Riemann zeta function: Difference between revisions

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
imported>OAbot
m Open access bot: arxiv, url-access=subscription updated in citation with #oabot.
imported>JJMC89 bot III
 
Line 1: Line 1:
{{Short description|Analytic function in mathematics}}
{{Short description|Analytic function in mathematics}}


[[File:Cplot zeta.svg|right|thumb|250px|The Riemann zeta function {{math|''ζ''(''z'')}} plotted with [[domain coloring]].<ref>{{cite web|url=http://nbviewer.ipython.org/github/empet/Math/blob/master/DomainColoring.ipynb |title=Jupyter Notebook Viewer|website=Nbviewer.ipython.org|access-date=2017-01-04}}</ref>]]
[[File:Cplot zeta.svg|right|thumb|250px|The Riemann zeta function {{math|''ζ''(''z'')}} plotted with [[domain coloring]]<ref>{{cite web|url=http://nbviewer.ipython.org/github/empet/Math/blob/master/DomainColoring.ipynb |title=Jupyter Notebook Viewer|website=Nbviewer.ipython.org|access-date=2017-01-04}}</ref>]]
[[File:Riemann-Zeta-Detail.png|right|thumb|200px|The pole at <math>z=1</math> and two zeros on the critical line.]]
[[File:Riemann-Zeta-Detail.png|right|thumb|200px|The pole at {{math|1=''z'' = 1}} and two zeros on the critical line]]
The '''Riemann zeta function''' or '''Euler–Riemann zeta function''', denoted by the [[Greek alphabet|Greek letter]] {{math|''ζ''}} ([[zeta]]), is a [[function (mathematics)|mathematical function]] of a [[complex variable]] defined as <math display="block"> \zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots</math> for {{nowrap|<math>\operatorname{Re}(s) > 1</math>,}} and its [[analytic continuation]] elsewhere.<ref name=":0" />
The '''Riemann zeta function''' or '''Euler–Riemann zeta function''', denoted by the [[Greek alphabet|Greek letter]] {{math|''ζ''}} ([[zeta]]), is a [[function (mathematics)|mathematical function]] of a [[complex variable]] defined as <math display="block"> \zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots</math> for {{math|Re(''s'') > 1}}, and its [[analytic continuation]] elsewhere.<ref name=":0" />


The Riemann zeta function plays a pivotal role in [[analytic number theory]] and has applications in [[physics]], [[probability theory]], and applied [[statistics]].
The Riemann zeta function plays a pivotal role in [[analytic number theory]] and has applications in [[physics]], [[probability theory]], and applied [[statistics]].


[[Leonhard Euler]] first introduced and studied the function over the [[real numbers|reals]] in the first half of the eighteenth century. [[Bernhard Riemann]]'s 1859 article "[[On the Number of Primes Less Than a Given Magnitude]]" extended the Euler definition to a [[complex number|complex]] variable, proved its [[meromorphic]] continuation and [[functional equation]], and established a relation between its [[Root of a function|zeros]] and [[prime number theorem|the distribution of prime numbers]].  This paper also contained the [[Riemann hypothesis]], a [[conjecture]] about the distribution of complex zeros of the Riemann zeta function that many mathematicians consider the most important unsolved problem in [[pure mathematics]].<ref>{{cite web | last=Bombieri | first=Enrico | url=http://www.claymath.org/sites/default/files/official_problem_description.pdf | title=The Riemann Hypothesis – official problem description | publisher=[[Clay Mathematics Institute]] | access-date=2014-08-08 | archive-date=22 December 2015 | archive-url=https://web.archive.org/web/20151222090027/http://www.claymath.org/sites/default/files/official_problem_description.pdf | url-status=dead }}</ref>
[[Leonhard Euler]] first introduced and studied the function over the [[real numbers|reals]] in the first half of the eighteenth century. [[Bernhard Riemann]]'s 1859 article "[[On the Number of Primes Less Than a Given Magnitude]]" extended the Euler definition to a [[complex number|complex]] variable, proved its [[meromorphic]] continuation and [[functional equation]], and established a relation between its [[Root of a function|zeros]] and [[prime number theorem|the distribution of prime numbers]].  This paper also contained the [[Riemann hypothesis]], a [[conjecture]] about the distribution of complex zeros of the Riemann zeta function that many mathematicians consider the most important unsolved problem in [[pure mathematics]].<ref>{{cite web | last=Bombieri | first=Enrico | url=http://www.claymath.org/sites/default/files/official_problem_description.pdf | title=The Riemann Hypothesis – official problem description | publisher=[[Clay Mathematics Institute]] | access-date=2014-08-08 | archive-date=22 December 2015 | archive-url=https://web.archive.org/web/20151222090027/http://www.claymath.org/sites/default/files/official_problem_description.pdf }}</ref>


The values of the Riemann zeta function at even positive integers were computed by Euler. The first of them, {{math|''ζ''(2)}}, provides a solution to the [[Basel problem]]. In 1979 [[Roger Apéry]] proved the irrationality of {{math|[[Apéry's constant|''ζ''(3)]]}}. The values at negative integer points, also found by Euler, are [[rational number]]s and play an important role in the theory of [[modular form]]s. Many generalizations of the Riemann zeta function, such as [[Dirichlet series]], [[Dirichlet L-function|Dirichlet {{mvar|L}}-functions]] and [[L-function|{{mvar|L}}-functions]], are known.
The values of the Riemann zeta function at even positive integers were computed by Euler. The first of them, {{math|''ζ''(2)}}, provides a solution to the [[Basel problem]]. In 1979 [[Roger Apéry]] proved the irrationality of [[Apéry's constant|{{math|''ζ''(3)}}]]. The values at negative integer points, also found by Euler, are [[rational number]]s and play an important role in the theory of [[modular form]]s. Many generalizations of the Riemann zeta function, such as [[Dirichlet series]], [[Dirichlet L-function|Dirichlet {{math|''L''}}-functions]] and [[L-function|{{math|''L''}}-functions]], are known.


