, Dale, ''An Introduction to Modern Astrophysics'', Second Edition, Addison-Wesley, San Francisco, 2007. pp. 4</ref> The latter will be a key feature for future models. The epicycle is described as a small orbit within a greater one, called the ''deferent'': as a planet orbits the Earth, it also orbits the original orbit, so its trajectory resembles a curve known as an [[epitrochoid]]. This could explain how the planet seems to move as viewed from Earth.
* '''2nd century BCE'''&nbsp;– [[Apollonius of Perga]] shows the equivalence of two descriptions of the [[Apparent retrograde motion|apparent retrograde]] planet motions (assuming the geocentric model), one using eccentrics and another [[deferent and epicycle]]s.<ref>Carrol, Bradley and Ostlie, Dale, ''An Introduction to Modern Astrophysics'', Second Edition, Addison-Wesley, San Francisco, 2007. pp. 4</ref> The latter will be a key feature for future models. The epicycle is described as a small orbit within a greater one, called the ''deferent'': as a planet orbits the Earth, it also orbits the original orbit, so its trajectory resembles a curve known as an [[epitrochoid]]. This could explain how the planet seems to move as viewed from Earth.
* '''2nd century BCE'''&nbsp;– [[Eratosthenes]] determines that the radius of the Earth is roughly 6,400&nbsp;km.<ref>{{Cite book |last=Russo |first=Lucio |author-link=Lucio Russo|url=https://books.google.com/books?id=MOTpnfz7ZuYC |title=The forgotten revolution : how science was born in 300 BC and why it had to be reborn |date=2004 |publisher=Springer |isbn=3-540-20396-6 |location=Berlin |pages=68 |oclc=52945835}}</ref>
* '''2nd century BCE'''&nbsp;– [[Eratosthenes]] determines that the radius of the Earth is roughly 6,400&nbsp;km.<ref>{{Cite book |last=Russo |first=Lucio |author-link=Lucio Russo|url=https://books.google.com/books?id=MOTpnfz7ZuYC |title=The forgotten revolution: how science was born in 300 BC and why it had to be reborn |date=2004 |publisher=Springer |isbn=3-540-20396-6 |location=Berlin |page=68 |oclc=52945835}}</ref>
* '''2nd century BCE'''&nbsp;– [[Hipparchus]] uses [[parallax]] to determine that the distance to the Moon is roughly 380,000&nbsp;km.<ref>G. J. Toomer, "Hipparchus on the distances of the sun and moon," Archive for History of Exact Sciences '''14''' (1974), 126–142.</ref> The work of Hipparchus about the Earth-Moon system was so accurate that he could forecast solar and lunar eclipses for the next six centuries. Also, he discovers the [[precession]] of the [[equinox]]es, and compiles a [[star catalog]] of about 850 entries.<ref>Alexander Jones "Ptolemy in Perspective: Use and Criticism of his Work from Antiquity to the Nineteenth Century, Springer, 2010, p.36.</ref>
* '''2nd century BCE'''&nbsp;– [[Hipparchus]] uses [[parallax]] to determine that the distance to the Moon is roughly 380,000&nbsp;km.<ref>G. J. Toomer, "Hipparchus on the distances of the sun and moon," Archive for History of Exact Sciences '''14''' (1974), 126–142.</ref> The work of Hipparchus about the Earth-Moon system was so accurate that he could forecast solar and lunar eclipses for the next six centuries. Also, he discovers the [[precession]] of the [[equinox]]es, and compiles a [[star catalog]] of about 850 entries.<ref>Alexander Jones "Ptolemy in Perspective: Use and Criticism of his Work from Antiquity to the Nineteenth Century, Springer, 2010, p.36.</ref>
* {{circa}} '''2nd century BCE–3rd century CE'''&nbsp;– In [[Hindu cosmology]], the ''[[Manusmriti]]'' (1.67–80) and [[Puranas]] describe time as cyclical, with a new [[universe]] (planets and life) created by [[Brahma]] every 8.64 billion years. The universe is created, maintained, and destroyed within a ''[[Kalpa (aeon)|kalpa]]'' (day of [[Brahma]]) period lasting for 4.32 billion years, and is followed by a ''[[pralaya]]'' (night) period of partial dissolution equal in duration. In some Puranas (e.g. ''[[Bhagavata Purana]]''), a larger cycle of time is described where matter (''[[Tattva|mahat-tattva]]'' or [[Hiranyagarbha|universal womb]]) is created from primal matter (''[[Prakṛti|prakriti]]'') and root matter (''[[pradhana]]'') every 622.08 trillion years, from which [[Brahma]] is born.<ref>{{cite web |url=https://www.wisdomlib.org/definition/mahattattva |website=Wisdom Library |title=Mahattattva, Mahat-tattva: 5 definitions |date=February 10, 2021 |quote=Mahattattva (महत्तत्त्व) or simply Mahat refers to a primordial principle of the nature of both pradhāna and puruṣa, according to the 10th century Saurapurāṇa: one of the various Upapurāṇas depicting Śaivism.—[...] From the disturbed prakṛti and the puruṣa sprang up the seed of mahat, which is of the nature of both pradhāna and puruṣa. The mahattattva is then covered by the pradhāna and being so covered it differentiates itself as the sāttvika, rājasa and tāmasa-mahat. The pradhāna covers the mahat just as a seed is covered by the skin. Being so covered there spring from the three fold mahat the threefold ahaṃkāra called vaikārika, taijasa and bhūtādi or tāmasa.}}</ref> The elements of the universe are created, used by Brahma, and fully dissolved within a ''maha-kalpa'' (life of [[Brahma]]; 100 of his 360-day years) period lasting for 311.04 trillion years containing 36,000 ''kalpas'' (days) and ''pralayas'' (nights), and is followed by a ''maha-pralaya'' period of full dissolution equal in duration.<ref>{{cite book |author-last=Gupta |author-first=S. V. |year=2010 |chapter=Ch. 1.2.4 Time Measurements |editor-last1=Hull |editor-first1=Robert |editor-last2=Osgood |editor-first2=Richard M. Jr. |editor-link2=Richard M. Osgood Jr. |editor-last3=Parisi |editor-first3=Jurgen |editor-last4=Warlimont |editor-first4=Hans |title=Units of Measurement: Past, Present and Future. International System of Units |chapter-url=https://books.google.com/books?id=pHiKycrLmEQC&pg=PA7 |series=Springer Series in Materials Science: 122 |publisher=[[Springer Publishing|Springer]] |pages=7–8 |isbn=9783642007378}}</ref><ref>{{cite book |author-last=Penprase |author-first=Bryan E. |year=2017 |url=https://books.google.com/books?id=pQHNDgAAQBAJ |title=The Power of Stars |edition=2nd |publisher=[[Springer Science+Business Media|Springer]] |page=182 |isbn=9783319525976}}</ref><ref>{{cite book |last=Johnson |first=W.J. |title=A Dictionary of Hinduism |publisher=Oxford University Press |year=2009 |isbn=978-0-19-861025-0 |page=165}}</ref><ref>{{cite web |last1=Fernandez |first1=Elizabeth |title=The Multiverse And Eastern Philosophy |url=https://www.forbes.com/sites/fernandezelizabeth/2020/01/12/the-multiverse-and-eastern-philosophy/ |website=Forbes |language=en}}</ref> The texts also speak of innumerable worlds or universes.<ref>
* {{circa}} '''2nd century BCE–3rd century CE'''&nbsp;– In [[Hindu cosmology]], the ''[[Manusmriti]]'' (1.67–80) and [[Puranas]] describe time as cyclical, with a new [[universe]] (planets and life) created by [[Brahma]] every 8.64 billion years. The universe is created, maintained, and destroyed within a ''[[Kalpa (aeon)|kalpa]]'' (day of [[Brahma]]) period lasting for 4.32 billion years, and is followed by a ''[[pralaya]]'' (night) period of partial dissolution equal in duration. In some Puranas (e.g. ''[[Bhagavata Purana]]''), a larger cycle of time is described where matter (''[[Tattva|mahat-tattva]]'' or [[Hiranyagarbha|universal womb]]) is created from primal matter (''[[Prakṛti|prakriti]]'') and root matter (''[[pradhana]]'') every 622.08 trillion years, from which [[Brahma]] is born.<ref>{{cite web |url=https://www.wisdomlib.org/definition/mahattattva |website=Wisdom Library |title=Mahattattva, Mahat-tattva: 5 definitions |date=February 10, 2021 |quote=Mahattattva (महत्तत्त्व) or simply Mahat refers to a primordial principle of the nature of both pradhāna and puruṣa, according to the 10th century Saurapurāṇa: one of the various Upapurāṇas depicting Śaivism.—[...] From the disturbed prakṛti and the puruṣa sprang up the seed of mahat, which is of the nature of both pradhāna and puruṣa. The mahattattva is then covered by the pradhāna and being so covered it differentiates itself as the sāttvika, rājasa and tāmasa-mahat. The pradhāna covers the mahat just as a seed is covered by the skin. Being so covered there spring from the three fold mahat the threefold ahaṃkāra called vaikārika, taijasa and bhūtādi or tāmasa.}}</ref> The elements of the universe are created, used by Brahma, and fully dissolved within a ''maha-kalpa'' (life of [[Brahma]]; 100 of his 360-day years) period lasting for 311.04 trillion years containing 36,000 ''kalpas'' (days) and ''pralayas'' (nights), and is followed by a ''maha-pralaya'' period of full dissolution equal in duration.<ref>{{cite book |author-last=Gupta |author-first=S. V. |year=2010 |chapter=Ch. 1.2.4 Time Measurements |editor-last1=Hull |editor-first1=Robert |editor-last2=Osgood |editor-first2=Richard M. Jr. |editor-link2=Richard M. Osgood Jr. |editor-last3=Parisi |editor-first3=Jurgen |editor-last4=Warlimont |editor-first4=Hans |title=Units of Measurement: Past, Present and Future. International System of Units |chapter-url=https://books.google.com/books?id=pHiKycrLmEQC&pg=PA7 |series=Springer Series in Materials Science: 122 |publisher=[[Springer Publishing|Springer]] |pages=7–8 |isbn=978-3-642-00737-8}}</ref><ref>{{cite book |author-last=Penprase |author-first=Bryan E. |year=2017 |url=https://books.google.com/books?id=pQHNDgAAQBAJ |title=The Power of Stars |edition=2nd |publisher=[[Springer Science+Business Media|Springer]] |page=182 |isbn=978-3-319-52597-6}}</ref><ref>{{cite book |last=Johnson |first=W.J. |title=A Dictionary of Hinduism |publisher=Oxford University Press |year=2009 |isbn=978-0-19-861025-0 |page=165}}</ref><ref>{{cite web |last1=Fernandez |first1=Elizabeth |title=The Multiverse And Eastern Philosophy |url=https://www.forbes.com/sites/fernandezelizabeth/2020/01/12/the-multiverse-and-eastern-philosophy/ |website=Forbes |language=en}}</ref> The texts also speak of innumerable worlds or universes.<ref>
* {{cite book |last1=Zimmer |first1=Heinrich Robert |title=Myths and Symbols in Indian Art and Civilization |date=2018 |publisher=Princeton University Press |isbn=978-0-691-21201-2 |url=https://books.google.com/books?id=cZDTDwAAQBAJ&q=%22innumerable%20worlds%22&pg=PT18 |language=en}}
* {{cite book |last1=Zimmer |first1=Heinrich Robert |title=Myths and Symbols in Indian Art and Civilization |date=2018 |publisher=Princeton University Press |isbn=978-0-691-21201-2 |url=https://books.google.com/books?id=cZDTDwAAQBAJ&q=%22innumerable%20worlds%22&pg=PT18 |language=en}}
* {{cite book |last1=Penprase |first1=Bryan E. |title=The Power of Stars |date=2017 |publisher=Springer |isbn=978-3-319-52597-6 |page=137 |url=https://books.google.com/books?id=pQHNDgAAQBAJ&q=%22innumerable%20universes%22&pg=PA137 |language=en}}
* {{cite book |last1=Penprase |first1=Bryan E. |title=The Power of Stars |date=2017 |publisher=Springer |isbn=978-3-319-52597-6 |page=137 |url=https://books.google.com/books?id=pQHNDgAAQBAJ&q=%22innumerable%20universes%22&pg=PA137 |language=en}}
Line 65: Line 65:
* '''7th century'''&nbsp;– The [[Quran]] says in Chapter 21: Verse 30 – "Have those who disbelieved not considered that the Heavens and the Earth were a joined entity, and We separated them".
* '''7th century'''&nbsp;– The [[Quran]] says in Chapter 21: Verse 30 – "Have those who disbelieved not considered that the Heavens and the Earth were a joined entity, and We separated them".
