De Bruijn–Newman constant: Difference between revisions
imported>CRau080 →Upper bounds: adding authorlink field to one ref. |
imported>InternetArchiveBot Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5 |
||
| Line 8: | Line 8: | ||
and <math>\Lambda</math> is the unique real number with the property that <math>H</math> has only real zeros [[if and only if]] <math>\lambda\geq \Lambda</math>. | and <math>\Lambda</math> is the unique real number with the property that <math>H</math> has only real zeros [[if and only if]] <math>\lambda\geq \Lambda</math>. | ||
The constant is closely connected with [[Riemann hypothesis]]. Indeed, the Riemann hypothesis is equivalent to the [[conjecture]] that <math>\Lambda\leq 0</math>.<ref name="tao2">{{cite web|url=https://terrytao.wordpress.com/2018/01/19/the-de-bruijn-newman-constant-is-non-negativ/|title=The De Bruijn-Newman constant is non-negative|date=19 January 2018|access-date=2018-01-19}} (announcement post)</ref> Brad Rodgers and [[Terence Tao]] [[mathematical proof|proved]] that <math>\Lambda\geq 0</math>, so the Riemann hypothesis is equivalent to <math>\Lambda=0</math>.<ref name=":0">{{Cite journal|last1=Rodgers|first1=Brad|last2=Tao|first2=Terence|author-link2=Terence Tao|title=The de Bruijn–Newman Constant is Non-Negative|date=2020|journal=Forum of Mathematics, Pi|language=en|volume=8| | The constant is closely connected with [[Riemann hypothesis]]. Indeed, the Riemann hypothesis is equivalent to the [[conjecture]] that <math>\Lambda\leq 0</math>.<ref name="tao2">{{cite web|url=https://terrytao.wordpress.com/2018/01/19/the-de-bruijn-newman-constant-is-non-negativ/|title=The De Bruijn-Newman constant is non-negative|date=19 January 2018|access-date=2018-01-19}} (announcement post)</ref> Brad Rodgers and [[Terence Tao]] [[mathematical proof|proved]] that <math>\Lambda\geq 0</math>, so the Riemann hypothesis is equivalent to <math>\Lambda=0</math>.<ref name=":0">{{Cite journal|last1=Rodgers|first1=Brad|last2=Tao|first2=Terence|author-link2=Terence Tao|title=The de Bruijn–Newman Constant is Non-Negative|date=2020|journal=Forum of Mathematics, Pi|language=en|volume=8|article-number=e6|doi=10.1017/fmp.2020.6|issn=2050-5086|doi-access=free|arxiv=1801.05914}}</ref> A simplified proof of the Rodgers–Tao result was later given by Alexander Dobner.<ref>{{cite arXiv |last1=Dobner |first1=Alexander |date=2020|title=A New Proof of Newman's Conjecture and a Generalization |class=math.NT |eprint=2005.05142}}</ref> | ||
== History == | == History == | ||
| Line 16: | Line 16: | ||
De Bruijn's upper bound of <math>\Lambda\le 1/2</math> was not improved until 2008, when Ki, Kim and Lee proved <math>\Lambda< 1/2</math>, making the [[inequality (mathematics)|inequality]] strict.<ref name="Ki Kim Lee">{{citation | De Bruijn's upper bound of <math>\Lambda\le 1/2</math> was not improved until 2008, when Ki, Kim and Lee proved <math>\Lambda< 1/2</math>, making the [[inequality (mathematics)|inequality]] strict.<ref name="Ki Kim Lee">{{citation | ||
|title = On the de Bruijn–Newman constant | |title = On the de Bruijn–Newman constant | ||
|mr=2531375 | |mr = 2531375 | ||
|journal = [[Advances in Mathematics]] | |journal = [[Advances in Mathematics]] | ||
|volume = 222 | |volume = 222 | ||
| Line 24: | Line 24: | ||
|issn = 0001-8708 | |issn = 0001-8708 | ||
|doi = 10.1016/j.aim.2009.04.003 | |doi = 10.1016/j.aim.2009.04.003 | ||
|doi-access=free | |doi-access = free | ||
|url = http://web.yonsei.ac.kr/haseo/p23-reprint.pdf | |url = http://web.yonsei.ac.kr/haseo/p23-reprint.pdf | ||
|last1 = Ki |first1 = Haseo | |last1 = Ki | ||
|last2 = Kim |first2 = Young-One | |first1 = Haseo | ||
|last3 = Lee |first3 = Jungseob | |last2 = Kim | ||
|first2 = Young-One | |||
|last3 = Lee | |||
|first3 = Jungseob | |||
|access-date = 2018-03-03 | |||