==Definition==
== Definition ==
[[File:Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse.pdf|thumb|upright|Bernhard Riemann's article ''On the number of primes below a given magnitude'']]
[[File:Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse.pdf|thumb|upright|Bernhard Riemann's article ''On the number of primes below a given magnitude'']]


The Riemann zeta function {{math|''ζ''(''s'')}} is a function of a complex variable {{math|''s'' {{=}} ''σ'' + ''it''}}, where {{mvar|σ}} and {{mvar|t}} are real numbers. (The notation {{mvar|s}}, {{mvar|σ}}, and {{mvar|t}} is used traditionally in the study of the zeta function, following Riemann.) When {{math|1=Re(''s'') = ''σ'' > 1}}, the function can be written as a converging summation or as an integral:
The Riemann zeta function {{math|''ζ''(''s'')}} is a function of a complex variable {{math|1=''s'' = ''σ'' + ''it''}}, where {{math|''σ''}} and {{math|''t''}} are real numbers. (The notation {{math|''s''}}, {{math|''σ''}}, and {{math|''t''}} is used traditionally in the study of the zeta function, following Riemann.) When {{math|1=Re(''s'') = ''σ'' > 1}}, the function can be written as a converging summation or as an integral:


<!-- This seemingly roundabout way of writing the integral makes it clear that the zeta function is a quotient of two Mellin transforms; i.e. that we integrate 1/(e^x − 1) against the invariant measure of R^* and the multiplicative character character  x^s . -->
<!-- This seemingly roundabout way of writing the integral makes it clear that the zeta function is a quotient of two Mellin transforms; i.e. that we integrate 1/(e^x − 1) against the invariant measure of R^* and the multiplicative character character  x^s . -->
:<math>\zeta(s) =\sum_{n=1}^\infty\frac{1}{n^s} = \frac{1}{\Gamma(s)} \int_0^\infty \frac{x ^ {s-1}}{e ^ x - 1} \, \mathrm{d}x\,,</math>
: <math>\zeta(s) =\sum_{n=1}^\infty\frac{1}{n^s} = \frac{1}{\Gamma(s)} \int_0^\infty \frac{x ^ {s-1}}{e ^ x - 1} \, \mathrm{d}x\,,</math>
where
where
:<math>\Gamma(s) = \int_0^\infty x^{s-1}\,e^{-x} \, \mathrm{d}x </math>
: <math>\Gamma(s) = \int_0^\infty x^{s-1}\,e^{-x} \, \mathrm{d}x </math>
is the [[gamma function]]. The Riemann zeta function is defined for other complex values via [[analytic continuation]] of the function defined for {{math|''σ'' > 1}}.
is the [[gamma function]]. The Riemann zeta function is defined for other complex values via [[analytic continuation]] of the function defined for {{math|''σ'' > 1}}.


[[Leonhard Euler]] considered the above series in 1740 for positive integer values of {{mvar|s}}, and later [[Chebyshev]] extended the definition to <math>\operatorname{Re}(s) > 1.</math><ref name='devlin'>{{cite book |last=Devlin |first=Keith |author-link=Keith Devlin |title=The Millennium Problems: The seven greatest unsolved mathematical puzzles of our time |publisher=Barnes & Noble |year=2002 |location=New York |pages=43–47 |isbn=978-0-7607-8659-8}}</ref>
[[Leonhard Euler]] considered the above series in 1740 for positive integer values of {{math|''s''}}, and later [[Chebyshev]] extended the definition to {{math|Re(''s'') > 1}}.<ref name='devlin'>{{cite book |last=Devlin |first=Keith |author-link=Keith Devlin |title=The Millennium Problems: The seven greatest unsolved mathematical puzzles of our time |publisher=Barnes & Noble |year=2002 |location=New York |pages=43–47 |isbn=978-0-7607-8659-8}}</ref>


The above series is a prototypical [[Dirichlet series]] that [[absolute convergence|converges absolutely]] to an [[analytic function]] for {{mvar|s}} such that {{math|''σ'' > 1}} and [[divergent series|diverges]] for all other values of {{mvar|s}}. Riemann showed that the function defined by the series on the half-plane of convergence can be continued analytically to all complex values {{math|''s'' ≠ 1}}. For {{math|''s'' {{=}} 1}}, the series is the [[harmonic series (mathematics)|harmonic series]] which diverges to {{math|+∞}}, and
The above series is a prototypical [[Dirichlet series]] that [[absolute convergence|converges absolutely]] to an [[analytic function]] for {{math|''s''}} such that {{math|''σ'' > 1}} and [[divergent series|diverges]] for all other values of {{math|''s''}}. Riemann showed that the function defined by the series on the half-plane of convergence can be continued analytically to all complex values {{math|''s'' ≠ 1}}. For {{math|1=''s'' = 1}}, the series is the [[harmonic series (mathematics)|harmonic series]] which diverges to {{math|+∞}}, and
<math display="block"> \lim_{s \to 1} (s - 1)\zeta(s) = 1.</math>
<math display="block"> \lim_{s \to 1} (s - 1)\zeta(s) = 1.</math>
Thus the Riemann zeta function is a [[meromorphic function]] on the whole complex plane, which is [[holomorphic function|holomorphic]] everywhere except for a [[simple pole]] at {{math|''s'' {{=}} 1}} with [[Residue (complex analysis)|residue]] {{math|1}}.
Thus the Riemann zeta function is a [[meromorphic function]] on the whole complex plane, which is [[holomorphic function|holomorphic]] everywhere except for a [[simple pole]] at {{math|1=''s'' = 1}} with [[Residue (complex analysis)|residue]] {{math|1}}.


==Euler's product formula==
== Euler's product formula ==
In 1737, the connection between the zeta function and [[prime number]]s was discovered by Euler, who [[Proof of the Euler product formula for the Riemann zeta function|proved the identity]]
In 1737, the connection between the zeta function and [[prime number]]s was discovered by Euler, who [[Proof of the Euler product formula for the Riemann zeta function|proved the identity]]
: <math>\sum_{n=1}^\infty\frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1-p^{-s}},</math>
where, by definition, the left hand side is {{math|''ζ''(''s'')}} and the [[infinite product]] on the right hand side extends over all prime numbers {{math|''p''}} (such expressions are called [[Euler product]]s):
: <math>\prod_{p \text{ prime}} \frac{1}{1-p^{-s}} = \frac{1}{1-2^{-s}}\cdot\frac{1}{1-3^{-s}}\cdot\frac{1}{1-5^{-s}}\cdot\frac{1}{1-7^{-s}}\cdot\frac{1}{1-11^{-s}} \cdots \frac{1}{1-p^{-s}} \cdots</math>


:<math>\sum_{n=1}^\infty\frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1-p^{-s}},</math>
Both sides of the Euler product formula converge for {{math|Re(''s'') > 1}}. The [[Proof of the Euler product formula for the Riemann zeta function|proof of Euler's identity]] uses only the formula for the [[geometric series]] and the [[fundamental theorem of arithmetic]]. Since the [[harmonic series (mathematics)|harmonic series]], obtained when {{math|1=''s'' = 1}}, diverges, Euler's formula (which becomes {{math|Π<sub>''p''</sub> {{sfrac|''p''|''p'' − 1}}}}) implies that there are [[Euclid's theorem|infinitely many primes]].<ref>{{cite book|first=Charles Edward |last=Sandifer |title=How Euler Did It |publisher=Mathematical Association of America |date=2007 |page=193 |isbn=978-0-88385-563-8}}</ref> Since the logarithm of {{math|''p''/(''p'' − 1)}} is approximately {{math|1/''p''}}, the formula can also be used to prove the stronger result that the sum of the reciprocals of the primes is infinite. On the other hand, combining that with the [[sieve of Eratosthenes]] shows that the density of the set of primes within the set of positive integers is zero.
 