* '''9th–12th centuries'''&nbsp;– [[Al-Kindi]] (Alkindus), [[Saadia Gaon]] (Saadia ben Joseph) and [[Al-Ghazali]] (Algazel) support a universe that has a finite past and develop two logical arguments for the notion.
* '''9th–12th centuries'''&nbsp;– [[Al-Kindi]] (Alkindus), [[Saadia Gaon]] (Saadia ben Joseph) and [[Al-Ghazali]] (Algazel) support a universe that has a finite past and develop two logical arguments for the notion.
* '''12th century'''&nbsp;– [[Fakhr al-Din al-Razi]] discusses [[Islamic cosmology]], rejects Aristotle's idea of an Earth-centered universe, and, in the context of his commentary on the [[Quran]]ic verse, "All praise belongs to God, Lord of the Worlds," and proposes that the universe has more than "a thousand worlds beyond this world."<ref>{{cite journal|title=Fakhr Al-Din Al-Razi on Physics and the Nature of the Physical World: A Preliminary Survey |author=Adi Setia |journal=Islam & Science |volume=2 |date=2004 |url=http://findarticles.com/p/articles/mi_m0QYQ/is_2_2/ai_n9532826/ |archive-url=https://archive.today/20120710164222/http://findarticles.com/p/articles/mi_m0QYQ/is_2_2/ai_n9532826/ |url-status=dead |archive-date=2012-07-10 |access-date=2010-03-02 }}</ref>
* '''12th century'''&nbsp;– [[Fakhr al-Din al-Razi]] discusses [[Islamic cosmology]], rejects Aristotle's idea of an Earth-centered universe, and, in the context of his commentary on the [[Quran]]ic verse, "All praise belongs to God, Lord of the Worlds," and proposes that the universe has more than "a thousand worlds beyond this world."<ref>{{cite journal|title=Fakhr Al-Din Al-Razi on Physics and the Nature of the Physical World: A Preliminary Survey |author=Adi Setia |journal=Islam & Science |volume=2 |date=2004 |url=http://findarticles.com/p/articles/mi_m0QYQ/is_2_2/ai_n9532826/ |archive-url=https://archive.today/20120710164222/http://findarticles.com/p/articles/mi_m0QYQ/is_2_2/ai_n9532826/ |archive-date=2012-07-10 |access-date=2010-03-02 }}</ref>
* '''12th century'''&nbsp;– [[Robert Grosseteste]] described the birth of the Universe in an explosion and the crystallisation of matter. He also put forward several new ideas such as rotation of the Earth around its [[Axial tilt|axis]] and the cause of day and night. His treatise ''De Luce'' is the first attempt to describe the heavens and Earth using a single set of physical laws.<ref>{{Citation |last=Lewis |first=Neil |title=Robert Grosseteste |date=2021 |url=https://plato.stanford.edu/archives/fall2021/entries/grosseteste/ |encyclopedia=The Stanford Encyclopedia of Philosophy |editor-last=Zalta |editor-first=Edward N. |edition=Fall 2021 |publisher=Metaphysics Research Lab, Stanford University |access-date=2022-11-05}}</ref>
* '''12th century'''&nbsp;– [[Robert Grosseteste]] described the birth of the Universe in an explosion and the crystallisation of matter. He also put forward several new ideas such as rotation of the Earth around its [[Axial tilt|axis]] and the cause of day and night. His treatise ''De Luce'' is the first attempt to describe the heavens and Earth using a single set of physical laws.<ref>{{Citation |last=Lewis |first=Neil |title=Robert Grosseteste |date=2021 |url=https://plato.stanford.edu/archives/fall2021/entries/grosseteste/ |encyclopedia=The Stanford Encyclopedia of Philosophy |editor-last=Zalta |editor-first=Edward N. |edition=Fall 2021 |publisher=Metaphysics Research Lab, Stanford University |access-date=2022-11-05}}</ref>
* '''14th century'''&nbsp;– [[Jewish]] astronomer [[Levi ben Gershon]] (Gersonides) estimates the distance to the outermost orb of the fixed stars to be no less than 159,651,513,380,944 [[Earth radius|Earth radii]], or about 100,000 [[light-year]]s in modern units.<ref>{{Cite journal |last=Kennedy |first=E. S. |date=1986-06-01 |title=The Astronomy of Levi ben Gerson (1288–1344): A Critical Edition of Chapters 1–20 with Translation and Commentary. Levi ben Gerson, Bernard R. Goldstein |url=https://www.journals.uchicago.edu/doi/10.1086/354184 |journal=Isis |volume=77 |issue=2 |pages=371–372 |doi=10.1086/354184 |issn=0021-1753|url-access=subscription }}</ref>
* '''14th century'''&nbsp;– [[Jewish]] astronomer [[Levi ben Gershon]] (Gersonides) estimates the distance to the outermost orb of the fixed stars to be no less than 159,651,513,380,944 [[Earth radius|Earth radii]], or about 100,000 [[light-year]]s in modern units.<ref>{{Cite journal |last=Kennedy |first=E. S. |date=1986-06-01 |title=The Astronomy of Levi ben Gerson (1288–1344): A Critical Edition of Chapters 1–20 with Translation and Commentary. Levi ben Gerson, Bernard R. Goldstein |url=https://www.journals.uchicago.edu/doi/10.1086/354184 |journal=Isis |volume=77 |issue=2 |pages=371–372 |doi=10.1086/354184 |issn=0021-1753|url-access=subscription }}</ref>
Line 75: Line 75:
[[File:Heliocentric.jpg|thumb|upright=1.2|[[Andreas Cellarius]]'s illustration of the Copernican system, from the ''Harmonia Macrocosmica'']]
[[File:Heliocentric.jpg|thumb|upright=1.2|[[Andreas Cellarius]]'s illustration of the Copernican system, from the ''Harmonia Macrocosmica'']]
* '''1543'''&nbsp;– [[Nicolaus Copernicus]] publishes his [[Copernican heliocentrism|heliocentric universe]] in his {{lang|la|[[De revolutionibus orbium coelestium]]}}.<ref>{{Cite web |title=Nicolaus Copernicus - University of Bologna |url=https://www.unibo.it/en/university/who-we-are/our-history/famous-people-and-students/nicolaus-copernicus |access-date=2022-11-09 |website=www.unibo.it |language=en}}</ref>
* '''1543'''&nbsp;– [[Nicolaus Copernicus]] publishes his [[Copernican heliocentrism|heliocentric universe]] in his {{lang|la|[[De revolutionibus orbium coelestium]]}}.<ref>{{Cite web |title=Nicolaus Copernicus - University of Bologna |url=https://www.unibo.it/en/university/who-we-are/our-history/famous-people-and-students/nicolaus-copernicus |access-date=2022-11-09 |website=www.unibo.it |language=en}}</ref>
* '''1576'''&nbsp;– [[Thomas Digges]] modifies the [[Copernican heliocentrism|Copernican system]] by removing its outer edge and replacing the edge with a [[star]]-filled unbounded space.<ref>{{cite book|title=The Scientific Revolution: The Essential Readings|volume=7|series=Blackwell Essential Readings in History|editor-first=Marcus|editor-last=Hellyer|publisher=[[John Wiley & Sons]]|date=2008|isbn=9780470754771|page=63|url=https://books.google.com/books?id=1VhC63yV-WgC&pg=PA63|quotation=The Puritan Thomas Digges (1546–1595?) was the earliest Englishman to offer a defense of the Copernican theory. ... Accompanying Digges's account is a diagram of the universe portraying the heliocentric system surrounded by the orb of fixed stars, described by Digges as infinitely extended in all dimensions.}}</ref>
* '''1576'''&nbsp;– [[Thomas Digges]] modifies the [[Copernican heliocentrism|Copernican system]] by removing its outer edge and replacing the edge with a [[star]]-filled unbounded space.<ref>{{cite book|title=The Scientific Revolution: The Essential Readings|volume=7|series=Blackwell Essential Readings in History|editor-first=Marcus|editor-last=Hellyer|publisher=[[John Wiley & Sons]]|date=2008|isbn=978-0-470-75477-1|page=63|url=https://books.google.com/books?id=1VhC63yV-WgC&pg=PA63|quotation=The Puritan Thomas Digges (1546–1595?) was the earliest Englishman to offer a defense of the Copernican theory. ... Accompanying Digges's account is a diagram of the universe portraying the heliocentric system surrounded by the orb of fixed stars, described by Digges as infinitely extended in all dimensions.}}</ref>
* '''1584'''&nbsp;– [[Giordano Bruno]] proposes a non-hierarchical cosmology, wherein the Copernican [[Solar System]] is not the center of the universe, but rather, a relatively insignificant [[star system]], amongst an infinite multitude of others.<ref>{{cite book |last=Bruno |first=Giordano |title=On the infinite universe and worlds |chapter=Third Dialogue |chapter-url=http://www.positiveatheism.org/hist/brunoiuw3.htm |url-status=dead |archive-url=https://web.archive.org/web/20120427091405/http://www.positiveatheism.org/hist/brunoiuw3.htm |archive-date=27 April 2012 |df=dmy-all}}</ref>
* '''1584'''&nbsp;– [[Giordano Bruno]] proposes a non-hierarchical cosmology, wherein the Copernican [[Solar System]] is not the center of the universe, but rather, a relatively insignificant [[star system]], amongst an infinite multitude of others.<ref>{{cite book |last=Bruno |first=Giordano |title=On the infinite universe and worlds |chapter=Third Dialogue |chapter-url=http://www.positiveatheism.org/hist/brunoiuw3.htm |archive-url=https://web.archive.org/web/20120427091405/http://www.positiveatheism.org/hist/brunoiuw3.htm |archive-date=27 April 2012 |df=dmy-all}}</ref>
* '''1588'''&nbsp;– Tycho Brahe publishes his own [[Tychonic system]], a blend between Ptolemy's classical geocentric model and Copernicus' heliocentric model, in which the Sun and the Moon revolve around the Earth, in the center of universe, and all other planets revolve around the Sun.<ref>{{cite web|last1=Hatch|first1=Robert|title=Early Geo-Heliocentric models|url=http://users.clas.ufl.edu/ufhatch/pages/03-Sci-Rev/SCI-REV-Home/resource-ref-read/chief-systems/08-0TYCHO5-WSYS.html|website=The Scientific Revolution|publisher=Dr. Robert A. Hatch|access-date=11 April 2018}}</ref> It is a geo-heliocentric model similar to that described by Somayaji.
* '''1588'''&nbsp;– Tycho Brahe publishes his own [[Tychonic system]], a blend between Ptolemy's classical geocentric model and Copernicus' heliocentric model, in which the Sun and the Moon revolve around the Earth, in the center of universe, and all other planets revolve around the Sun.<ref>{{cite web|last1=Hatch|first1=Robert|title=Early Geo-Heliocentric models|url=http://users.clas.ufl.edu/ufhatch/pages/03-Sci-Rev/SCI-REV-Home/resource-ref-read/chief-systems/08-0TYCHO5-WSYS.html|website=The Scientific Revolution|publisher=Dr. Robert A. Hatch|access-date=11 April 2018}}</ref> It is a geo-heliocentric model similar to that described by Somayaji.
* '''1600'''&nbsp;– [[William Gilbert (physician)|William Gilbert]] rejects the idea of a limiting [[Fixed stars|sphere of the fixed stars]] for which no proof has been offered.<ref>{{cite book |last=Gilbert |first=William |title=De Magnete |url=https://archive.org/details/williamgilbertof00gilb |translator-last=Mottelay |translator-first=P. Fleury |date=1893 |chapter=Book 6, Chapter III|publisher=Dover Publications |location=New York |isbn = 0-486-26761-X|others=(Facsimile)}}</ref>
* '''1600'''&nbsp;– [[William Gilbert (physician)|William Gilbert]] rejects the idea of a limiting [[Fixed stars|sphere of the fixed stars]] for which no proof has been offered.<ref>{{cite book |last=Gilbert |first=William |title=De Magnete |url=https://archive.org/details/williamgilbertof00gilb |translator-last=Mottelay |translator-first=P. Fleury |date=1893 |chapter=Book 6, Chapter III|publisher=Dover Publications |location=New York |isbn = 0-486-26761-X|others=(Facsimile)}}</ref>
Line 87: Line 87:
* '''1672'''&nbsp;– [[Jean Richer]] and [[Giovanni Domenico Cassini]] measure the Earth-Sun distance, the [[astronomical unit]], to be about 138,370,000&nbsp;km.<ref>{{cite web|url=http://www.scientificamerican.com/article.cfm?id=astronomical-unit-or-earth-sun-distance-gets-an-overhaul|title="Astronomical Unit," or Earth-Sun Distance, Gets an Overhaul|website=[[Scientific American]] }}</ref> Later it will be refined by others up to the current value of 149,597,870&nbsp;km.