|archive-date = 2017-08-09 | |||
|archive-url = https://web.archive.org/web/20170809013021/http://web.yonsei.ac.kr/haseo/p23-reprint.pdf | |||
|url-status = dead | |||
}} ([https://terrytao.wordpress.com/2018/01/24/polymath-proposal-upper-bounding-the-de-bruijn-newman-constant/ discussion]).</ref> | }} ([https://terrytao.wordpress.com/2018/01/24/polymath-proposal-upper-bounding-the-de-bruijn-newman-constant/ discussion]).</ref> | ||
| Line 71: | Line 78: | ||
== Historical bounds == | == Historical bounds == | ||
<div style="display:inline-table; padding: 0.5em;> | |||
{| class="wikitable" | {| class="wikitable" | ||
| Line 76: | Line 84: | ||
|- | |- | ||
!Year !! Lower bound on Λ | !Year !! Lower bound on Λ | ||
|- | |- | ||
|1987 ||−50<ref>{{Cite journal|last1=Csordas|first1=G.|last2=Norfolk|first2=T. S.|last3=Varga|first3=R. S.|date=1987-09-01|title=A low bound for the de Bruijn-newman constant Λ|journal=Numerische Mathematik|language=en|volume=52|issue=5|pages=483–497|doi=10.1007/BF01400887|s2cid=124008641|issn=0945-3245}}</ref> | |1987 ||−50<ref>{{Cite journal|last1=Csordas|first1=G.|last2=Norfolk|first2=T. S.|last3=Varga|first3=R. S.|date=1987-09-01|title=A low bound for the de Bruijn-newman constant Λ|journal=Numerische Mathematik|language=en|volume=52|issue=5|pages=483–497|doi=10.1007/BF01400887|s2cid=124008641|issn=0945-3245}}</ref> | ||
|- | |- | ||
|1990 ||−5<ref>{{Cite journal|last=te Riele|first=H. J. J.|date=1990-12-01|title=A new lower bound for the de Bruijn-Newman constant|journal=Numerische Mathematik|language=en|volume=58|issue=1|pages=661–667|doi=10.1007/BF01385647|issn=0945-3245}}</ref> | |1990 ||−5<ref>{{Cite journal|last=te Riele|first=H. J. J.|date=1990-12-01|title=A new lower bound for the de Bruijn-Newman constant|journal=Numerische Mathematik|language=en|volume=58|issue=1|pages=661–667|doi=10.1007/BF01385647|issn=0945-3245}}</ref> | ||
|- | |- | ||
|1991 | |1991 | ||
|−0.0991<ref>{{Cite journal|last1=Csordas|first1=G.|last2=Ruttan|first2=A.|last3=Varga|first3=R. S.|date=1991-06-01|title=The Laguerre inequalities with applications to a problem associated with the Riemann hypothesis|journal=Numerical Algorithms|language=en|volume=1|issue=2|pages=305–329|doi=10.1007/BF02142328|bibcode=1991NuAlg...1..305C|s2cid=22606966|issn=1572-9265}}</ref> | |−0.0991<ref>{{Cite journal|last1=Csordas|first1=G.|last2=Ruttan|first2=A.|last3=Varga|first3=R. S.|date=1991-06-01|title=The Laguerre inequalities with applications to a problem associated with the Riemann hypothesis|journal=Numerical Algorithms|language=en|volume=1|issue=2|pages=305–329|doi=10.1007/BF02142328|bibcode=1991NuAlg...1..305C|s2cid=22606966|issn=1572-9265}}</ref> | ||
|- | |- | ||
|1993 ||−5.895{{e|−9}}<ref>{{cite journal |last1=Csordas | first1=G. |last2=Odlyzko | first2=A.M. | author2-link=Andrew Odlyzko |last3=Smith | first3=W. | last4=Varga | first4=R.S. | author4-link=Richard S. Varga |title=A new Lehmer pair of zeros and a new lower bound for the De Bruijn–Newman constant Lambda |journal=[[Electronic Transactions on Numerical Analysis]] |volume=1 |pages=104–111 |year=1993 |url=http://www.dtc.umn.edu/~odlyzko/doc/arch/debruijn.constant.pdf |access-date=June 1, 2012 | zbl=0807.11059 }}</ref> | |1993 ||−5.895{{e|−9}}<ref>{{cite journal |last1=Csordas | first1=G. |last2=Odlyzko | first2=A.M. | author2-link=Andrew Odlyzko |last3=Smith | first3=W. | last4=Varga | first4=R.S. | author4-link=Richard S. Varga |title=A new Lehmer pair of zeros and a new lower bound for the De Bruijn–Newman constant Lambda |journal=[[Electronic Transactions on Numerical Analysis]] |volume=1 |pages=104–111 |year=1993 |url=http://www.dtc.umn.edu/~odlyzko/doc/arch/debruijn.constant.pdf |access-date=June 1, 2012 | zbl=0807.11059 }}</ref> | ||
|- | |- | ||