where, by definition, the left hand side is {{math|''ζ''(''s'')}} and the [[infinite product]] on the right hand side extends over all prime numbers {{mvar|p}} (such expressions are called [[Euler product]]s):
 
:<math>\prod_{p \text{ prime}} \frac{1}{1-p^{-s}} = \frac{1}{1-2^{-s}}\cdot\frac{1}{1-3^{-s}}\cdot\frac{1}{1-5^{-s}}\cdot\frac{1}{1-7^{-s}}\cdot\frac{1}{1-11^{-s}} \cdots \frac{1}{1-p^{-s}} \cdots</math>
 
Both sides of the Euler product formula converge for {{math|Re(''s'') > 1}}. The [[Proof of the Euler product formula for the Riemann zeta function|proof of Euler's identity]] uses only the formula for the [[geometric series]] and the [[fundamental theorem of arithmetic]]. Since the [[harmonic series (mathematics)|harmonic series]], obtained when {{math|''s'' {{=}} 1}}, diverges, Euler's formula (which becomes {{math|Π<sub>''p''</sub> {{sfrac|''p''|''p'' − 1}}}}) implies that there are [[Euclid's theorem|infinitely many primes]].<ref>{{cite book|first=Charles Edward |last=Sandifer |title=How Euler Did It |publisher=Mathematical Association of America |date=2007 |page=193 |isbn=978-0-88385-563-8}}</ref> Since the logarithm of {{math|{{sfrac|''p''|''p'' − 1}}}} is approximately {{math|{{sfrac|1|''p''}}}}, the formula can also be used to prove the stronger result that the sum of the reciprocals of the primes is infinite. On the other hand, combining that with the [[sieve of Eratosthenes]] shows that the density of the set of primes within the set of positive integers is zero.
 
The Euler product formula can be used to calculate the [[asymptotic density|asymptotic probability]] that {{mvar|s}} randomly selected integers are set-wise [[coprime]]. Intuitively, the probability that any single number is divisible by a prime (or any integer) {{mvar|p}} is {{math|{{sfrac|1|''p''}}}}. Hence the probability that {{mvar|s}} numbers are all divisible by this prime is {{math|{{sfrac|1|''p''{{isup|''s''}}}}}}, and the probability that at least one of them is ''not'' is {{math|1 − {{sfrac|1|''p''{{isup|''s''}}}}}}. Now, for distinct primes, these divisibility events are mutually independent because the candidate divisors are coprime (a number is divisible by coprime divisors {{mvar|n}} and {{mvar|m}} [[if and only if]] it is divisible by&nbsp;{{mvar|nm}}, an event which occurs with probability&nbsp;{{math|{{sfrac|1|''nm''}}}}). Thus the asymptotic probability that {{mvar|s}} numbers are coprime is given by a product over all primes,


The Euler product formula can be used to calculate the [[asymptotic density|asymptotic probability]] that {{math|''s''}} randomly selected integers within a bound are set-wise [[coprime]]. Intuitively, the probability that any single number is divisible by a prime (or any integer) {{math|''p''}} is {{math|1/''p''}}. Hence the probability that {{math|''s''}} numbers are all divisible by this prime is {{math|1/''p''{{isup|''s''}}}}, and the probability that at least one of them is ''not'' is {{math|1 − 1/''p''{{isup|''s''}}}}. Now, for distinct primes, these divisibility events are mutually independent because the candidate divisors are coprime (a number is divisible by coprime divisors {{math|''n''}} and {{math|''m''}} [[if and only if]] it is divisible by&nbsp;{{math|''nm''}}, an event which occurs with probability&nbsp;{{math|1/(''nm'')}}). Thus the asymptotic probability that {{math|''s''}} numbers are coprime is given by a product over all primes,<ref>{{cite book
| last = Mollin | first = Richard A.
| isbn = 978-1-4200-8328-6
| mr = 2560324
| page = 220
| publisher = CRC Press, Boca Raton, FL
| series = Discrete Mathematics and its Applications (Boca Raton)
| title = Advanced Number Theory with Applications
| url = https://books.google.com/books?id=6I1setlljDYC&pg=PA220
| year = 2010}}</ref>
: <math>\prod_{p \text{ prime}} \left(1-\frac{1}{p^s}\right) = \left( \prod_{p \text{ prime}} \frac{1}{1-p^{-s}} \right)^{-1} = \frac{1}{\zeta(s)}. </math>
: <math>\prod_{p \text{ prime}} \left(1-\frac{1}{p^s}\right) = \left( \prod_{p \text{ prime}} \frac{1}{1-p^{-s}} \right)^{-1} = \frac{1}{\zeta(s)}. </math>


Line 46: Line 51:
This zeta function satisfies the [[functional equation]]
This zeta function satisfies the [[functional equation]]
<math display="block"> \zeta(s) = 2^s \pi^{s-1}\ \sin\left( \frac{\pi s}{2} \right)\ \Gamma(1-s)\ \zeta(1-s)\ ,</math>
<math display="block"> \zeta(s) = 2^s \pi^{s-1}\ \sin\left( \frac{\pi s}{2} \right)\ \Gamma(1-s)\ \zeta(1-s)\ ,</math>
where {{math|Γ(''s'')}} is the [[gamma function]]. This is an equality of meromorphic functions valid on the whole [[complex plane]]. The equation relates values of the Riemann zeta function at the points {{mvar|s}} and {{math|1 − ''s''}}, in particular relating even positive integers with odd negative integers. Owing to the zeros of the sine function, the functional equation implies that {{math|''ζ''(''s'')}} has a simple zero at each even negative integer {{math|1=''s'' = −2''n''}}, known as the '''[[Triviality (mathematics)|trivial]] zeros''' of {{math|''ζ''(''s'')}}. When {{mvar|s}} is an even positive integer, the product {{nobr|{{math|sin({{sfrac| ''&pi; s'' | 2 }}) &Gamma;(1 − ''s'')}}}} on the right is non-zero because {{math|Γ(1 − ''s'')}} has a simple [[pole (complex analysis)|pole]], which cancels the simple zero of the sine factor.
where {{math|Γ(''s'')}} is the [[gamma function]]. This is an equality of meromorphic functions valid on the whole [[complex plane]]. The equation relates values of the Riemann zeta function at the points {{math|''s''}} and {{math|1 − ''s''}}, in particular relating even positive integers with odd negative integers. Owing to the zeros of the sine function, the functional equation implies that {{math|''ζ''(''s'')}} has a simple zero at each even negative integer {{math|1=''s'' = −2''n''}}, known as the '''[[Triviality (mathematics)|trivial]] zeros''' of {{math|''ζ''(''s'')}}. When {{math|''s''}} is an even positive integer, the product {{nobr|{{math|sin({{sfrac| ''&pi; s'' | 2 }}) &Gamma;(1 − ''s'')}}}} on the right is non-zero because {{math|Γ(1 − ''s'')}} has a simple [[pole (complex analysis)|pole]], which cancels the simple zero of the sine factor. When {{math|''s''}} is {{math|0}}, the zero of the sine factor is cancelled by the simple pole of {{math|''ζ''(1)}}.