* '''1672'''&nbsp;– [[Jean Richer]] and [[Giovanni Domenico Cassini]] measure the Earth-Sun distance, the [[astronomical unit]], to be about 138,370,000&nbsp;km.<ref>{{cite web|url=http://www.scientificamerican.com/article.cfm?id=astronomical-unit-or-earth-sun-distance-gets-an-overhaul|title="Astronomical Unit," or Earth-Sun Distance, Gets an Overhaul|website=[[Scientific American]] }}</ref> Later it will be refined by others up to the current value of 149,597,870&nbsp;km.
* '''1675'''&nbsp;– [[Ole Rømer]] uses the orbital mechanics of Jupiter's [[natural satellite|moons]] to estimate that the [[speed of light]] is about 227,000&nbsp;km/s.<ref>{{Cite journal |last1=Bobis |first1=Laurence |title=Cassini, Rømer and the velocity of light |url=http://articles.adsabs.harvard.edu/pdf/2008JAHH...11...97B |journal=J. Astron. Hist. Herit. |volume=11 |issue=2 |pages=97–105 |year=2008 |bibcode=2008JAHH...11...97B |ref=none |last2=Lequeux |first2=James|doi=10.3724/SP.J.1440-2807.2008.02.02 |s2cid=115455540 }}</ref>
* '''1675'''&nbsp;– [[Ole Rømer]] uses the orbital mechanics of Jupiter's [[natural satellite|moons]] to estimate that the [[speed of light]] is about 227,000&nbsp;km/s.<ref>{{Cite journal |last1=Bobis |first1=Laurence |title=Cassini, Rømer and the velocity of light |url=http://articles.adsabs.harvard.edu/pdf/2008JAHH...11...97B |journal=J. Astron. Hist. Herit. |volume=11 |issue=2 |pages=97–105 |year=2008 |bibcode=2008JAHH...11...97B |ref=none |last2=Lequeux |first2=James|doi=10.3724/SP.J.1440-2807.2008.02.02 |s2cid=115455540 }}</ref>
* '''1687'''&nbsp;– [[Isaac Newton]]'s [[Physical law|laws]] describe large-scale motion throughout the universe. The [[Newton's law of universal gravitation|universal force of gravity]] suggested that stars could not simply be fixed or at rest, as their gravitational pulls cause "mutual attraction" and therefore cause them to move in relation to each other.<ref>{{Cite book|title=Archives of the universe : a treasury of astronomy's historic works of discovery|date=2004|publisher=Pantheon Books|author1=Bartusiak, Marcia|isbn=0-375-42170-X|edition=1st|location=New York|oclc=54966424|url-access=registration|url=https://archive.org/details/archivesofuniver0000unse}}</ref>
* '''1687'''&nbsp;– [[Isaac Newton]]'s [[Physical law|laws]] describe large-scale motion throughout the universe. The [[Newton's law of universal gravitation|universal force of gravity]] suggested that stars could not simply be fixed or at rest, as their gravitational pulls cause "mutual attraction" and therefore cause them to move in relation to each other.<ref>{{Cite book|title=Archives of the universe: a treasury of astronomy's historic works of discovery|date=2004|publisher=Pantheon Books|author1=Bartusiak, Marcia|isbn=0-375-42170-X|edition=1st|location=New York|oclc=54966424|url-access=registration|url=https://archive.org/details/archivesofuniver0000unse}}</ref>
* '''1704'''&nbsp;– [[John Locke]] enters the term "[[Solar System]]" in the English language, when he used it to refer to the Sun, planets, and comets as a whole.<ref>{{cite web | title=solar (adj.) | website=Online Etymology Dictionary | url=https://www.etymonline.com/word/solar | access-date=2 May 2022 | archive-date=18 March 2022 | archive-url=https://web.archive.org/web/20220318002833/https://www.etymonline.com/word/solar | url-status=live }}</ref> By then it had been stablished beyond doubt that planets are other worlds, and stars are other distant suns, so the whole Solar System is actually only a small part of an immensely large universe, and definitively something distinct.
* '''1704'''&nbsp;– [[John Locke]] enters the term "[[Solar System]]" in the English language, when he used it to refer to the Sun, planets, and comets as a whole.<ref>{{cite web | title=solar (adj.) | website=Online Etymology Dictionary | url=https://www.etymonline.com/word/solar | access-date=2 May 2022 | archive-date=18 March 2022 | archive-url=https://web.archive.org/web/20220318002833/https://www.etymonline.com/word/solar | url-status=live }}</ref> By then it had been stablished beyond doubt that planets are other worlds, and stars are other distant suns, so the whole Solar System is actually only a small part of an immensely large universe, and definitively something distinct.
* '''1718'''&nbsp;– [[Edmund Halley]] discovers [[proper motion]] of stars, dispelling the concept of the "[[fixed stars]]".<ref>{{cite book |title=A History of Ancient Mathematical Astronomy |author=Otto Neugebauer |url=https://books.google.com/books?id=vO5FCVIxz2YC&q=proper+motion+angle&pg=PA1085 |page= 1084 |isbn=978-3-540-06995-9 |publisher=Birkhäuser |date=1975}}</ref>
* '''1718'''&nbsp;– [[Edmund Halley]] discovers [[proper motion]] of stars, dispelling the concept of the "[[fixed stars]]".<ref>{{cite book |title=A History of Ancient Mathematical Astronomy |author=Otto Neugebauer |url=https://books.google.com/books?id=vO5FCVIxz2YC&q=proper+motion+angle&pg=PA1085 |page= 1084 |isbn=978-3-540-06995-9 |publisher=Birkhäuser |date=1975}}</ref>
Line 96: Line 96:
[[File:Herschel-galaxy.jpg|thumb|right| William Herschel's model of the Milky Way, 1785]]
[[File:Herschel-galaxy.jpg|thumb|right| William Herschel's model of the Milky Way, 1785]]
* '''1781'''&nbsp;– [[Charles Messier]] and his assistant [[Pierre Méchain]] publish the [[Messier object|first catalogue]] of 110 [[nebulae]] and [[star clusters]], the most prominent [[deep-sky object]]s that can easily be observed from Earth's [[Northern Hemisphere]], in order not to be confused with ordinary Solar System's [[comet]]s.<ref>{{cite web |title=Original Messier Catalog of 1781 |website=[[Students for the Exploration and Development of Space]] |date=10 November 2007 |url=http://messier.seds.org/xtra/Mcat/mcat1781.html#messier1781}}</ref>
* '''1781'''&nbsp;– [[Charles Messier]] and his assistant [[Pierre Méchain]] publish the [[Messier object|first catalogue]] of 110 [[nebulae]] and [[star clusters]], the most prominent [[deep-sky object]]s that can easily be observed from Earth's [[Northern Hemisphere]], in order not to be confused with ordinary Solar System's [[comet]]s.<ref>{{cite web |title=Original Messier Catalog of 1781 |website=[[Students for the Exploration and Development of Space]] |date=10 November 2007 |url=http://messier.seds.org/xtra/Mcat/mcat1781.html#messier1781}}</ref>
* '''1785'''&nbsp;– [[William Herschel]] proposes [[heliocentrism#William Herschel's heliocentrism|a heliocentric model of the universe]] that Earth's Sun is at or near the center of the universe, which at the time was assumed to only be the [[Milky Way Galaxy]].<ref name="Berendzen">{{cite journal |last1=Berendzen |first1=Richard |title=Geocentric to heliocentric to galactocentric to acentric: the continuing assault to the egocentric |journal=Vistas in Astronomy |date=1975 |volume=17 |issue=1 |pages=65–83 |doi=10.1016/0083-6656(75)90049-5 |bibcode=1975VA.....17...65B }}</ref>
* '''1785'''&nbsp;– [[William Herschel]] proposes [[heliocentrism#William Herschel's heliocentrism|a heliocentric model of the universe]] that the Sun is at or near the center of the universe, which at the time was assumed to only be the [[Milky Way Galaxy]].<ref name="Berendzen">{{cite journal |last1=Berendzen |first1=Richard |title=Geocentric to heliocentric to galactocentric to acentric: the continuing assault to the egocentric |journal=Vistas in Astronomy |date=1975 |volume=17 |issue=1 |pages=65–83 |doi=10.1016/0083-6656(75)90049-5 |bibcode=1975VA.....17...65B }}</ref>
* '''1791'''&nbsp;– [[Erasmus Darwin]] pens the first description of a cyclical expanding and contracting universe in his poem ''[[The Botanic Garden|The Economy of Vegetation]]''.
* '''1791'''&nbsp;– [[Erasmus Darwin]] pens the first description of a cyclical expanding and contracting universe in his poem ''[[The Botanic Garden|The Economy of Vegetation]]''.
* '''1796'''&nbsp;– [[Pierre Laplace]] re-states the nebular hypothesis for the formation of the Solar System from a spinning [[nebula]] of gas and dust.<ref>Owen, T. C. (2001) "Solar system: origin of the solar system", ''[[Encyclopædia Britannica]]'', Deluxe CDROM edition</ref>
* '''1796'''&nbsp;– [[Pierre Laplace]] re-states the nebular hypothesis for the formation of the Solar System from a spinning [[nebula]] of gas and dust.<ref>Owen, T. C. (2001) "Solar system: origin of the solar system", ''[[Encyclopædia Britannica]]'', Deluxe CDROM edition</ref>
* '''1826'''&nbsp;– [[Heinrich Wilhelm Olbers]] puts forth [[Olbers' paradox]].
* '''1826'''&nbsp;– [[Heinrich Wilhelm Olbers]] puts forth [[Olbers' paradox]].
* '''1832–1838'''&nbsp;– Following over 100 years of unsuccessful attempts, [[Thomas Henderson (astronomer)|Thomas Henderson]],<ref name=Henderson1839>{{Cite journal|last=Henderson|first=Thomas|date=1839|title=On the Parallax of α Centauri|journal=Monthly Notices of the Royal Astronomical Society|volume=4|issue=19 |pages=168–170|doi=10.1093/mnras/4.19.168 |bibcode=1839MNRAS...4..168H|doi-access=free}}</ref> [[Friedrich Bessel]],<ref>{{Cite journal| doi = 10.1093/mnras/4.17.152| last = Bessel | first = F. W. | author-link = Friedrich Bessel| title = On the parallax of 61 Cygni| journal = Monthly Notices of the Royal Astronomical Society| volume = 4| issue = 17| pages = 152–161| year = 1838b| bibcode = 1838MNRAS...4..152B| doi-access = free}}</ref> and [[Otto Wilhelm von Struve|Otto Struve]] measure the [[Stellar parallax|parallax]] of a few nearby stars; these are the first measurements of any distances outside the Solar System.
* '''1832–1838'''&nbsp;– Following over 100 years of unsuccessful attempts, [[Thomas Henderson (astronomer)|Thomas Henderson]],<ref name=Henderson1839>{{Cite journal|last=Henderson|first=Thomas|date=1839|title=On the Parallax of α Centauri|journal=Monthly Notices of the Royal Astronomical Society|volume=4|issue=19 |pages=168–170|doi=10.1093/mnras/4.19.168 |bibcode=1839MNRAS...4..168H|doi-access=free}}</ref> [[Friedrich Bessel]],<ref>{{Cite journal| doi = 10.1093/mnras/4.17.152| last = Bessel | first = F. W. | author-link = Friedrich Bessel| title = On the parallax of 61 Cygni| journal = Monthly Notices of the Royal Astronomical Society| volume = 4| issue = 17| pages = 152–161| year = 1838b| bibcode = 1838MNRAS...4..152B| doi-access = free}}</ref> and [[Otto Wilhelm von Struve|Otto Struve]] measure the [[Stellar parallax|parallax]] of a few nearby stars; these are the first measurements of any distances outside the Solar System.
[[File:Orion-Nebula A A Common.jpg|thumb|One of Andrew Ainslie Common's 1883 photographs of the [[Orion nebula]], the first to show that  a long exposure could record stars and nebulae invisible to the human eye.]]
[[File:Orion-Nebula A A Common.jpg|thumb|One of Andrew Ainslie Common's 1883 photographs of the [[Orion Nebula]], the first to show that  a long exposure could record stars and nebulae invisible to the human eye.]]
* '''1842'''&nbsp;– [[Christian Doppler]] proposes the [[Redshift|redshift and blueshift]] effects, based on an [[Doppler effect|analog effect]] found in [[sound]].<ref>Alec Eden ''The search for Christian Doppler'', Springer-Verlag, Wien 1992. Contains a facsimile edition with an [[English language|English]] translation.</ref> [[Hippolyte Fizeau]] discovered independently the same phenomenon on [[electromagnetic wave]]s in 1848.<ref>Fizeau: "Acoustique et optique". ''Lecture, [[Philomatic Society|Société Philomathique]] de Paris'', 29 December 1848. According to Becker(pg. 109), this was never published, but recounted by M. Moigno(1850): "Répertoire d'optique moderne" (in French), vol 3. pp 1165–1203 and later in full by Fizeau, "Des effets du mouvement sur le ton des vibrations sonores et sur la longeur d'onde des rayons de lumière"; [Paris, 1870]. ''Annales de Chimie et de Physique'', 19, 211–221.</ref>