|2000 ||−2.7{{e|−9}}<ref>{{cite journal |first1=A.M. |last1=Odlyzko | author-link=Andrew Odlyzko | title=An improved bound for the de Bruijn–Newman constant |journal=Numerical Algorithms |volume=25 |pages=293–303 |year=2000 |issue=1 | zbl=0967.11034 |bibcode=2000NuAlg..25..293O |doi=10.1023/A:1016677511798 |s2cid=5824729 }}</ref> | |2000 ||−2.7{{e|−9}}<ref>{{cite journal |first1=A.M. |last1=Odlyzko | author-link=Andrew Odlyzko | title=An improved bound for the de Bruijn–Newman constant |journal=Numerical Algorithms |volume=25 |pages=293–303 |year=2000 |issue=1 | zbl=0967.11034 |bibcode=2000NuAlg..25..293O |doi=10.1023/A:1016677511798 |s2cid=5824729 }}</ref> | ||
|- | |- | ||
| Line 107: | Line 115: | ||
| volume = 80 | | volume = 80 | ||
| year = 2011| doi-access = free | | year = 2011| doi-access = free | ||
}}</ref> | }}</ref> | ||
|- | |- | ||
|2018 || | |2018 || 0<ref name=":0" /> | ||
|} | |}</div> | ||
<div style="display:inline-table; padding: 0.5em;> | |||
{| class="wikitable" | {| class="wikitable" | ||
| Line 119: | Line 128: | ||
|- | |- | ||
!Year !! Upper bound on Λ | !Year !! Upper bound on Λ | ||
|- | |- | ||
|1950 || | |1950 ||0.5<ref name="de Bruijn roots" /> | ||
|- | |- | ||
|2008 ||< | |2008 ||< 0.5<ref name="Ki Kim Lee" /> | ||
|- | |- | ||
|2019 || | |2019 ||0.22<ref name="Polymath15" /> | ||
|- | |- | ||
|2020 || | |2020 ||0.2<ref name="Platt+Trudgian" /> | ||
|} | |}</div> | ||
==References== | ==References== | ||
Latest revision as of 01:38, 1 November 2025
Template:Short description Script error: No such module "Distinguish".Script error: No such module "For". Template:Lowercase title The de Bruijn–Newman constant, denoted by and named after Nicolaas Govert de Bruijn and Charles Michael Newman, is a mathematical constant defined via the zeros of a certain function , where is a real parameter and is a complex variable. More precisely,
- ,
where is the super-exponentially decaying function
and is the unique real number with the property that has only real zeros if and only if .
The constant is closely connected with Riemann hypothesis. Indeed, the Riemann hypothesis is equivalent to the conjecture that .[1] Brad Rodgers and Terence Tao proved that , so the Riemann hypothesis is equivalent to .[2] A simplified proof of the Rodgers–Tao result was later given by Alexander Dobner.[3]
History
De Bruijn showed in 1950 that has only real zeros if , and moreover, that if has only real zeros for some , also has only real zeros if is replaced by any larger value.[4] Newman proved in 1976 the existence of a constant for which the "if and only if" claim holds; and this then implies that is unique. Newman also conjectured that ,[5] which was proven forty years later, by Brad Rodgers and Terence Tao in 2018.
Upper bounds
De Bruijn's upper bound of was not improved until 2008, when Ki, Kim and Lee proved , making the inequality strict.[6]
In December 2018, the 15th Polymath project improved the bound to .[7][8][9] A manuscript of the Polymath work was submitted to arXiv in late April 2019,[10] and was published in the journal Research In the Mathematical Sciences in August 2019.[11]
This bound was further slightly improved in April 2020 by Platt and Trudgian to .[12]
Historical bounds
| Year | Lower bound on Λ |
|---|---|
| 1987 | −50[13] |
| 1990 | −5[14] |
| 1991 | −0.0991[15] |
| 1993 | −5.895Template:E[16] |
| 2000 | −2.7Template:E[17] |
| 2011 | −1.1Template:E[18] |
| 2018 | 0[2] |
References
External links
- Script error: No such module "Template wrapper".
- ↑ Script error: No such module "citation/CS1". (announcement post)
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "citation/CS1". (discussion).
- ↑ a b Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".(preprint)
- ↑ Script error: No such module "citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".(preprint)
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".