{{Collapse top|title=Proof of Riemann's functional equation}}
{{collapse top|title=Proof of Riemann's functional equation}}


A proof of the functional equation proceeds as follows:
A proof of the functional equation proceeds as follows:
We observe that if <math>\ s > 0\ ,</math> then
We observe that if {{math|''s'' > 0}}, then
<math display="block"> \int_0^\infty x^{ \frac{1}{2} s - 1 } e^{-n^2\pi x}\ \operatorname{d} x\ =\ \frac{\ \Gamma\!\left( \frac{s}{2} \right)\ }{\ n^s\ \pi^{\frac{s}{2}}\ } ~.</math>
<math display="block"> \int_0^\infty x^{ \frac{1}{2} s - 1 } e^{-n^2\pi x}\ \mathrm dx\ =\ \frac{\ \Gamma\!\left( \frac{s}{2} \right)\ }{\ n^s\ \pi^{\frac{s}{2}}\ } ~.</math>


As a result, if <math>\ s > 1\ </math> then
As a result, if {{math|''s'' > 1}} then
<math display="block"> \frac{\ \Gamma\!\left(\frac{s}{2}\right)\ \zeta(s)\ }{\ \pi^{ \frac{s}{2} }\ }\ =\ \sum_{n=1}^\infty\ \int_0^\infty\ x^{{s\over 2}-1}\ e^{-n^2 \pi x}\ \operatorname{d} x\ =\ \int_0^\infty x^{{s\over 2}-1} \sum_{n=1}^\infty e^{-n^2 \pi x}\ \operatorname{d} x\ ,</math>
<math display="block"> \frac{\ \Gamma\!\left(\frac{s}{2}\right)\ \zeta(s)\ }{\ \pi^{ \frac{s}{2} }\ }\ =\ \sum_{n=1}^\infty\ \int_0^\infty\ x^{{s\over 2}-1}\ e^{-n^2 \pi x}\ \mathrm dx\ =\ \int_0^\infty x^{{s\over 2}-1} \sum_{n=1}^\infty e^{-n^2 \pi x}\ \mathrm dx\ ,</math>
with the inversion of the limiting processes justified by absolute convergence (hence the stricter requirement on <math>s</math>).
with the inversion of the limiting processes justified by absolute convergence (hence the stricter requirement on <math>s</math>).


For convenience, let
For convenience, let
<math display="block"> \psi(x)\ := \ \sum_{n=1}^\infty\ e^{-n^2 \pi x} </math>
<math display="block"> \psi(x)\ := \ \sum_{n=1}^\infty\ e^{-n^2 \pi x} ,</math>
 
which is a special case of the [[theta function]].
which is a special case of the [[theta function]].


Because <math>e^{-n^2 \pi x}</math> and <math>\frac1\sqrt{x} e^{\frac{-n^2 \pi}{x}}</math> are [[Fourier transform#Definition|Fourier transform pairs]],<ref name='Damm-Johnsen'>{{cite book |last=Damm-Johnsenn |first=Håvard |title=Theta functions and their applications |year=2019 |pages=5|url=https://users.ox.ac.uk/~quee4127/theta.pdf}}</ref> then, by the [[Poisson summation formula]], we have  
Because <math>e^{-n^2 \pi x}</math> and <math>\frac1\sqrt{x} e^{\frac{-n^2 \pi}{x}}</math> are [[Fourier transform#Definition|Fourier transform pairs]],<ref name='Damm-Johnsen'>{{cite book |last=Damm-Johnsenn |first=Håvard |title=Theta functions and their applications |year=2019 |page=5|url=https://users.ox.ac.uk/~quee4127/theta.pdf|archive-url=https://web.archive.org/web/20250321130227/https://users.ox.ac.uk/~quee4127/theta.pdf|archive-date=2025-03-21}}</ref> then, by the [[Poisson summation formula]], we have  
<math display="block"> \sum_{n=-\infty}^\infty\ e^{ - n^2 \pi\ x }\ =\ \frac{ 1 }{\ \sqrt{x\ }\ }\ \sum_{n=-\infty}^\infty\ e^{ -\frac{\ n^2 \pi\ }{ x } }\ ,</math>
<math display="block"> \sum_{n=-\infty}^\infty\ e^{ - n^2 \pi\ x }\ =\ \frac{ 1 }{\ \sqrt{x\ }\ }\ \sum_{n=-\infty}^\infty\ e^{ -\frac{\ n^2 \pi\ }{ x } }\ ,</math>
so that
so that
<math display="block">\ 2\ \psi(x) + 1\ =\ \frac{ 1 }{\ \sqrt{x\ }\ } \left(\ 2\ \psi\!\left( \frac{ 1 }{ x } \right) + 1\ \right) ~.</math>
<math display="block">\ 2\ \psi(x) + 1\ =\ \frac{ 1 }{\ \sqrt{x\ }\ } \left(\ 2\ \psi\!\left( \frac{ 1 }{ x } \right) + 1\ \right) ~.</math>


Hence
Hence
<math display="block"> \pi^{ -\frac{s}{2} }\ \Gamma\!\left( \frac{s}{2} \right)\ \zeta(s)\ =\ \int_0^1\ x^{ \frac{s}{2} - 1 }\ \psi(x)\ \operatorname{d} x + \int_1^\infty x^{ \frac{s}{2} - 1 } \psi(x)\ \operatorname{d} x ~.</math>
<math display="block"> \pi^{ -\frac{s}{2} }\ \Gamma\!\left( \frac{s}{2} \right)\ \zeta(s)\ =\ \int_0^1\ x^{ \frac{s}{2} - 1 }\ \psi(x)\ \mathrm dx + \int_1^\infty x^{ \frac{s}{2} - 1 } \psi(x)\ \mathrm dx ~.</math>