* '''1842'''&nbsp;– [[Christian Doppler]] proposes the [[Redshift|redshift and blueshift]] effects, based on an [[Doppler effect|analog effect]] found in [[sound]].<ref>Alec Eden ''The search for Christian Doppler'', Springer-Verlag, Wien 1992. Contains a facsimile edition with an [[English language|English]] translation.</ref> [[Hippolyte Fizeau]] discovered independently the same phenomenon on [[electromagnetic wave]]s in 1848.<ref>Fizeau: "Acoustique et optique". ''Lecture, [[Philomatic Society|Société Philomathique]] de Paris'', 29 December 1848. According to Becker(pg. 109), this was never published, but recounted by M. Moigno(1850): "Répertoire d'optique moderne" (in French), vol 3. pp 1165–1203 and later in full by Fizeau, "Des effets du mouvement sur le ton des vibrations sonores et sur la longeur d'onde des rayons de lumière"; [Paris, 1870]. ''Annales de Chimie et de Physique'', 19, 211–221.</ref>
* '''1848'''&nbsp;– [[Edgar Allan Poe]] offers first correct solution to Olbers' paradox in ''[[Eureka: A Prose Poem]]'', an essay that also suggests the expansion and collapse of the universe.
* '''1848'''&nbsp;– [[Edgar Allan Poe]] offers first correct solution to Olbers' paradox in ''[[Eureka: A Prose Poem]]'', an essay that also suggests the expansion and collapse of the universe.
* '''1860s'''&nbsp;– [[William Huggins]] develops astronomical [[spectroscopy]]; he shows that the [[Orion nebula]] is mostly made of gas, while the Andromeda nebula (later called [[Andromeda Galaxy]]) is probably dominated by stars.
* '''1860s'''&nbsp;– [[William Huggins]] develops astronomical [[spectroscopy]]; he shows that the [[Orion Nebula]] is mostly made of gas, while the Andromeda nebula (later called [[Andromeda Galaxy]]) is probably dominated by stars.
* '''1862'''&nbsp;– By analysing the [[spectroscopic]] signature of the Sun and comparing it to those of other stars, Father [[Angelo Secchi]] determines that the Sun in itself is also a star.<ref>{{CathEncy|wstitle=Angelo Secchi|first= J.|last= Pohle |quote=[...][his] theory of the unity of the world and of the identity of the fixed stars and the sun received most profound scientific demonstration and confirmation.}}</ref>
* '''1862'''&nbsp;– By analysing the [[spectroscopic]] signature of the Sun and comparing it to those of other stars, Father [[Angelo Secchi]] determines that the Sun in itself is also a star.<ref>{{CathEncy|wstitle=Angelo Secchi|first= J.|last= Pohle |quote=[...][his] theory of the unity of the world and of the identity of the fixed stars and the sun received most profound scientific demonstration and confirmation.}}</ref>
* '''1887'''&nbsp;– The [[Michelson–Morley experiment]], intended to measure the [[relative motion]] of Earth through the (assumed) stationary [[luminiferous aether]], got no results. This put an end to the centuries-old idea of the [[Aether (classical element)|aether]], dating back to [[Aristotle]], and with it all the contemporary [[aether theories]].<ref>{{cite journal |last1=Michelson |first1=Albert A. |last2=Morley |first2=Edward W.|title=On the Relative Motion of the Earth and the Luminiferous Ether |journal=American Journal of Science |volume=34 |issue=203 |year=1887 |pages=333–345 |doi=10.2475/ajs.s3-34.203.333|title-link=s:On the Relative Motion of the Earth and the Luminiferous Ether |bibcode=1887AmJS...34..333M |s2cid=124333204 }}</ref>
* '''1887'''&nbsp;– The [[Michelson–Morley experiment]], intended to measure the [[relative motion]] of Earth through the (assumed) stationary [[luminiferous aether]], got no results. This put an end to the centuries-old idea of the [[Aether (classical element)|aether]], dating back to [[Aristotle]], and with it all the contemporary [[aether theories]].<ref>{{cite journal |last1=Michelson |first1=Albert A. |last2=Morley |first2=Edward W.|title=On the Relative Motion of the Earth and the Luminiferous Ether |journal=American Journal of Science |volume=34 |issue=203 |year=1887 |pages=333–345 |doi=10.2475/ajs.s3-34.203.333|title-link=s:On the Relative Motion of the Earth and the Luminiferous Ether |bibcode=1887AmJS...34..333M |s2cid=124333204 }}</ref>
Line 133: Line 133:
[[File:Three steps to the Hubble constant.jpg|thumb|Three steps to the [[Hubble constant]]<ref>{{cite web|title=Three steps to the Hubble constant|url=https://www.spacetelescope.org/images/opo1812a/|website=www.spacetelescope.org|access-date=26 February 2018}}</ref>]]
[[File:Three steps to the Hubble constant.jpg|thumb|Three steps to the [[Hubble constant]]<ref>{{cite web|title=Three steps to the Hubble constant|url=https://www.spacetelescope.org/images/opo1812a/|website=www.spacetelescope.org|access-date=26 February 2018}}</ref>]]
* '''1929'''&nbsp;– Edwin Hubble demonstrates the [[Hubble's law|linear redshift-distance relationship]] and thus shows the expansion of the universe.
* '''1929'''&nbsp;– Edwin Hubble demonstrates the [[Hubble's law|linear redshift-distance relationship]] and thus shows the expansion of the universe.
* '''1932'''&nbsp;– [[Karl Guthe Jansky]] recognizes received [[radio signal]]s coming from [[outer space]] as extrasolar, coming mainly from [[Sagittarius (constellation)|Sagittarius]].<ref>{{cite journal |last1=Karl Jansky |title=Electrical Disturbances Apparently of Extraterrestrial Origin |journal=Proceedings of the Institute of Radio Engineers |date=Oct 1933 |volume=21 |issue=10 |pages=1387–1398 |doi=10.1109/JRPROC.1933.227458|url=https://ieeexplore.ieee.org/document/681378|url-access=subscription }} See also {{cite journal |last1=Karl Jansky |title=Radio Waves from Outside the Solar System |journal=Nature |date=Jul 8, 1933 |volume=132 |issue=3323 |page=66 |doi=10.1038/132066a0 |bibcode=1933Natur.132...66J |s2cid=4063838 |url=https://www.nature.com/articles/132066a0.pdf}}</ref> They are the first evidence of the center of the Milky Way, and the firsts experiences that founded the discipline of [[radio astronomy]].
* '''1932'''&nbsp;– [[Karl Guthe Jansky]] recognizes received [[radio signal]]s coming from [[outer space]] as extrasolar, coming mainly from [[Sagittarius (constellation)|Sagittarius]].<ref>{{cite journal |last1=Karl Jansky |title=Electrical Disturbances Apparently of Extraterrestrial Origin |journal=Proceedings of the Institute of Radio Engineers |date=Oct 1933 |volume=21 |issue=10 |pages=1387–1398 |doi=10.1109/JRPROC.1933.227458}} See also {{cite journal |last1=Karl Jansky |title=Radio Waves from Outside the Solar System |journal=Nature |date=Jul 8, 1933 |volume=132 |issue=3323 |page=66 |doi=10.1038/132066a0 |bibcode=1933Natur.132...66J |s2cid=4063838 |url=https://www.nature.com/articles/132066a0.pdf}}</ref> They are the first evidence of the center of the Milky Way, and the firsts experiences that founded the discipline of [[radio astronomy]].
* '''1933'''&nbsp;– [[Edward Arthur Milne|Edward Milne]] names and formalizes the [[cosmological principle]].
* '''1933'''&nbsp;– [[Edward Arthur Milne|Edward Milne]] names and formalizes the [[cosmological principle]].
* '''1933'''&nbsp;– [[Fritz Zwicky]] shows that the [[Coma cluster]] of galaxies contains large amounts of dark matter. This result agrees with modern measurements, but is generally ignored until the 1970s.
* '''1933'''&nbsp;– [[Fritz Zwicky]] shows that the [[Coma Cluster]] of galaxies contains large amounts of dark matter. This result agrees with modern measurements, but is generally ignored until the 1970s.
* '''1934'''&nbsp;– [[Georges Lemaître]] interprets the cosmological constant as due to a [[vacuum energy]] with an unusual perfect fluid [[equation of state]].
* '''1934'''&nbsp;– [[Georges Lemaître]] interprets the cosmological constant as due to a [[vacuum energy]] with an unusual perfect fluid [[equation of state]].
* '''1938'''&nbsp;– [[Hans Bethe]] calculates the details of the [[Hydrogen fusion|two main]] energy-producing [[nuclear reaction]]s that power the stars.<ref>{{cite journal |last1=Bethe |first1=H. |last2=Critchfield |first2=C. |date=1938 |title=On the Formation of Deuterons by Proton Combination |journal=Physical Review |volume=54 |issue=10 |pages=862 |bibcode=1938PhRv...54Q.862B |doi=10.1103/PhysRev.54.862.2}}</ref><ref>{{cite journal |last=Bethe |first=H. |date=1939 |title=Energy Production in Stars |journal=Physical Review |volume=55 |issue=1 |pages=434–456 |bibcode=1939PhRv...55..434B |doi=10.1103/PhysRev.55.434 |pmid=17835673 |s2cid=36146598|doi-access=free }}</ref>
* '''1938'''&nbsp;– [[Hans Bethe]] calculates the details of the [[Hydrogen fusion|two main]] energy-producing [[nuclear reaction]]s that power the stars.<ref>{{cite journal |last1=Bethe |first1=H. |last2=Critchfield |first2=C. |date=1938 |title=On the Formation of Deuterons by Proton Combination |journal=Physical Review |volume=54 |issue=10 |page=862 |bibcode=1938PhRv...54Q.862B |doi=10.1103/PhysRev.54.862.2}}</ref><ref>{{cite journal |last=Bethe |first=H. |date=1939 |title=Energy Production in Stars |journal=Physical Review |volume=55 |issue=1 |pages=434–456 |bibcode=1939PhRv...55..434B |doi=10.1103/PhysRev.55.434 |pmid=17835673 |s2cid=36146598|doi-access=free }}</ref>
* '''1938'''&nbsp;– [[Paul Dirac]] suggests the [[Dirac large numbers hypothesis|large numbers hypothesis]], that the gravitational constant may be small because it is decreasing slowly with time.
* '''1938'''&nbsp;– [[Paul Dirac]] suggests the [[Dirac large numbers hypothesis|large numbers hypothesis]], that the gravitational constant may be small because it is decreasing slowly with time.
* '''1948'''&nbsp;– [[Ralph Alpher]], Hans Bethe ([[Alpher-Bethe-Gamov paper|"in absentia"]]), and [[George Gamow]] examine element synthesis in a rapidly expanding and cooling universe, and suggest that the elements were produced by rapid [[neutron]] capture.
* '''1948'''&nbsp;– [[Ralph Alpher]], Hans Bethe ([[Alpher-Bethe-Gamov paper|"in absentia"]]), and [[George Gamow]] examine element synthesis in a rapidly expanding and cooling universe, and suggest that the elements were produced by rapid [[neutron]] capture.
* '''1948'''&nbsp;– [[Hermann Bondi]], [[Thomas Gold]], and [[Fred Hoyle]] propose [[steady state theory|steady state]] cosmologies based on the perfect cosmological principle.
* '''1948'''&nbsp;– [[Hermann Bondi]], [[Thomas Gold]], and [[Fred Hoyle]] propose [[steady state theory|steady state]] cosmologies based on the perfect cosmological principle.
* '''1948'''&nbsp;– [[George Gamow]] predicts the existence of the [[cosmic microwave background radiation]] by considering the behavior of primordial radiation in an expanding universe.
* '''1948'''&nbsp;– [[George Gamow]] predicts the existence of the [[cosmic microwave background radiation]] by considering the behavior of primordial radiation in an expanding universe.
* '''1950'''&nbsp;– [[Fred Hoyle]] coins the term "Big Bang", saying that it was not derisive; it was just a striking image meant to highlight the difference between that and the Steady-State model.
* '''1950'''&nbsp;– [[Fred Hoyle]] coins the term "[[Big Bang]]", saying that it was not derisive; it was just a striking image meant to highlight the difference between that and the Steady-State model.