The right side is equivalent to
The right side is equivalent to
<math display="block"> \int_0^1 x^{ \frac{s}{2} - 1 } \left( \frac{ 1 }{\ \sqrt{x\ }\ }\ \psi\!\left( \frac{1}{x} \right) + \frac{ 1 }{\ 2 \sqrt{x\ }\ } - \frac{ 1 }{ 2 }\ \right) \ \operatorname{d} x + \int_1^\infty x^{{s\over 2}-1} \psi(x)\ \operatorname{d} x </math>
<math display="block"> \int_0^1 x^{ \frac{s}{2} - 1 } \left( \frac{ 1 }{\ \sqrt{x\ }\ }\ \psi\!\left( \frac{1}{x} \right) + \frac{ 1 }{\ 2 \sqrt{x\ }\ } - \frac{ 1 }{ 2 }\ \right) \ \mathrm dx + \int_1^\infty x^{{s\over 2}-1} \psi(x)\ \mathrm dx </math>
or
or
<math display="block">
<math display="block">
\frac{ 1 }{\ s - 1\ } - \frac{ 1 }{\ s\ } + \int_0^1\ x^{ \frac{s}{2} - \frac{3}{2}}\ \psi\!\left( \frac{ 1 }{\ x\ } \right)\ \operatorname{d} x + \int_1^\infty\ x^{ \frac{s}{2} - 1 }\ \psi(x)\ \operatorname{d} x
\frac{ 1 }{\ s - 1\ } - \frac{ 1 }{\ s\ } + \int_0^1\ x^{ \frac{s}{2} - \frac{3}{2}}\ \psi\!\left( \frac{ 1 }{\ x\ } \right)\ \mathrm dx + \int_1^\infty\ x^{ \frac{s}{2} - 1 }\ \psi(x)\ \mathrm dx
~.</math>
~.</math>


So
So
<math display="block">
<math display="block">
\pi^{ -\frac{ s }{ 2 } }\ \Gamma\!\left( \frac{\ s\ }{ 2 } \right)\ \zeta(s)\ =\ \frac{ 1 }{\ s ( s - 1 )\ } + \int_1^\infty\ \left( x^{ -\frac{ s }{ 2 } - \frac{ 1 }{ 2 } } + x^{ \frac{ s }{ 2 } - 1 } \right)\ \psi(x)\ \operatorname{d} x
\pi^{ -\frac{ s }{ 2 } }\ \Gamma\!\left( \frac{\ s\ }{ 2 } \right)\ \zeta(s)\ =\ \frac{ 1 }{\ s ( s - 1 )\ } + \int_1^\infty\ \left( x^{ -\frac{ s }{ 2 } - \frac{ 1 }{ 2 } } + x^{ \frac{ s }{ 2 } - 1 } \right)\ \psi(x)\ \mathrm dx
</math>
</math>
 
which is convergent for all {{math|''s''}}, because {{math|''ψ''(''x'') → 0}} more quickly than any power of {{math|''x''}} for {{math| ''x'' > 1}}, so the integral converges. As the RHS remains the same if {{math|''s''}} is replaced by {{math|1 − ''s''}},
which is convergent for all {{mvar|s}}, because <math>\psi(x)\to0</math> quicker than any power of {{mvar|x}} for <math>x>1</math>, so the integral converges. As the RHS remains the same if {{mvar|s}} is replaced by {{nobr|{{math| 1 − ''s''}} .}},
 
<math display="block"> \frac{\ \Gamma\!\left(\ \frac{s}{2}\ \right)\ \zeta\!\left(\ s\ \right)\ }{\ \pi^{ \frac{s}{2}\ }\ }\ =\ \frac{\ \Gamma\!\left(\ \frac{1}{2} - \frac{s}{2}\ \right)\ \zeta\!\left(\ 1 - s\ \right)\ }{\ \pi^{ \frac{1}{2} - \frac{s}{2} }\ }  </math>
<math display="block"> \frac{\ \Gamma\!\left(\ \frac{s}{2}\ \right)\ \zeta\!\left(\ s\ \right)\ }{\ \pi^{ \frac{s}{2}\ }\ }\ =\ \frac{\ \Gamma\!\left(\ \frac{1}{2} - \frac{s}{2}\ \right)\ \zeta\!\left(\ 1 - s\ \right)\ }{\ \pi^{ \frac{1}{2} - \frac{s}{2} }\ }  </math>
which is the functional equation attributed to [[Bernhard Riemann]].<ref>{{cite book |first=E.C. |last=Titchmarsh |year=1986 |title=The Theory of the Riemann Zeta Function |edition=2nd |publisher=Oxford Science Publications |place=[[Oxford]], UK |isbn=0-19-853369-1 |pages=21–22 }}</ref>
which is the functional equation attributed to [[Bernhard Riemann]].<ref>{{cite book |first=E.C. |last=Titchmarsh |year=1986 |title=The Theory of the Riemann Zeta Function |edition=2nd |publisher=Oxford Science Publications |place=[[Oxford]], UK |isbn=0-19-853369-1 |pages=21–22 }}</ref>


The functional equation above can be obtained using both the [[reflection formula]] and the [[Multiplication theorem#Gamma function–Legendre formula|duplication formula]].
The functional equation above can be obtained using both the [[reflection formula]] and the [[Multiplication theorem#Gamma function–Legendre formula|duplication formula]].


First collect terms of <math>\pi</math>:
First collect terms of {{math|''π''}}:
 
<math display="block">\Gamma\left(\frac{s}{2}\right)\zeta\left(s\right) = \Gamma\left(\frac{1}{2} - \frac{s}{2}\right)\zeta\left(1 - s\right)\pi^{s-\frac{1}{2}}</math>
<math display="block">\Gamma\left(\frac{s}{2}\right)\zeta\left(s\right) = \Gamma\left(\frac{1}{2} - \frac{s}{2}\right)\zeta\left(1 - s\right)\pi^{s-\frac{1}{2}}</math>


Then multiply both sides by <math>\Gamma\left(1-\frac s2\right)</math> and use the reflection formula:
Then multiply both sides by {{math(1 − ''s''/2)}} and use the reflection formula:
 
<math display="block">\Gamma\left(1-\frac s2\right)\Gamma\left(\frac{s}{2}\right)\zeta\left(s\right) = \Gamma\left(1-\frac s2\right)\Gamma\left(\frac{1}{2} - \frac{s}{2}\right)\zeta\left(1 - s\right)\pi^{s-\frac{1}{2}}</math>
<math display="block">\Gamma\left(1-\frac s2\right)\Gamma\left(\frac{s}{2}\right)\zeta\left(s\right) = \Gamma\left(1-\frac s2\right)\Gamma\left(\frac{1}{2} - \frac{s}{2}\right)\zeta\left(1 - s\right)\pi^{s-\frac{1}{2}}</math>