==1951–2000==
==1951–2000==
Line 188: Line 188:
* '''2003'''&nbsp;– The [[Sloan Great Wall]] is discovered.
* '''2003'''&nbsp;– The [[Sloan Great Wall]] is discovered.
* '''2004'''&nbsp;– The Degree Angular Scale Interferometer (DASI) first obtained the E-mode polarization spectrum of the cosmic microwave background radiation.
* '''2004'''&nbsp;– The Degree Angular Scale Interferometer (DASI) first obtained the E-mode polarization spectrum of the cosmic microwave background radiation.
* '''2004'''&nbsp;– ''[[Voyager 1]]'' sends back the first data ever obtained from within the Solar System's [[heliosheath]].<ref>{{cite web |url=http://solarsystem.nasa.gov/news/display.cfm?News_ID=36121 |title=Voyager 1 Sees Solar Wind Decline |publisher=NASA |date=December 13, 2010 |access-date=September 16, 2013 |url-status=dead |archive-url=https://web.archive.org/web/20110614073203/http://solarsystem.nasa.gov/news/display.cfm?News_ID=36121 |archive-date=June 14, 2011}}</ref>
* '''2004'''&nbsp;– ''[[Voyager 1]]'' sends back the first data ever obtained from within the Solar System's [[heliosheath]].<ref>{{cite web |url=http://solarsystem.nasa.gov/news/display.cfm?News_ID=36121 |title=Voyager 1 Sees Solar Wind Decline |publisher=NASA |date=December 13, 2010 |access-date=September 16, 2013 |archive-url=https://web.archive.org/web/20110614073203/http://solarsystem.nasa.gov/news/display.cfm?News_ID=36121 |archive-date=June 14, 2011}}</ref>
* '''2005'''&nbsp;– The [[Sloan Digital Sky Survey]] (SDSS) and [[2dF Galaxy Redshift Survey|2dF]] redshift surveys both detected the [[baryon acoustic oscillation]] feature in the galaxy distribution, a key prediction of cold [[dark matter]] models.
* '''2005'''&nbsp;– The [[Sloan Digital Sky Survey]] (SDSS) and [[2dF Galaxy Redshift Survey|2dF]] redshift surveys both detected the [[baryon acoustic oscillation]] feature in the galaxy distribution, a key prediction of cold [[dark matter]] models.
* '''2006'''&nbsp;– Three-year [[WMAP]] results are released, confirming previous analysis, correcting several points, and including [[Cosmic microwave background radiation#Polarization|polarization]] data.
* '''2006'''&nbsp;– Three-year [[WMAP]] results are released, confirming previous analysis, correcting several points, and including [[Cosmic microwave background radiation#Polarization|polarization]] data.
* '''2009–2013'''&nbsp;– [[Planck (spacecraft)|Planck]], a space observatory operated by the [[European Space Agency]] (ESA), mapped the anisotropies of the [[cosmic microwave background radiation]], with increased sensitivity and small angular resolution.  
* '''2009–2013'''&nbsp;– [[Planck (spacecraft)|Planck]], a space observatory operated by the [[European Space Agency]] (ESA), mapped the anisotropies of the [[cosmic microwave background radiation]], with increased sensitivity and small angular resolution.  
* '''2006–2011'''&nbsp;– Improved measurements from [[WMAP]], new supernova surveys ESSENCE and SNLS, and baryon acoustic oscillations from [[Sloan Digital Sky Survey|SDSS]] and [[Astronomical survey#List of sky surveys|WiggleZ]], continue to be consistent with the standard [[Lambda-CDM model]].
* '''2006–2011'''&nbsp;– Improved measurements from [[WMAP]], new supernova surveys ESSENCE and SNLS, and baryon acoustic oscillations from [[Sloan Digital Sky Survey|SDSS]] and [[Astronomical survey#List of sky surveys|WiggleZ]], continue to be consistent with the standard [[Lambda-CDM model]].
* '''2014'''&nbsp;– Astrophysicists of the [[BICEP and Keck Array|BICEP2]] collaboration announce the detection of inflationary [[gravitational waves]] in the [[B-modes|B-mode]] [[power spectrum]], which if confirmed, would provide clear experimental evidence for the [[Inflation (cosmology)|theory of inflation]].<ref name="BICEP2-2014">{{cite web |author=Staff |title=BICEP2 2014 Results Release |url=http://bicepkeck.org |date=March 17, 2014 |work=[[National Science Foundation]] |access-date=March 18, 2014 }}</ref><ref name="NASA-20140317">{{cite web |last=Clavin |first=Whitney |title=NASA Technology Views Birth of the Universe |url=http://www.jpl.nasa.gov/news/news.php?release=2014-082 |date=March 17, 2014 |work=[[NASA]] |access-date=March 17, 2014 }}</ref><ref name="NYT-20140317">{{cite news |last=Overbye |first=Dennis |author-link=Dennis Overbye |title=Space Ripples Reveal Big Bang's Smoking Gun |url=https://www.nytimes.com/2014/03/18/science/space/detection-of-waves-in-space-buttresses-landmark-theory-of-big-bang.html |date=March 17, 2014 |work=[[The New York Times]] |access-date=March 17, 2014 }}</ref><ref name="NYT-20140324">{{cite news |last=Overbye |first=Dennis |author-link=Dennis Overbye |title=Ripples From the Big Bang |url=https://www.nytimes.com/2014/03/25/science/space/ripples-from-the-big-bang.html |date=March 24, 2014 |work=[[New York Times]] |access-date=March 24, 2014 }}</ref><ref name="PRL-20140619"/><ref>{{Cite web | url=http://www.math.columbia.edu/~woit/wordpress/?p=6865 | title=BICEP2 News &#124; Not Even Wrong}}</ref> However, in June lowered confidence in confirming the [[cosmic inflation]] findings was reported.<ref name="PRL-20140619">{{cite journal |author=Ade, P.A.R. |author2=BICEP2 Collaboration |title=Detection of B-Mode Polarization at Degree Angular Scales by BICEP2 |date=June 19, 2014 |journal=[[Physical Review Letters]] |volume=112 |issue=24 |page=241101 |doi=10.1103/PhysRevLett.112.241101 |arxiv = 1403.3985 |bibcode = 2014PhRvL.112x1101B |pmid=24996078|s2cid=22780831 }}</ref><ref name="NYT-20140619">{{cite news |last=Overbye |first=Dennis |author-link=Dennis Overbye |title=Astronomers Hedge on Big Bang Detection Claim |url=https://www.nytimes.com/2014/06/20/science/space/scientists-debate-gravity-wave-detection-claim.html |date=June 19, 2014 |work=[[New York Times]] |access-date=June 20, 2014 }}</ref><ref name="BBC-20140619">{{cite news |last=Amos |first=Jonathan |title=Cosmic inflation: Confidence lowered for Big Bang signal |url=https://www.bbc.com/news/science-environment-27935479 |date=June 19, 2014 |work=[[BBC News]] |access-date=June 20, 2014 }}</ref>
* '''2014'''&nbsp;– Astrophysicists of the [[BICEP and Keck Array|BICEP2]] collaboration announce the detection of inflationary [[gravitational waves]] in the [[B-modes|B-mode]] [[power spectrum]], which if confirmed, would provide clear experimental evidence for the [[Inflation (cosmology)|theory of inflation]].<ref name="BICEP2-2014">{{cite web |author=Staff |title=BICEP2 2014 Results Release |url=http://bicepkeck.org |date=March 17, 2014 |work=[[National Science Foundation]] |access-date=March 18, 2014 }}</ref><ref name="NASA-20140317">{{cite web |last=Clavin |first=Whitney |title=NASA Technology Views Birth of the Universe |url=http://www.jpl.nasa.gov/news/news.php?release=2014-082 |date=March 17, 2014 |work=[[NASA]] |access-date=March 17, 2014 }}</ref><ref name="NYT-20140317">{{cite news |last=Overbye |first=Dennis |author-link=Dennis Overbye |title=Space Ripples Reveal Big Bang's Smoking Gun |url=https://www.nytimes.com/2014/03/18/science/space/detection-of-waves-in-space-buttresses-landmark-theory-of-big-bang.html |date=March 17, 2014 |work=[[The New York Times]] |access-date=March 17, 2014 }}</ref><ref name="NYT-20140324">{{cite news |last=Overbye |first=Dennis |author-link=Dennis Overbye |title=Ripples From the Big Bang |url=https://www.nytimes.com/2014/03/25/science/space/ripples-from-the-big-bang.html |date=March 24, 2014 |work=[[New York Times]] |access-date=March 24, 2014 }}</ref><ref name="PRL-20140619"/><ref>{{Cite web | url=http://www.math.columbia.edu/~woit/wordpress/?p=6865 | title=BICEP2 News &#124; Not Even Wrong| date=13 May 2014}}</ref> However, in June lowered confidence in confirming the [[cosmic inflation]] findings was reported.<ref name="PRL-20140619">{{cite journal |author=Ade, P.A.R. |author2=BICEP2 Collaboration |title=Detection of B-Mode Polarization at Degree Angular Scales by BICEP2 |date=June 19, 2014 |journal=[[Physical Review Letters]] |volume=112 |issue=24 |article-number=241101 |doi=10.1103/PhysRevLett.112.241101 |arxiv = 1403.3985 |bibcode = 2014PhRvL.112x1101B |pmid=24996078|s2cid=22780831 }}</ref><ref name="NYT-20140619">{{cite news |last=Overbye |first=Dennis |author-link=Dennis Overbye |title=Astronomers Hedge on Big Bang Detection Claim |url=https://www.nytimes.com/2014/06/20/science/space/scientists-debate-gravity-wave-detection-claim.html |date=June 19, 2014 |work=[[New York Times]] |access-date=June 20, 2014 }}</ref><ref name="BBC-20140619">{{cite news |last=Amos |first=Jonathan |title=Cosmic inflation: Confidence lowered for Big Bang signal |url=https://www.bbc.com/news/science-environment-27935479 |date=June 19, 2014 |work=[[BBC News]] |access-date=June 20, 2014 }}</ref>
* '''2016'''&nbsp;– [[LIGO Scientific Collaboration]] and [[Virgo interferometer|Virgo Collaboration]] announce that gravitational waves were [[First observation of gravitational waves|directly detected]] by two [[LIGO]] detectors. The [[waveform]] matched the prediction of [[General relativity]] for a gravitational wave emanating from the inward spiral and merger of a pair of [[black hole]]s of around 36 and 29 [[solar mass]]es and the subsequent "ringdown" of the single resulting black hole.<ref>{{Cite journal|title = Observation of Gravitational Waves from a Binary Black Hole Merger|journal = [[Physical Review Letters]]|date = 2016-02-11|issn = 0031-9007|volume = 116|issue = 6|doi = 10.1103/PhysRevLett.116.061102|language = en|first1 = B. P.|last1 = Abbott|first2 = R.|last2 = Abbott|first3 = T. D.|last3 = Abbott|first4 = M. R.|last4 = Abernathy|first5 = F.|last5 = Acernese|first6 = K.|last6 = Ackley|first7 = C.|last7 = Adams|first8 = T.|last8 = Adams|first9 = P.|last9 = Addesso|arxiv = 1602.03837 |bibcode = 2016PhRvL.116f1102A|pmid=26918975|pages=061102|s2cid = 124959784}}</ref><ref name="Nature_11Feb16">{{cite journal |title=Einstein's gravitational waves found at last |journal=Nature News |url=http://www.nature.com/news/einstein-s-gravitational-waves-found-at-last-1.19361 |date=11 February 2016 |last1=Castelvecchi |first1=Davide |last2=Witze |first2=Alexandra |doi=10.1038/nature.2016.19361 |s2cid=182916902 |access-date=11 February 2016|url-access=subscription |doi-access=free }}</ref><ref name ="renn">{{cite web |last1=Blum |first1=Alexander |last2=Lalli |first2=Roberto |last3=Renn |first3=Jürgen |author-link3=Jürgen Renn |title=The long road towards evidence |url=http://www.mpg.de/9966773/background |work=[[Max Planck Society]] |date=12 February 2016 |access-date=15 February 2016}}</ref> The [[GW151226|second detection]] verified that GW150914 is not a fluke, thus opens entire new branch in astrophysics, [[gravitational-wave astronomy]].<ref name="PRL-20160615" >{{Cite journal| collaboration=LIGO Scientific Collaboration and Virgo Collaboration| last=Abbott| first=B. P.| date=15 June 2016| title=GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence| journal=Physical Review Letters| volume= 116| issue= 24| pages=241103|doi=10.1103/PhysRevLett.116.241103| pmid=27367379|arxiv = 1606.04855 |bibcode = 2016PhRvL.116x1103A | s2cid=118651851}}</ref><ref>{{Cite web| url=http://physicsworld.com/cws/article/news/2016/jun/15/ligo-detects-second-black-hole-merger| title=LIGO detects second black-hole merger |date=15 June 2016| first=Tushna| last=Commissariat| website=[[Physics World]]| publisher= [[Institute of Physics]]| access-date=15 June 2016}}</ref>
* '''2016'''&nbsp;– [[LIGO Scientific Collaboration]] and [[Virgo interferometer|Virgo Collaboration]] announce that gravitational waves were [[First observation of gravitational waves|directly detected]] by two [[LIGO]] detectors. The [[waveform]] matched the prediction of [[General relativity]] for a gravitational wave emanating from the inward spiral and merger of a pair of [[black hole]]s of around 36 and 29 [[solar mass]]es and the subsequent "ringdown" of the single resulting black hole.<ref>{{Cite journal|title = Observation of Gravitational Waves from a Binary Black Hole Merger|journal = [[Physical Review Letters]]|date = 2016-02-11|issn = 0031-9007|volume = 116|issue = 6|doi = 10.1103/PhysRevLett.116.061102|language = en|first1 = B. P.|last1 = Abbott|first2 = R.|last2 = Abbott|first3 = T. D.|last3 = Abbott|first4 = M. R.|last4 = Abernathy|first5 = F.|last5 = Acernese|first6 = K.|last6 = Ackley|first7 = C.|last7 = Adams|first8 = T.|last8 = Adams|first9 = P.|last9 = Addesso|arxiv = 1602.03837 |bibcode = 2016PhRvL.116f1102A|pmid=26918975|article-number=061102|s2cid = 124959784}}</ref><ref name="Nature_11Feb16">{{cite journal |title=Einstein's gravitational waves found at last |journal=Nature News |url=http://www.nature.com/news/einstein-s-gravitational-waves-found-at-last-1.19361 |date=11 February 2016 |last1=Castelvecchi |first1=Davide |last2=Witze |first2=Alexandra |doi=10.1038/nature.2016.19361 |s2cid=182916902 |access-date=11 February 2016|url-access=subscription |doi-access=free }}</ref><ref name ="renn">{{cite web |last1=Blum |first1=Alexander |last2=Lalli |first2=Roberto |last3=Renn |first3=Jürgen |author-link3=Jürgen Renn |title=The long road towards evidence |url=http://www.mpg.de/9966773/background |work=[[Max Planck Society]] |date=12 February 2016 |access-date=15 February 2016}}</ref> The [[GW151226|second detection]] verified that GW150914 is not a fluke, thus opens entire new branch in astrophysics, [[gravitational-wave astronomy]].<ref name="PRL-20160615" >{{Cite journal| collaboration=LIGO Scientific Collaboration and Virgo Collaboration| last=Abbott| first=B. P.| date=15 June 2016| title=GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence| journal=Physical Review Letters| volume= 116| issue= 24| article-number=241103|doi=10.1103/PhysRevLett.116.241103| pmid=27367379|arxiv = 1606.04855 |bibcode = 2016PhRvL.116x1103A | s2cid=118651851}}</ref><ref>{{Cite web| url=http://physicsworld.com/cws/article/news/2016/jun/15/ligo-detects-second-black-hole-merger| title=LIGO detects second black-hole merger |date=15 June 2016| first=Tushna| last=Commissariat| website=[[Physics World]]| publisher= [[Institute of Physics]]| access-date=15 June 2016}}</ref>
* '''2019'''&nbsp;– <!--- More informative details could be added here. --->[[Event Horizon Telescope|The Event Horizon Telescope]] Collaboration publishes the image of the black hole at the center of the [[Messier 87|M87 Galaxy]].<ref>{{Cite web|url=https://eventhorizontelescope.org/blog/first-ever-image-black-hole-published-event-horizon-telescope-collaboration|title=First-ever Image of a Black Hole Published by the Event Horizon Telescope Collaboration|website=eventhorizontelescope.org|date=10 April 2019 |language=en|access-date=2020-03-30}}</ref> This is the first time [[astronomer]]s have ever captured an image of a [[black hole]], which once again proves the existence of black holes and thus helps verify [[Albert Einstein|Einstein]]'s [[General relativity|general theory of relativity]].<ref>{{Cite web|url=https://www.sciencenews.org/article/black-hole-first-picture-event-horizon-telescope|title=The first picture of a black hole opens a new era of astrophysics|date=2019-04-10|website=Science News|language=en-US|access-date=2020-03-30}}</ref> This was done by utilising [[very-long-baseline interferometry]].<ref>{{Cite web|url=https://skyandtelescope.org/astronomy-blogs/black-hole-files/how-does-very-long-baseline-interferometry-work/|title=How Does the Event Horizon Telescope Work?|date=2019-04-15|website=Sky & Telescope|language=en-US|access-date=2020-03-30}}</ref>
* '''2019'''&nbsp;– <!--- More informative details could be added here. --->[[Event Horizon Telescope|The Event Horizon Telescope]] Collaboration publishes the image of the black hole at the center of the [[Messier 87|M87 Galaxy]].<ref>{{Cite web|url=https://eventhorizontelescope.org/blog/first-ever-image-black-hole-published-event-horizon-telescope-collaboration|title=First-ever Image of a Black Hole Published by the Event Horizon Telescope Collaboration|website=eventhorizontelescope.org|date=10 April 2019 |language=en|access-date=2020-03-30}}</ref> This is the first time [[astronomer]]s have ever captured an image of a [[black hole]], which once again proves the existence of black holes and thus helps verify [[Albert Einstein|Einstein]]'s [[General relativity|general theory of relativity]].<ref>{{Cite web|url=https://www.sciencenews.org/article/black-hole-first-picture-event-horizon-telescope|title=The first picture of a black hole opens a new era of astrophysics|date=2019-04-10|website=Science News|language=en-US|access-date=2020-03-30}}</ref> This was done by utilising [[very-long-baseline interferometry]].<ref>{{Cite web|url=https://skyandtelescope.org/astronomy-blogs/black-hole-files/how-does-very-long-baseline-interferometry-work/|title=How Does the Event Horizon Telescope Work?|date=2019-04-15|website=Sky & Telescope|language=en-US|access-date=2020-03-30}}</ref>
* '''2020'''&nbsp;– Physicist [[Lucas Lombriser]] of the [[University of Geneva]] presents a possible way of reconciling the two significantly different determinations of the [[Hubble constant]] by proposing the notion of a surrounding [[Hubble bubble (astronomy)|vast "bubble"]], 250 million light years in diameter, that is half the density of the rest of the universe.<ref name="PHYS-20200310">{{cite news |author=University of Geneva |title=Solved: The mystery of the expansion of the universe |url=https://phys.org/news/2020-03-mystery-expansion-universe.html |date=10 March 2020 |work=[[Phys.org]] |access-date=10 March 2020 |author-link=University of Geneva }}</ref><ref name="PLB-20200410">{{cite journal |last=Lombriser |first=Lucas |title=Consistency of the local Hubble constant with the cosmic microwave background |date=10 April 2020 |journal=[[Physics Letters B]] |volume=803 |pages=135303 |doi=10.1016/j.physletb.2020.135303 |arxiv=1906.12347 |bibcode=2020PhLB..80335303L |s2cid=195750638 }}</ref>
* '''2020'''&nbsp;– Physicist [[Lucas Lombriser]] of the [[University of Geneva]] presents a possible way of reconciling the two significantly different determinations of the [[Hubble constant]] by proposing the notion of a surrounding [[Hubble bubble (astronomy)|vast "bubble"]], 250 million light years in diameter, that is half the density of the rest of the universe.<ref name="PHYS-20200310">{{cite news |author=University of Geneva |title=Solved: The mystery of the expansion of the universe |url=https://phys.org/news/2020-03-mystery-expansion-universe.html |date=10 March 2020 |work=[[Phys.org]] |access-date=10 March 2020 |author-link=University of Geneva }}</ref><ref name="PLB-20200410">{{cite journal |last=Lombriser |first=Lucas |title=Consistency of the local Hubble constant with the cosmic microwave background |date=10 April 2020 |journal=[[Physics Letters B]] |volume=803 |article-number=135303 |doi=10.1016/j.physletb.2020.135303 |arxiv=1906.12347 |bibcode=2020PhLB..80335303L |s2cid=195750638 }}</ref>
* '''2020'''&nbsp;– Scientists publish a study which suggests that the Universe is no longer [[Expansion of the Universe|expanding]] at the same rate in all directions and that therefore the widely accepted [[Isotropy#Cosmology|isotropy hypothesis]] might be wrong. While previous studies already suggested this, the study is the first to examine [[galaxy cluster]]s in X-rays and, according to Norbert Schartel, has a much greater significance. The study found a consistent and strong directional behavior of [[Hubble's law#Measured values of the Hubble constant|deviations – which have earlier been described to indicate a "crisis of cosmology" by others – of the normalization parameter A, or the Hubble constant H0]]. Beyond the potential [[cosmological]] implications, it shows that studies which assume perfect isotropy in the properties of galaxy clusters and their scaling relations can produce strongly biased results.<ref>{{cite web |title=Rethinking cosmology: Universe expansion may not be uniform (Update) |url=https://phys.org/news/2020-04-basic-assumption-universe.html |website=phys.org |access-date=15 May 2020 |language=en}}</ref><ref>{{cite news |title=Nasa study challenges one of our most basic ideas about the universe |url=https://www.independent.co.uk/life-style/gadgets-and-tech/news/universe-expanding-direction-nasa-esa-cosmology-isotropic-a9455641.html |archive-url=https://ghostarchive.org/archive/20220507/https://www.independent.co.uk/life-style/gadgets-and-tech/news/universe-expanding-direction-nasa-esa-cosmology-isotropic-a9455641.html |archive-date=2022-05-07 |url-access=subscription |url-status=live |access-date=23 May 2020 |work=The Independent |date=8 April 2020 |language=en}}</ref><ref>{{cite news |title=Parts of the universe may be expanding faster than others |url=https://newatlas.com/physics/universe-expansion-not-uniform/ |access-date=23 May 2020 |work=New Atlas |date=9 April 2020}}</ref><ref>{{cite news |title=Doubts about basic assumption for the universe |url=https://www.eurekalert.org/pub_releases/2020-04/uob-dab040820.php |access-date=23 May 2020 |work=EurekAlert! |language=en}}</ref><ref>{{cite journal |last1=Migkas |first1=K. |last2=Schellenberger |first2=G. |last3=Reiprich |first3=T. H. |last4=Pacaud |first4=F. |last5=Ramos-Ceja |first5=M. E. |last6=Lovisari |first6=L. |title=Probing cosmic isotropy with a new X-ray galaxy cluster sample through the LX–T scaling relation |journal=Astronomy & Astrophysics |date=8 April 2020 |volume=636 |pages=A15 |doi=10.1051/0004-6361/201936602 |arxiv=2004.03305 |bibcode=2020A&A...636A..15M |s2cid=215238834 |url=https://www.aanda.org/articles/aa/abs/2020/04/aa36602-19/aa36602-19.html |access-date=15 May 2020 |language=en |issn=0004-6361}}</ref>
* '''2020'''&nbsp;– Scientists publish a study which suggests that the Universe is no longer [[Expansion of the Universe|expanding]] at the same rate in all directions and that therefore the widely accepted [[Isotropy#Cosmology|isotropy hypothesis]] might be wrong. While previous studies already suggested this, the study is the first to examine [[galaxy cluster]]s in X-rays and, according to Norbert Schartel, has a much greater significance. The study found a consistent and strong directional behavior of [[Hubble's law#Measured values of the Hubble constant|deviations – which have earlier been described to indicate a "crisis of cosmology" by others – of the normalization parameter A, or the Hubble constant H0]]. Beyond the potential [[cosmological]] implications, it shows that studies which assume perfect isotropy in the properties of galaxy clusters and their scaling relations can produce strongly biased results.<ref>{{cite web |title=Rethinking cosmology: Universe expansion may not be uniform (Update) |url=https://phys.org/news/2020-04-basic-assumption-universe.html |website=phys.org |access-date=15 May 2020 |language=en}}</ref><ref>{{cite news |title=Nasa study challenges one of our most basic ideas about the universe |url=https://www.independent.co.uk/life-style/gadgets-and-tech/news/universe-expanding-direction-nasa-esa-cosmology-isotropic-a9455641.html |archive-url=https://ghostarchive.org/archive/20220507/https://www.independent.co.uk/life-style/gadgets-and-tech/news/universe-expanding-direction-nasa-esa-cosmology-isotropic-a9455641.html |archive-date=2022-05-07 |url-access=subscription |url-status=live |access-date=23 May 2020 |work=The Independent |date=8 April 2020 |language=en}}</ref><ref>{{cite news |title=Parts of the universe may be expanding faster than others |url=https://newatlas.com/physics/universe-expansion-not-uniform/ |access-date=23 May 2020 |work=New Atlas |date=9 April 2020}}</ref><ref>{{cite news |title=Doubts about basic assumption for the universe |url=https://www.eurekalert.org/pub_releases/2020-04/uob-dab040820.php |access-date=23 May 2020 |work=EurekAlert! |language=en}}</ref><ref>{{cite journal |last1=Migkas |first1=K. |last2=Schellenberger |first2=G. |last3=Reiprich |first3=T. H. |last4=Pacaud |first4=F. |last5=Ramos-Ceja |first5=M. E. |last6=Lovisari |first6=L. |title=Probing cosmic isotropy with a new X-ray galaxy cluster sample through the LX–T scaling relation |journal=Astronomy & Astrophysics |date=8 April 2020 |volume=636 |pages=A15 |doi=10.1051/0004-6361/201936602 |arxiv=2004.03305 |bibcode=2020A&A...636A..15M |s2cid=215238834 |url=https://www.aanda.org/articles/aa/abs/2020/04/aa36602-19/aa36602-19.html |access-date=15 May 2020 |language=en |issn=0004-6361}}</ref>
* '''2020'''&nbsp;– Scientists report verifying measurements 2011–2014 via [[ULAS J1120+0641]] of what seem to be [[fine-structure constant#Potential time-variation|a spatial variation in four measurements of the fine-structure constant]], a basic physical constant used to measure [[electromagnetism]] between charged particles, which indicates that there might be directionality with varying natural constants in the Universe which would have implications for [[Physical constant#Fine-tuned universe|theories on the emergence of habitability of the Universe]] and be at odds with the widely accepted theory of constant [[natural law]]s and the standard model of [[cosmology]] which is based on an [[Isotropy|isotropic]] Universe.<ref>{{cite news |title=The laws of physics may break down at the edge of the universe |url=https://futurism.com/the-byte/laws-physics-break-down-edge-universe |access-date=17 May 2020 |work=Futurism |language=en}}</ref><ref>{{cite news |title=New findings suggest laws of nature 'downright weird,' not as constant as previously thought |url=https://phys.org/news/2020-04-laws-nature-downright-weird-constant.html |access-date=17 May 2020 |work=phys.org |language=en}}</ref><ref name="SA-20200428">{{cite news |last=Field |first=David |title=New Tests Suggest a Fundamental Constant of Physics Isn't The Same Across The Universe |url=https://www.sciencealert.com/new-tests-suggest-the-fundamental-forces-of-nature-aren-t-constant-across-the-universe |date=28 April 2020 |work=ScienceAlert.com |access-date=29 April 2020 }}</ref><ref>{{cite journal |last1=Wilczynska |first1=Michael R. |last2=Webb |first2=John K. |last3=Bainbridge |first3=Matthew |last4=Barrow |first4=John D. |last5=Bosman |first5=Sarah E. I. |last6=Carswell |first6=Robert F. |last7=Dąbrowski |first7=Mariusz P. |last8=Dumont |first8=Vincent |last9=Lee |first9=Chung-Chi |last10=Leite |first10=Ana Catarina |last11=Leszczyńska |first11=Katarzyna |last12=Liske |first12=Jochen |last13=Marosek |first13=Konrad |last14=Martins |first14=Carlos J. A. P. |last15=Milaković |first15=Dinko |last16=Molaro |first16=Paolo |last17=Pasquini |first17=Luca |title=Four direct measurements of the fine-structure constant 13 billion years ago |journal=Science Advances |date=1 April 2020 |volume=6 |issue=17 |pages=eaay9672 |doi=10.1126/sciadv.aay9672 |pmc=7182409  |pmid=32426462 |arxiv=2003.07627 |bibcode=2020SciA....6.9672W |doi-access=free }}</ref>
* '''2020'''&nbsp;– Scientists report verifying measurements 2011–2014 via [[ULAS J1120+0641]] of what seem to be [[fine-structure constant#Potential time-variation|a spatial variation in four measurements of the fine-structure constant]], a basic physical constant used to measure [[electromagnetism]] between charged particles, which indicates that there might be directionality with varying natural constants in the Universe which would have implications for [[Physical constant#Fine-tuned universe|theories on the emergence of habitability of the Universe]] and be at odds with the widely accepted theory of constant [[natural law]]s and the standard model of [[cosmology]] which is based on an [[Isotropy|isotropic]] Universe.<ref>{{cite news |title=The laws of physics may break down at the edge of the universe |url=https://futurism.com/the-byte/laws-physics-break-down-edge-universe |access-date=17 May 2020 |work=Futurism |language=en}}</ref><ref>{{cite news |title=New findings suggest laws of nature 'downright weird,' not as constant as previously thought |url=https://phys.org/news/2020-04-laws-nature-downright-weird-constant.html |access-date=17 May 2020 |work=phys.org |language=en}}</ref><ref name="SA-20200428">{{cite news |last=Field |first=David |title=New Tests Suggest a Fundamental Constant of Physics Isn't The Same Across The Universe |url=https://www.sciencealert.com/new-tests-suggest-the-fundamental-forces-of-nature-aren-t-constant-across-the-universe |date=28 April 2020 |work=ScienceAlert.com |access-date=29 April 2020 }}</ref><ref>{{cite journal |last1=Wilczynska |first1=Michael R. |last2=Webb |first2=John K. |last3=Bainbridge |first3=Matthew |last4=Barrow |first4=John D. |last5=Bosman |first5=Sarah E. I. |last6=Carswell |first6=Robert F. |last7=Dąbrowski |first7=Mariusz P. |last8=Dumont |first8=Vincent |last9=Lee |first9=Chung-Chi |last10=Leite |first10=Ana Catarina |last11=Leszczyńska |first11=Katarzyna |last12=Liske |first12=Jochen |last13=Marosek |first13=Konrad |last14=Martins |first14=Carlos J. A. P. |last15=Milaković |first15=Dinko |last16=Molaro |first16=Paolo |last17=Pasquini |first17=Luca |title=Four direct measurements of the fine-structure constant 13 billion years ago |journal=Science Advances |date=1 April 2020 |volume=6 |issue=17 |article-number=eaay9672 |doi=10.1126/sciadv.aay9672 |pmc=7182409  |pmid=32426462 |arxiv=2003.07627 |bibcode=2020SciA....6.9672W |doi-access=free }}</ref>
* '''2021'''&nbsp;– [[James Webb Space Telescope]] is launched.<ref name="AS-20211225">{{cite press release |url=https://www.arianespace.com/press-release/ariane-5-successful-launch-webb-space-telescope/ |title=Ariane 5 goes down in history with successful launch of Webb |work=[[Arianespace]] |date=25 December 2021 |access-date=25 December 2021 |archive-date=10 March 2022 |archive-url=https://web.archive.org/web/20220310095539/https://www.arianespace.com/press-release/ariane-5-successful-launch-webb-space-telescope/ |url-status=live }}</ref>
* '''2021'''&nbsp;– [[James Webb Space Telescope]] is launched.<ref name="AS-20211225">{{cite press release |url=https://www.arianespace.com/press-release/ariane-5-successful-launch-webb-space-telescope/ |title=Ariane 5 goes down in history with successful launch of Webb |work=[[Arianespace]] |date=25 December 2021 |access-date=25 December 2021 |archive-date=10 March 2022 |archive-url=https://web.archive.org/web/20220310095539/https://www.arianespace.com/press-release/ariane-5-successful-launch-webb-space-telescope/ |url-status=live }}</ref>
* '''2023''' &ndash; Astrophysicists questioned the overall current view of the [[universe]], in the form of the [[Standard Model of Cosmology]], based on the latest [[James Webb Space Telescope]] studies.<ref name="NYT-20230902">{{cite news |last1=Frank |first1=Adam |last2=Gleiser |first2=Marcelo |title=The Story of Our Universe May Be Starting to Unravel |url=https://www.nytimes.com/2023/09/02/opinion/cosmology-crisis-webb-telescope.html |date=2 September 2023 |work=[[The New York Times]] |url-status=live |archiveurl=https://archive.today/20230902161629/https://www.nytimes.com/2023/09/02/opinion/cosmology-crisis-webb-telescope.html |archivedate=2 September 2023 |accessdate=3 September 2023 }}</ref>
* '''2023''' &ndash; Astrophysicists questioned the overall current view of the [[universe]], in the form of the [[Standard Model of Cosmology]], based on the latest [[James Webb Space Telescope]] studies.<ref name="NYT-20230902">{{cite news |last1=Frank |first1=Adam |last2=Gleiser |first2=Marcelo |title=The Story of Our Universe May Be Starting to Unravel |url=https://www.nytimes.com/2023/09/02/opinion/cosmology-crisis-webb-telescope.html |date=2 September 2023 |work=[[The New York Times]] |url-status=live |archive-url=https://archive.today/20230902161629/https://www.nytimes.com/2023/09/02/opinion/cosmology-crisis-webb-telescope.html |archive-date=2 September 2023 |access-date=3 September 2023 }}</ref>