<math display="block">\zeta\left(s\right) = \sin\left(\frac{\pi s}2\right)\Gamma\left(1-\frac s2\right)\Gamma\left(\frac{1}{2} - \frac{s}{2}\right)\zeta\left(1 - s\right)\pi^{s-\frac{3}{2}}</math>
<math display="block">\zeta\left(s\right) = \sin\left(\frac{\pi s}2\right)\Gamma\left(1-\frac s2\right)\Gamma\left(\frac{1}{2} - \frac{s}{2}\right)\zeta\left(1 - s\right)\pi^{s-\frac{3}{2}}</math>


Use the duplication formula with <math>z=\frac{1}{2} - \frac{s}{2}</math>
Use the duplication formula with {{math|1=''z'' = (1 − ''s'')/2}}
 
<math display="block">\zeta\left(s\right) = \sin\left(\frac{\pi s}2\right)2^{1-1+s}\sqrt{\pi}\Gamma\left(1-s\right)\zeta\left(1 - s\right)\pi^{s-\frac{3}{2}}</math>
<math display="block">\zeta\left(s\right) = \sin\left(\frac{\pi s}2\right)2^{1-1+s}\sqrt{\pi}\Gamma\left(1-s\right)\zeta\left(1 - s\right)\pi^{s-\frac{3}{2}}</math>
so that
so that
<math display="block">\zeta\left(s\right) = \sin\left(\frac{\pi s}2\right)2^s\Gamma\left(1-s\right)\zeta\left(1 - s\right)\pi^{s-1}</math>
<math display="block">\zeta\left(s\right) = \sin\left(\frac{\pi s}2\right)2^s\Gamma\left(1-s\right)\zeta\left(1 - s\right)\pi^{s-1}</math>


{{Collapse bottom}}
{{collapse bottom}}


The functional equation was established by Riemann in his 1859 paper "[[On the Number of Primes Less Than a Given Magnitude]]" and used to construct the analytic continuation in the first place.
The functional equation was established by Riemann in his 1859 paper "[[On the Number of Primes Less Than a Given Magnitude]]" and used to construct the analytic continuation in the first place.


==Riemann's Xi function==
== Riemann's xi function ==
{{main|Riemann Xi function}}
{{main|Riemann xi function}}


Riemann also found a [[Symmetry|symmetric]] version of the functional equation by setting
Riemann also found a [[Symmetry|symmetric]] version of the functional equation by setting
<math display="block">\xi(s) =\frac{s(s-1)}{2} \times \pi^{-\frac{s}{2}}\Gamma\left( \frac{s}{2} \right)\zeta(s) =  (s-1)\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}+1\right)\zeta(s)\ ,</math>
<math display="block">\xi(s) =\frac{s(s-1)}{2} \times \pi^{-\frac{s}{2}}\Gamma\left( \frac{s}{2} \right)\zeta(s) =  (s-1)\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}+1\right)\zeta(s)</math>
which satisfies:
that satisfies:
<math display="block"> \xi(s) = \xi(1 - s) ~.</math>
<math display="block"> \xi(s) = \xi(1 - s) ~.</math>


Returning to the functional equation's derivation in the previous section, we have
Returning to the functional equation's derivation in the previous section, we have
<math display="block">
<math display="block">
\xi(s) =\frac12 + \frac{s(s-1)}{2} \int_1^\infty \left(x^{-\frac{s}{2}-\frac{1}{2}} + x^{\frac{s}{2}-1}\right)\psi(x) dx
\xi(s) =\frac12 + \frac{s(s-1)}{2} \int_1^\infty \left(x^{-\frac{s}{2}-\frac{1}{2}} + x^{\frac{s}{2}-1}\right)\psi(x) dx
Line 136: Line 130:
</math>
</math>


Using integration by parts again with a factorization of <math>x^{\frac32}</math>,
Using integration by parts again with a factorization of {{math|''x''<sup>3/2</sup>}},
<math display="block">
<math display="block">
\xi(s) =\frac12 + \psi(1) - 2\left[x^{\frac32}\psi'(x)\left(x^{\frac{s-1}{2}} + x^{-\frac{s}{2}}\right)\right]_1^\infty + 2\int_1^\infty \left(x^{\frac{s-1}{2}} + x^{-\frac{s}{2}}\right)\frac{d}{dx}\left[x^{\frac32}\psi'(x)\right] dx
\xi(s) =\frac12 + \psi(1) - 2\left[x^{\frac32}\psi'(x)\left(x^{\frac{s-1}{2}} + x^{-\frac{s}{2}}\right)\right]_1^\infty + 2\int_1^\infty \left(x^{\frac{s-1}{2}} + x^{-\frac{s}{2}}\right)\frac{d}{dx}\left[x^{\frac32}\psi'(x)\right] dx
Line 145: Line 139:


As <math>\frac12 +\psi(1) + 4\psi'(1)=0</math>,
As <math>\frac12 +\psi(1) + 4\psi'(1)=0</math>,
<math display="block">
<math display="block">
\xi(s) = 2\int_1^\infty \frac{d}{dx}\left[x^{\frac32}\psi'(x)\right]\left(x^{\frac{s-1}{2}} + x^{-\frac{s}{2}}\right) dx
\xi(s) = 2\int_1^\infty \frac{d}{dx}\left[x^{\frac32}\psi'(x)\right]\left(x^{\frac{s-1}{2}} + x^{-\frac{s}{2}}\right) dx
</math>
</math>


Remove a factor of <math>x^{-\frac14}</math> to make the exponents in the remainder opposites.  
Remove a factor of {{math|''x''<sup>−1/4</sup>}} to make the exponents in the remainder opposites.  
 
<math display="block">
<math display="block">
\xi(s) = 2\int_1^\infty \frac{d}{dx}\left[x^{\frac32}\psi'(x)\right]x^{-\frac14}\left(x^{\frac{s-\frac12}{2}} + x^{\frac{\frac12-s}{2}}\right) dx
\xi(s) = 2\int_1^\infty \frac{d}{dx}\left[x^{\frac32}\psi'(x)\right]x^{-\frac14}\left(x^{\frac{s-1/2}{2}} + x^{\frac{1/2-s}{2}}\right) dx
</math>
</math>


Using the [[hyperbolic functions]], namely <math>\cos(x)=\cosh(ix)=\frac{e^{ix}+e^{-ix}}{2}</math>, and letting <math>s=\frac12+it</math> gives
Using the [[hyperbolic functions]], namely {{math|1=cos(''x'') = cosh(''ix'')}}, and letting {{math|1=''s'' = 1/2 + ''it''}} gives
<math display="block">
<math display="block">
\xi(s) = 4\int_1^\infty \frac{d}{dx}\left[x^{\frac32}\psi'(x)\right]x^{-\frac14}\cos(\frac{t}2\log x) dx
\xi(s) = 4\int_1^\infty \frac{d}{dx}\left[x^{\frac32}\psi'(x)\right]x^{-\frac14}\cos(\frac{t}2\log x) dx
</math>
</math>
 
and by separating the integral and using the [[power series]] for {{math|cos}},
and by separating the integral and using the [[power series]] for <math>\cos</math>,
<math display="block">
<math display="block">
\xi(s) = \sum_{n=0}^\infty a_{2n}t^{2n}
\xi(s) = \sum_{n=0}^\infty a_{2n}t^{2n}
Line 167: Line 158:
which led Riemann to his famous hypothesis.
which led Riemann to his famous hypothesis.