==See also==
==See also==

Latest revision as of 04:14, 21 September 2025

Template:Short description Script error: No such module "For". Template:Cosmology This timeline of cosmological theories and discoveries is a chronological record of the development of humanity's understanding of the cosmos over the last two-plus millennia. Modern cosmological ideas follow the development of the scientific discipline of physical cosmology.

For millennia, what today is known to be the Solar System was regarded as the contents of the "whole universe", so advances in the knowledge of both mostly paralleled. Clear distinction was not made until circa mid-17th century. See Timeline of Solar System astronomy for further details on this side.

Antiquity

Script error: No such module "Labelled list hatnote".

File:Early Hebrew Conception of the Universe.svg
Early Hebrew conception of the cosmos.Script error: No such module "Unsubst". The firmament, Sheol and tehom are depicted.
  • Template:Circa 15th–6th century BCE – During this period, Zoroastrian Cosmology Develops and defines Creation as a manifestation of a cosmic conflict between existence and non-existence, good and evil, and light and darkness.
  • 6th century BCE – The Babylonian Map of the World shows the Earth surrounded by the cosmic ocean, with seven islands arranged around it so as to form a seven-pointed star. Contemporary Biblical cosmology reflects the same view of a flat, circular Earth swimming on water and overarched by the solid vault of the firmament to which are fastened the stars.
  • 6th–4th century BCE – Greek philosophers, as early as Anaximander,[2] introduce the idea of multiple or even infinite universes.[3] Democritus further detailed that these worlds varied in distance, size; the presence, number and size of their suns and moons; and that they are subject to destructive collisions.[4] Also during this time period, the Greeks established that the Earth is spherical rather than flat.[5][6]
  • 6th century BCE – Anaximander conceives a mechanical, non-mythological model of the world: the Earth floats very still in the centre of the infinite, not supported by anything.[7] Its curious shape is that of a cylinder[8] with a height one-third of its diameter. The flat top forms the inhabited world, which is surrounded by a circular oceanic mass. Anaximander considered the Sun as a huge object (larger than the land of Peloponnesus[9]), and consequently, he realized how far from Earth it might be. In his system the celestial bodies turned at different distances. At the origin, after the separation of hot and cold, a ball of flame appeared that surrounded Earth like bark on a tree. This ball broke apart to form the rest of the Universe. It resembled a system of hollow concentric wheels, filled with fire, with the rims pierced by holes like those of a flute. Consequently, the Sun was the fire that one could see through a hole the same size as the Earth on the farthest wheel, and an eclipse corresponded with the occlusion of that hole. The diameter of the solar wheel was twenty-seven times that of the Earth (or twenty-eight, depending on the sources)[10] and the lunar wheel, whose fire was less intense, eighteen (or nineteen) times. Its hole could change shape, thus explaining lunar phases. The stars and the planets, located closer,[11] followed the same model.[12]
  • 5th century BCE – Parmenides is credited to be the first Greek who declared that the Earth is spherical and is situated in the centre of the universe.[13]
  • 5th century BCE – Pythagoreans such as Philolaus believed the motion of planets is caused by an out-of-sight "fire" at the centre of the universe (not the Sun) that powers them, and Sun and Earth orbit that Central Fire at different distances. The Earth's inhabited side is always opposite to the Central Fire, rendering it invisible to people. They also claimed that the Moon and the planets orbit the Earth.[14] This model depicts a moving Earth, simultaneously self-rotating and orbiting around an external point (but not around the Sun), thus not being geocentrical, contrary to common intuition. Due to philosophical concerns about the number 10 (a "perfect number" for the Pythagorians), they also added a tenth "hidden body" or Counter-Earth (Antichthon), always in the opposite side of the invisible Central Fire and therefore also invisible from Earth.[15]
  • 4th century BCE – Plato claimed in his Timaeus that circles and spheres are the preferred shape of the universe, that the Earth is at the center and is circled by, ordered in-to-outwards: Moon, Sun, Venus, Mercury, Mars, Jupiter, Saturn, and finally the fixed stars located on the celestial sphere.[16] In Plato's complex cosmogony,[17] the demiurge gave the primacy to the motion of Sameness and left it undivided; but he divided the motion of Difference in six parts, to have seven unequal circles. He prescribed these circles to move in opposite directions, three of them with equal speeds, the others with unequal speeds, but always in proportion. These circles are the orbits of the heavenly bodies: the three moving at equal speeds are the Sun, Venus and Mercury, while the four moving at unequal speeds are the Moon, Mars, Jupiter and Saturn.[18][19] The complicated pattern of these movements is bound to be repeated again after a period called a 'complete' or 'perfect' year.[20] However, others like Philolaus and Hicetas had rejected geocentrism.[21]
  • 4th century BCE – Eudoxus of Cnidus devised a geometric-mathematical model for the movements of the planets, the first known effort in this sense, based on (conceptual) concentric spheres centered on Earth.[22] To explain the complexity of the movements of the planets along with that of the Sun and the Moon, Eudoxus thought they move as if they were attached to a number of concentrical, invisible spheres, every of them rotating around its own and different axis and at different paces. His model had twenty-seven homocentric spheres with each sphere explaining a type of observable motion for each celestial object. Eudoxus emphasised that this is a purely mathematical construct of the model in the sense that the spheres of each celestial body do not exist, it just shows the possible positions of the bodies.[23] His model was later refined and expanded by Callippus.
File:Ptolemaicsystem-small.png
Geocentric celestial spheres; Peter Apian's Cosmographia (Antwerp, 1539)
  • 4th century BCE – Aristotle follows the Plato's Earth-centered universe in which the Earth is stationary and the cosmos (or universe) is finite in extent but infinite in time. He argued for a spherical Earth using lunar eclipses[24] and other observations. Aristotle adopted and expanded even more the previous Eudoxus' and Callippus' model, but by supposing the spheres were material and crystalline.[25] Aristotle also tried to determine whether the Earth moves and concluded that all the celestial bodies fall towards Earth by natural tendency and since Earth is the centre of that tendency, it is stationary.[26] Plato seems to have obscurely argued that the universe did have a beginning, but Aristotle and others interpreted his words differently.[27]
  • 4th century BCE – De MundoFive elements, situated in spheres in five regions, the less being in each case surrounded by the greater – namely, earth surrounded by water, water by air, air by fire, and fire by aether – make up the whole Universe.[28]
  • 4th century BCE – Heraclides Ponticus is said to be the first Greek who proposes that the Earth rotates on its axis, from west to east, once every 24 hours, contradicting Aristotle's teachings. Simplicius says that Heraclides proposed that the irregular movements of the planets can be explained if the Earth moves while the Sun stays still,[29] but these statements are disputed.[30]
  • 3rd century BCE – Aristarchus of Samos proposes a Sun-centered universe and Earth's rotation in its own axis. He also provides evidences for his theory from his own observations.[31]
  • 3rd century BCE – Archimedes in his essay The Sand Reckoner, estimates the diameter of the cosmos to be the equivalent in stadia of what would in modern times be called two light years, if Aristarchus' theories were correct.
  • 2nd century BCE – Seleucus of Seleucia elaborates on Aristarchus' heliocentric universe, using the phenomenon of tides to explain heliocentrism. Seleucus was the first to prove the heliocentric system through reasoning. Seleucus' arguments for a heliocentric cosmology were probably related to the phenomenon of tides. According to Strabo (1.1.9), Seleucus was the first to state that the tides are due to the attraction of the Moon, and that the height of the tides depends on the Moon's position relative to the Sun. Alternatively, he may have proved heliocentricity by determining the constants of a geometric model for it.[32]
  • 2nd century BCE – Apollonius of Perga shows the equivalence of two descriptions of the apparent retrograde planet motions (assuming the geocentric model), one using eccentrics and another deferent and epicycles.[33] The latter will be a key feature for future models. The epicycle is described as a small orbit within a greater one, called the deferent: as a planet orbits the Earth, it also orbits the original orbit, so its trajectory resembles a curve known as an epitrochoid. This could explain how the planet seems to move as viewed from Earth.
  • 2nd century BCE – Eratosthenes determines that the radius of the Earth is roughly 6,400 km.[34]
  • 2nd century BCE – Hipparchus uses parallax to determine that the distance to the Moon is roughly 380,000 km.[35] The work of Hipparchus about the Earth-Moon system was so accurate that he could forecast solar and lunar eclipses for the next six centuries. Also, he discovers the precession of the equinoxes, and compiles a star catalog of about 850 entries.[36]
  • Template:Circa 2nd century BCE–3rd century CE – In Hindu cosmology, the Manusmriti (1.67–80) and Puranas describe time as cyclical, with a new universe (planets and life) created by Brahma every 8.64 billion years. The universe is created, maintained, and destroyed within a kalpa (day of Brahma) period lasting for 4.32 billion years, and is followed by a pralaya (night) period of partial dissolution equal in duration. In some Puranas (e.g. Bhagavata Purana), a larger cycle of time is described where matter (mahat-tattva or universal womb) is created from primal matter (prakriti) and root matter (pradhana) every 622.08 trillion years, from which Brahma is born.[37] The elements of the universe are created, used by Brahma, and fully dissolved within a maha-kalpa (life of Brahma; 100 of his 360-day years) period lasting for 311.04 trillion years containing 36,000 kalpas (days) and pralayas (nights), and is followed by a maha-pralaya period of full dissolution equal in duration.[38][39][40][41] The texts also speak of innumerable worlds or universes.[42]
  • 2nd century CE – Ptolemy proposes an Earth-centered universe, with the Sun, Moon, and visible planets revolving around the Earth. Based on Apollonius' epicycles,[43] he calculates the positions, orbits and positional equations of the Heavenly bodies along with instruments to measure these quantities. Ptolemy emphasised that the epicycle motion does not apply to the Sun. His main contribution to the model was the equant points. He also re-arranged the heavenly spheres in a different order than Plato did (from Earth outward): Moon, Mercury, Venus, Sun, Mars, Jupiter, Saturn and fixed stars, following a long astrological tradition and the decreasing orbital periods. His book The Almagest, which also cataloged 1,022 stars and other astronomical objects (largely based upon Hipparchus'), remained the most authoritative text on astronomy and largest astronomical catalogue until the 17th century.[44][45]

Middle Ages

  • 2nd century CE-5th century CE – Jain cosmology considers the loka, or universe, as an uncreated entity, existing since infinity, the shape of the universe as similar to a man standing with legs apart and arm resting on his waist. This Universe, according to Jainism, is broad at the top, narrow at the middle and once again becomes broad at the bottom.
  • 5th century (or earlier) – Buddhist texts speak of "hundreds of thousands of billions, countlessly, innumerably, boundlessly, incomparably, incalculably, unspeakably, inconceivably, immeasurably, inexplicably many worlds" to the east, and "infinite worlds in the ten directions".[46][47]
  • 5th century Aryabhata writes a treatise on motion of planets, Sun and Moon and stars. Aryabhatta puts forward the theory of rotation of the Earth in its own axis and explained day and night was caused by the diurnal rotation of the Earth. He models a geocentric universe with the sun, moon, and planets following circular and eccentric orbits with epicycles.[48]
  • 5th century – The Jewish talmud gives an argument for finite universe theory along with explanation.
File:Naboth Capella.JPG
Naboth's representation of Martianus Capella's geo-heliocentric astronomical model (1573)
  • 5th centuryMartianus Capella describes a modified geocentric model, in which the Earth is at rest in the center of the universe and circled by the Moon, the Sun, three planets and the stars, while Mercury and Venus circle the Sun, all surrounded by the sphere of fixed stars.[49]
  • 6th century – John Philoponus proposes a universe that is finite in time and argues against the ancient Greek notion of an infinite universe
  • 7th century – The Quran says in Chapter 21: Verse 30 – "Have those who disbelieved not considered that the Heavens and the Earth were a joined entity, and We separated them".
  • 9th–12th centuries – Al-Kindi (Alkindus), Saadia Gaon (Saadia ben Joseph) and Al-Ghazali (Algazel) support a universe that has a finite past and develop two logical arguments for the notion.
  • 12th century – Fakhr al-Din al-Razi discusses Islamic cosmology, rejects Aristotle's idea of an Earth-centered universe, and, in the context of his commentary on the Quranic verse, "All praise belongs to God, Lord of the Worlds," and proposes that the universe has more than "a thousand worlds beyond this world."[50]
  • 12th century – Robert Grosseteste described the birth of the Universe in an explosion and the crystallisation of matter. He also put forward several new ideas such as rotation of the Earth around its axis and the cause of day and night. His treatise De Luce is the first attempt to describe the heavens and Earth using a single set of physical laws.[51]
  • 14th century – Jewish astronomer Levi ben Gershon (Gersonides) estimates the distance to the outermost orb of the fixed stars to be no less than 159,651,513,380,944 Earth radii, or about 100,000 light-years in modern units.[52]
  • 14th century – Several European mathematicians and astronomers develop the theory of Earth's rotation including Nicole Oresme. Oresme also give logical reasoning, empirical evidence and mathematical proofs for his notion.[53][54]
  • 15th century – Nicholas of Cusa proposes that the Earth rotates on its axis in his book, On Learned Ignorance (1440).[55] Like Oresme, he also wrote about the possibility of the plurality of worlds.[56]

Renaissance

  • 1501 – Indian astronomer Nilakantha Somayaji proposes a universe in which the planets orbit the Sun, but the Sun orbits the Earth.[57]
File:Heliocentric.jpg
Andreas Cellarius's illustration of the Copernican system, from the Harmonia Macrocosmica
  • 1543 – Nicolaus Copernicus publishes his heliocentric universe in his Script error: No such module "Lang"..[58]
  • 1576 – Thomas Digges modifies the Copernican system by removing its outer edge and replacing the edge with a star-filled unbounded space.[59]
  • 1584 – Giordano Bruno proposes a non-hierarchical cosmology, wherein the Copernican Solar System is not the center of the universe, but rather, a relatively insignificant star system, amongst an infinite multitude of others.[60]
  • 1588 – Tycho Brahe publishes his own Tychonic system, a blend between Ptolemy's classical geocentric model and Copernicus' heliocentric model, in which the Sun and the Moon revolve around the Earth, in the center of universe, and all other planets revolve around the Sun.[61] It is a geo-heliocentric model similar to that described by Somayaji.
  • 1600 – William Gilbert rejects the idea of a limiting sphere of the fixed stars for which no proof has been offered.[62]
  • 1609 – Galileo Galilei examines the skies and constellations through a telescope and concluded that the "fixed stars" which had been studied and mapped were only a tiny portion of the massive universe that lay beyond the reach of the naked eye.[63] When in 1610 he aimed his telescope to the faint strip of the Milky Way, he found it resolves into countless white star-like spots, presumably farther stars themselves.[64]
  • 1610 – Johannes Kepler uses the dark night sky to argue for a finite universe. Shortly after, it was proved by Kepler himself that the Jupiter's moons move around the planet the same way planets orbit the Sun, thus making Kepler's laws universal.[65]

Enlightenment to Victorian Era

  • 1659 – Christiaan Huygens makes precise measurements of the angular distance between the Sun and Venus, which were based on the first absolute measurements of the Astronomical unit.[66]
  • 1672 – Jean Richer and Giovanni Domenico Cassini measure the Earth-Sun distance, the astronomical unit, to be about 138,370,000 km.[67] Later it will be refined by others up to the current value of 149,597,870 km.
  • 1675 – Ole Rømer uses the orbital mechanics of Jupiter's moons to estimate that the speed of light is about 227,000 km/s.[68]
  • 1687 – Isaac Newton's laws describe large-scale motion throughout the universe. The universal force of gravity suggested that stars could not simply be fixed or at rest, as their gravitational pulls cause "mutual attraction" and therefore cause them to move in relation to each other.[69]
  • 1704 – John Locke enters the term "Solar System" in the English language, when he used it to refer to the Sun, planets, and comets as a whole.[70] By then it had been stablished beyond doubt that planets are other worlds, and stars are other distant suns, so the whole Solar System is actually only a small part of an immensely large universe, and definitively something distinct.
  • 1718 – Edmund Halley discovers proper motion of stars, dispelling the concept of the "fixed stars".[71]
  • 1720 – Edmund Halley puts forth an early form of Olbers' paradox (if the universe is infinite, every line of sight would end at a star, thus the night sky would be entirely bright).
  • 1729 – James Bradley discovers the aberration of light, which proved the Earth's motion around the Sun,[72] and also provides a more accurate method to compute the speed of light closer to its actual value of about 300,000 km/s.
  • 1744 – Jean-Philippe de Cheseaux puts forth an early form of Olbers' paradox.
  • 1755 – Immanuel Kant asserts that the nebulae are really galaxies separate from, independent of, and outside the Milky Way Galaxy; he calls them island universes.
File:Herschel-galaxy.jpg
William Herschel's model of the Milky Way, 1785
File:Orion-Nebula A A Common.jpg
One of Andrew Ainslie Common's 1883 photographs of the Orion Nebula, the first to show that a long exposure could record stars and nebulae invisible to the human eye.

1901–1950

File:Pic iroberts1.jpg
The earliest known photograph of the Great Andromeda "Nebula" (with M110 to upper left), by Isaac Roberts, 1899.
File:Three steps to the Hubble constant.jpg
Three steps to the Hubble constant[93]

1951–2000

File:USA.NM.VeryLargeArray.02.jpg
The Karl G. Jansky Very Large Array, a radio interferometer in New Mexico, United States.
File:Egret all sky gamma ray map from CGRO spacecraft.png
The sky at energies above 100 MeV observed by the Energetic Gamma Ray Experiment Telescope (EGRET) of the Compton Gamma Ray Observatory (CGRO) satellite (1991–2000).

2001–present

  • 2001 – The 2dF Galaxy Redshift Survey (2dF) by an Australian/British team gave strong evidence that the matter density is near 25% of critical density. Together with the CMB results for a flat universe, this provides independent evidence for a cosmological constant or similar dark energy.
  • 2002 – The Cosmic Background Imager (CBI) in Chile obtained images of the cosmic microwave background radiation with the highest angular resolution of 4 arc minutes. It also obtained the anisotropy spectrum at high-resolution not covered before up to l ~ 3000. It found a slight excess in power at high-resolution (l > 2500) not yet completely explained, the so-called "CBI-excess".
  • 2003 – NASA's Wilkinson Microwave Anisotropy Probe (WMAP) obtained full-sky detailed pictures of the cosmic microwave background radiation. The images can be interpreted to indicate that the universe is 13.7 billion years old (within one percent error), and are very consistent with the Lambda-CDM model and the density fluctuations predicted by inflation.
File:Cosmic Background Imager- CMB.png
Cosmic microwave background as measured by the Cosmic Background Imager experiment.

See also

Script error: No such module "Portal".

Physical cosmology

Historical development of hypotheses

Belief systems

Others

References

Template:Reflist

Bibliography

  • Bunch, Bryan, and Alexander Hellemans, The History of Science and Technology: A Browser's Guide to the Great Discoveries, Inventions, and the People Who Made Them from the Dawn of Time to Today. Template:ISBN
  • P. de Bernardis et al., astro-ph/0004404, Nature 404 (2000) 955–959.
  • Script error: No such module "citation/CS1".
  • P. Mauskopf et al., astro-ph/9911444, Astrophys. J. 536 (2000) L59–L62.
  • A. Melchiorri et al., astro-ph/9911445, Astrophys. J. 536 (2000) L63–L66.
  • A. Readhead et al., Polarization observations with the Cosmic Background Imager, Science 306 (2004), 836–844.

Template:History of physics

  1. Horowitz (1998), p. xii
  2. This is a matter of debate:
    • Script error: No such module "Citation/CS1".
    • Script error: No such module "citation/CS1".
    • Script error: No such module "citation/CS1".
    • Script error: No such module "citation/CS1".
    • Script error: No such module "citation/CS1".
  3. "there are innumerable worlds of different sizes. In some there is neither sun nor moon, in others they are larger than in ours and others have more than one. These worlds are at irregular distances, more in one direction and less in another, and some are flourishing, others declining. Here they come into being, there they die, and they are destroyed by collision with one another. Some of the worlds have no animal or vegetable life nor any water."
    • Script error: No such module "citation/CS1".
    • Script error: No such module "citation/CS1".
  4. Script error: No such module "citation/CS1".
  5. Script error: No such module "citation/CS1".
  6. Aristotle, On the Heavens, ii, 13
  7. "A column of stone", Aetius reports in De Fide (III, 7, 1), or "similar to a pillar-shaped stone", pseudo-Plutarch (III, 10).
  8. Script error: No such module "Citation/CS1".
  9. In Refutation, it is reported that the circle of the Sun is twenty-seven times bigger than the Moon.
  10. Aetius, De Fide (II, 15, 6)
  11. Most of Anaximander's model of the Universe comes from pseudo-Plutarch (II, 20–28):
    "[The Sun] is a circle twenty-eight times as big as the Earth, with the outline similar to that of a fire-filled chariot wheel, on which appears a mouth in certain places and through which it exposes its fire, as through the hole on a flute. [...] the Sun is equal to the Earth, but the circle on which it breathes and on which it's borne is twenty-seven times as big as the whole earth. [...] [The eclipse] is when the mouth from which comes the fire heat is closed. [...] [The Moon] is a circle nineteen times as big as the whole earth, all filled with fire, like that of the Sun".
  12. Template:Cite LotEP
  13. Script error: No such module "citation/CS1".
  14. Script error: No such module "citation/CS1".
  15. Script error: No such module "citation/CS1".
  16. "The components from which he made the soul and the way in which he made it were as follows: In between the Being that is indivisible and always changeless, and the one that is divisible and comes to be in the corporeal realm, he mixed a third, intermediate form of being, derived from the other two. Similarly, he made a mixture of the Same, and then one of the Different, in between their indivisible and their corporeal, divisible counterparts. And he took the three mixtures and mixed them together to make a uniform mixture, forcing the Different, which was hard to mix, into conformity with the Same. Now when he had mixed these two with Being, and from the three had made a single mixture, he redivided the whole mixture into as many parts as his task required, each part remaining a mixture of the Same, the Different and Being." (35a-b), translation Donald J. Zeyl
  17. Plato, Timaeus, 36c
  18. Plato, Timaeus, 36d
  19. Plato, Timaeus, 39d
  20. Script error: No such module "citation/CS1".
  21. Script error: No such module "Citation/CS1".
  22. Script error: No such module "citation/CS1".
  23. De caelo, 297b31–298a10
  24. Script error: No such module "Citation/CS1".
  25. Script error: No such module "citation/CS1".
  26. Script error: No such module "citation/CS1".
  27. Script error: No such module "citation/CS1".
  28. Script error: No such module "citation/CS1".
  29. Script error: No such module "Citation/CS1".
  30. Script error: No such module "Citation/CS1".
  31. Russell, Bertrand — History of Western Philosophy (2004) – p. 215
  32. Carrol, Bradley and Ostlie, Dale, An Introduction to Modern Astrophysics, Second Edition, Addison-Wesley, San Francisco, 2007. pp. 4
  33. Script error: No such module "citation/CS1".
  34. G. J. Toomer, "Hipparchus on the distances of the sun and moon," Archive for History of Exact Sciences 14 (1974), 126–142.
  35. Alexander Jones "Ptolemy in Perspective: Use and Criticism of his Work from Antiquity to the Nineteenth Century, Springer, 2010, p.36.
  36. Script error: No such module "citation/CS1".
  37. Script error: No such module "citation/CS1".
  38. Script error: No such module "citation/CS1".
  39. Script error: No such module "citation/CS1".
  40. Script error: No such module "citation/CS1".
    • Script error: No such module "citation/CS1".
    • Script error: No such module "citation/CS1".
    • Script error: No such module "citation/CS1".
    • Script error: No such module "citation/CS1".
  41. Script error: No such module "citation/CS1".
  42. Script error: No such module "citation/CS1".
  43. Script error: No such module "Citation/CS1".
  44. Script error: No such module "citation/CS1".
  45. Script error: No such module "citation/CS1".
  46. Script error: No such module "Citation/CS1".
  47. Bruce S. Eastwood, Ordering the Heavens: Roman Astronomy and Cosmology in the Carolingian Renaissance (Leiden: Brill, 2007), pp. 238-9.
  48. Script error: No such module "Citation/CS1".
  49. Script error: No such module "citation/CS1".
  50. Script error: No such module "Citation/CS1".
  51. Script error: No such module "citation/CS1".
  52. Script error: No such module "citation/CS1".
  53. Script error: No such module "citation/CS1".
  54. Dick, Steven J. Plurality of Worlds: The Extraterrestrial Life Debate from Democritus to Kant. Cambridge University Press (June 29, 1984). pgs 35-42.
  55. George G. Joseph (2000). The Crest of the Peacock: Non-European Roots of Mathematics, p. 408. Princeton University Press.
  56. Script error: No such module "citation/CS1".
  57. Script error: No such module "citation/CS1".
  58. Script error: No such module "citation/CS1".
  59. Script error: No such module "citation/CS1".
  60. Script error: No such module "citation/CS1".
  61. Script error: No such module "citation/CS1".
  62. Galileo Galilei, Sidereus Nuncius (Venice, (Italy): Thomas Baglioni, 1610), pages 15 and 16. Template:Webarchive English translation: Galileo Galilei with Edward Stafford Carlos, trans., The Sidereal Messenger (London: Rivingtons, 1880), pages 42 and 43. Template:Webarchive
  63. Christian Frisch, ed., Joannis Kepleri Astronomi Opera Omnia, vol. 6 (Frankfurt-am-Main, (Germany): Heyder & Zimmer, 1866), page 361.)
  64. Script error: No such module "Citation/CS1".
  65. Script error: No such module "citation/CS1".
  66. Script error: No such module "Citation/CS1".
  67. Script error: No such module "citation/CS1".
  68. Script error: No such module "citation/CS1".
  69. Script error: No such module "citation/CS1".
  70. Script error: No such module "Citation/CS1".
  71. Script error: No such module "citation/CS1".
  72. a b Script error: No such module "Citation/CS1".
  73. Owen, T. C. (2001) "Solar system: origin of the solar system", Encyclopædia Britannica, Deluxe CDROM edition
  74. Script error: No such module "Citation/CS1".
  75. Script error: No such module "Citation/CS1".
  76. Alec Eden The search for Christian Doppler, Springer-Verlag, Wien 1992. Contains a facsimile edition with an English translation.
  77. Fizeau: "Acoustique et optique". Lecture, Société Philomathique de Paris, 29 December 1848. According to Becker(pg. 109), this was never published, but recounted by M. Moigno(1850): "Répertoire d'optique moderne" (in French), vol 3. pp 1165–1203 and later in full by Fizeau, "Des effets du mouvement sur le ton des vibrations sonores et sur la longeur d'onde des rayons de lumière"; [Paris, 1870]. Annales de Chimie et de Physique, 19, 211–221.
  78. Template:CathEncy
  79. Script error: No such module "Citation/CS1".
  80. Script error: No such module "citation/CS1".
  81. Template:Cite magazine
  82. Template:Cite magazine
  83. Script error: No such module "Citation/CS1".
  84. Script error: No such module "citation/CS1".
  85. Script error: No such module "Citation/CS1".
  86. Script error: No such module "citation/CS1".
  87. Feynman, R., QED: The Strange Theory of Light and Matter, Penguin 1990 Edition, p. 84.
  88. Script error: No such module "Citation/CS1".
  89. Script error: No such module "Citation/CS1".
  90. Script error: No such module "Citation/CS1".
  91. Script error: No such module "citation/CS1".
  92. Script error: No such module "Citation/CS1". See also Script error: No such module "Citation/CS1".
  93. Script error: No such module "Citation/CS1".
  94. Script error: No such module "Citation/CS1".
  95. Script error: No such module "citation/CS1".
  96. Script error: No such module "Citation/CS1".
  97. Script error: No such module "Citation/CS1".
  98. Script error: No such module "citation/CS1".
  99. Script error: No such module "citation/CS1".
  100. Script error: No such module "citation/CS1".
  101. Script error: No such module "citation/CS1".
  102. Script error: No such module "citation/CS1".
  103. a b Script error: No such module "Citation/CS1".
  104. Script error: No such module "citation/CS1".
  105. Script error: No such module "citation/CS1".
  106. Script error: No such module "citation/CS1".
  107. Script error: No such module "Citation/CS1".
  108. Script error: No such module "Citation/CS1".
  109. Script error: No such module "citation/CS1".
  110. Script error: No such module "Citation/CS1".
  111. Script error: No such module "citation/CS1".
  112. Script error: No such module "citation/CS1".
  113. Script error: No such module "citation/CS1".
  114. Script error: No such module "citation/CS1".
  115. Script error: No such module "citation/CS1".
  116. Script error: No such module "Citation/CS1".
  117. Script error: No such module "citation/CS1".
  118. Script error: No such module "citation/CS1".
  119. Script error: No such module "citation/CS1".
  120. Script error: No such module "citation/CS1".
  121. Script error: No such module "Citation/CS1".
  122. Script error: No such module "citation/CS1".
  123. Script error: No such module "citation/CS1".
  124. Script error: No such module "citation/CS1".
  125. Script error: No such module "Citation/CS1".
  126. Script error: No such module "citation/CS1".
  127. Script error: No such module "citation/CS1".