==Zeros, the critical line, and the Riemann hypothesis==
== Zeros, the critical line, and the Riemann hypothesis ==
{{main|Riemann hypothesis}}
{{main|Riemann hypothesis}}
[[File:Riemann0xf4240.png|thumb|720px|Riemann zeta spiral along the critical line from height 999000 to a million (from red to violet)]]
[[File:Zero-free region for the Riemann zeta-function.svg|right|thumb|300px|The Riemann zeta function has no zeros to the right of {{math|''σ'' {{=}} 1}} or (apart from the trivial zeros) to the left of {{math|1=''σ'' = 0}} (nor can the zeros lie too close to those lines). Furthermore, the non-trivial zeros are symmetric about the real axis and the line {{math|1=''σ'' = 1/2}} and, according to the [[Riemann hypothesis]], they all lie on the line {{math|1=''σ'' = 1/2}}.]]
[[File:Zero-free region for the Riemann zeta-function.svg|right|thumb|300px|The Riemann zeta function has no zeros to the right of {{math|''σ'' {{=}} 1}} or (apart from the trivial zeros) to the left of {{math|''σ'' {{=}} 0}} (nor can the zeros lie too close to those lines). Furthermore, the non-trivial zeros are symmetric about the real axis and the line {{math|''σ'' {{=}} {{sfrac|1|2}}}} and, according to the [[Riemann hypothesis]], they all lie on the line {{math|''σ'' {{=}} {{sfrac|1|2}}}}.]]
[[Image:Zeta polar.svg|right|thumb|300px|This image shows a plot of the Riemann zeta function along the critical line for real values of {{math|''t''}} running from 0 to 34. The first five zeros in the critical strip are clearly visible as the place where the spirals pass through the origin.]]
[[Image:Zeta polar.svg|right|thumb|300px|This image shows a plot of the Riemann zeta function along the critical line for real values of {{mvar|t}} running from 0 to 34. The first five zeros in the critical strip are clearly visible as the place where the spirals pass through the origin.]]
[[File:RiemannCriticalLine.svg|thumb|300px|The real part (red) and imaginary part (blue) of the Riemann zeta function along the critical line {{math|1=Re(''s'') = 1/2}}. The first non-trivial zeros can be seen at {{math|1=Im(''s'') =}} {{math|±14.135}}, {{math|±21.022}} and {{math|±25.011}}.]]
[[File:RiemannCriticalLine.svg|thumb|300px|The real part (red) and imaginary part (blue) of the Riemann zeta function along the critical line Re(''s'') = 1/2. The first non-trivial zeros can be seen at Im(''s'') = ±14.135, ±21.022 and ±25.011.]]
The functional equation shows that the Riemann zeta function has zeros at {{math|−2, −4, ...}}. These are called the '''trivial zeros'''. They are trivial in the sense that their existence is relatively easy to prove, for example, from {{math|sin(''πs''/2)}} being {{math|0}} in the functional equation. The non-trivial zeros have captured far more attention because their distribution not only is far less understood but, more importantly, their study yields important results concerning prime numbers and related objects in number theory. It is known that any non-trivial zero lies in the open strip {{math|{{mset|''s'' ∈ <math>\C</math> {{!}} 0 < Re(''s'') < 1}}}}, which is called the '''critical strip'''. The set {{math|{{mset|''s'' ∈ <math>\C</math> {{!}} Re(''s'') {{=}} 1/2}}}} is called the '''critical line'''. The [[Riemann hypothesis]], considered one of the greatest unsolved problems in mathematics, asserts that all non-trivial zeros are on the critical line. In 1989, Conrey proved that more than 40% of the non-trivial zeros of the Riemann zeta function are on the critical line.<ref>{{cite journal | first = J. B. | last = Conrey | author-link = Brian Conrey | title = More than two fifths of the zeros of the Riemann zeta function are on the critical line | journal= J. Reine Angew. Math. | volume= 1989 | year = 1989 | issue = 399 | pages = 1–26 |url = http://www.digizeitschriften.de/resolveppn/GDZPPN002206781 | mr = 1004130 | doi = 10.1515/crll.1989.399.1 | s2cid = 115910600}}</ref> This has since been improved to 41.7%.<ref>{{cite journal | url=https://link.springer.com/article/10.1007/s40687-019-0199-8 | doi=10.1007/s40687-019-0199-8 | title=More than five-twelfths of the zeros of <math>\zeta </math> are on the critical line | date=2020 | last1=Pratt | first1=Kyle | last2=Robles | first2=Nicolas | last3=Zaharescu | first3=Alexandru | last4=Zeindler | first4=Dirk | journal=Research in the Mathematical Sciences | volume=7 | arxiv=1802.10521 }}</ref>
[[File:Zeta1000 1005.webm|thumb|Animation showing the Riemann zeta function along the critical line. {{math|1=&zeta;(1/2 + ''iy'')}} for {{mvar|y}} ranging from 1000 to 1005.]]
The functional equation shows that the Riemann zeta function has zeros at {{nowrap|−2, −4,...}}. These are called the '''trivial zeros'''. They are trivial in the sense that their existence is relatively easy to prove, for example, from {{math|sin {{sfrac|π''s''|2}}}} being 0 in the functional equation. The non-trivial zeros have captured far more attention because their distribution not only is far less understood but, more importantly, their study yields important results concerning prime numbers and related objects in number theory. It is known that any non-trivial zero lies in the open strip <math>\{s \in \mathbb{C} : 0 < \operatorname{Re}(s) < 1\}</math>, which is called the '''critical strip'''. The set <math>\{s \in \mathbb{C} : \operatorname{Re}(s) = 1/2\}</math> is called the '''critical line'''. The [[Riemann hypothesis]], considered one of the greatest unsolved problems in mathematics, asserts that all non-trivial zeros are on the critical line. In 1989, Conrey proved that more than 40% of the non-trivial zeros of the Riemann zeta function are on the critical line.<ref>{{cite journal | first = J. B. | last = Conrey | author-link = Brian Conrey | title = More than two fifths of the zeros of the Riemann zeta function are on the critical line | journal= J. Reine Angew. Math. | volume= 1989 | year = 1989 | issue = 399 | pages = 1–26 |url = http://www.digizeitschriften.de/resolveppn/GDZPPN002206781 | mr = 1004130 | doi = 10.1515/crll.1989.399.1 | s2cid = 115910600}}</ref> This has since been improved to 41.7%.<ref>{{cite journal | url=https://link.springer.com/article/10.1007/s40687-019-0199-8 | doi=10.1007/s40687-019-0199-8 | title=More than five-twelfths of the zeros of <math>\zeta </math> are on the critical line | date=2020 | last1=Pratt | first1=Kyle | last2=Robles | first2=Nicolas | last3=Zaharescu | first3=Alexandru | last4=Zeindler | first4=Dirk | journal=Research in the Mathematical Sciences | volume=7 | arxiv=1802.10521 }}</ref>


For the Riemann zeta function on the critical line, see [[Z function|{{mvar|Z}}-function]].
For the Riemann zeta function on the critical line, see [[Z function|{{math|''Z''}}-function]].


{| class="wikitable"
{| class="wikitable"
Line 183: Line 172:
! Zero
! Zero
|-
|-
| 1/2 ± 14.134725... ''i''
| {{math|1/2 ± 14.134725... ''i''}}
|-
|-
| 1/2 ± 21.022040... ''i''
| {{math|1/2 ± 21.022040... ''i''}}
|-
|-
| 1/2 ± 25.010858... ''i''
| {{math|1/2 ± 25.010858... ''i''}}
|-
|-
| 1/2 ± 30.424876... ''i''
| {{math|1/2 ± 30.424876... ''i''}}
|-
|-
| 1/2 ± 32.935062... ''i''
| {{math|1/2 ± 32.935062... ''i''}}
|-
|-
| 1/2 ± 37.586178... ''i''
| {{math|1/2 ± 37.586178... ''i''}}
|-
|-
| 1/2 ± 40.918719... ''i''
| {{math|1/2 ± 40.918719... ''i''}}
|}
|}


===Number of zeros in the critical strip===
=== Number of zeros in the critical strip ===
Let <math>N(T)</math> be the number of zeros of <math>\zeta(s)</math> in the critical strip <math>0 < \operatorname{Re}(s) < 1</math>, whose imaginary parts are in the interval <math>0 < \operatorname{Im}(s) < T</math>.
Let {{math|''N''(''T'')}} be the number of zeros of {{math|''ζ''(''s'')}} in the critical strip {{math|0 < Re(''s'') < 1}}, whose imaginary parts are in the interval {{math|0 < Im(''s'') < ''T''}}.
[[Timothy Trudgian]] proved that, if <math>T > e</math>, then<ref>{{cite journal | first=Timothy S. | last=Trudgian | title = An improved upper bound for the argument of the Riemann zeta function on the critical line II | journal = J. Number Theory | date = 2014 | volume = 134 | pages = 280–292 | doi = 10.1016/j.jnt.2013.07.017 | arxiv = 1208.5846}}</ref>
[[Timothy Trudgian]] proved that, if {{math|''T'' > ''e''}}, then<ref>{{cite journal | first=Timothy S. | last=Trudgian | title = An improved upper bound for the argument of the Riemann zeta function on the critical line II | journal = J. Number Theory | date = 2014 | volume = 134 | pages = 280–292 | doi = 10.1016/j.jnt.2013.07.017 | arxiv = 1208.5846}}</ref>
:<math> \left|N(T) - \frac{T}{2\pi} \log{\frac{T}{2\pi e}}\right| \leq 0.112 \log T + 0.278 \log\log T + 3.385 + \frac{0.2}{T}</math>.
: <math> \left|N(T) - \frac{T}{2\pi} \log{\frac{T}{2\pi e}}\right| \leq 0.112 \log T + 0.278 \log\log T + 3.385 + \frac{0.2}{T}</math>.


=== The Hardy–Littlewood conjectures ===
=== Hardy–Littlewood conjectures ===
In 1914, [[G. H. Hardy]] proved that {{math|''ζ'' ({{sfrac|1|2}} + ''it'')}} has infinitely many real zeros.<ref>{{cite journal|first1 = G.H. |last1 = Hardy |title = Sur les zeros de la fonction ζ(s) |journal = Comptes rendus de l'Académie des Sciences | volume = 158 |publisher = [[French Academy of Sciences]]|year = 1914 |pages = 1012–1014}}</ref><ref>{{Cite journal|last1=Hardy|first1=G. H.|last2=Fekete|first2=M.|last3=Littlewood|first3=J. E.|date=1921-09-01|title=The Zeros of Riemann's Zeta-Function on the Critical Line|journal=Journal of the London Mathematical Society|pages=15–19|url=https://zenodo.org/record/1447415| volume=s1-1| doi=10.1112/jlms/s1-1.1.15}}</ref>
In 1914, [[G. H. Hardy]] proved that {{math|''ζ''({{sfrac|1|2}} + ''it'')}} has infinitely many real zeros.<ref>{{cite journal|first1 = G.H. |last1 = Hardy |title = Sur les zeros de la fonction ζ(s) |journal = Comptes rendus de l'Académie des Sciences | volume = 158 |publisher = [[French Academy of Sciences]]|year = 1914 |pages = 1012–1014}}</ref><ref>{{cite journal |last1=Hardy |first1=G. H. |last2=Fekete |first2=M. |last3=Littlewood |first3=J. E. |date=1921-09-01 |title=The Zeros of Riemann's Zeta-Function on the Critical Line |journal=Journal of the London Mathematical Society |pages=15–19 |url=https://zenodo.org/record/1447415 |volume=s1-1 |doi=10.1112/jlms/s1-1.1.15 }}</ref>


Hardy and [[John Edensor Littlewood|J. E. Littlewood]] formulated two conjectures on the density and distance between the zeros of {{math|''ζ'' ({{sfrac|1|2}} + ''it'')}} on intervals of large positive real numbers. In the following, {{math|''N''(''T'')}} is the total number of real zeros and {{math|''N''<sub>0</sub>(''T'')}} the total number of zeros of odd order of the function {{math|''ζ'' ({{sfrac|1|2}} + ''it'')}} lying in the interval {{math|(0, ''T'']}}.
Hardy and [[John Edensor Littlewood|J. E. Littlewood]] formulated two conjectures on the density and distance between the zeros of {{math|''ζ''(1/2 + ''it'')}} on intervals of large positive real numbers. In the following, {{math|''N''(''T'')}} is the total number of real zeros and {{math|''N''<sub>0</sub>(''T'')}} the total number of zeros of odd order of the function {{math|''ζ''(1/2 + ''it'')}} lying in the interval {{math|(0, ''T'']}}.
{{numbered list
{{numbered list
|For any {{math|''ε'' > 0}}, there exists a {{math|''T''<sub>0</sub>(''ε'') > 0}} such that when
|For any {{math|''ε'' > 0}}, there exists a {{math|''T''<sub>0</sub>(''ε'') > 0}} such that when
:<math>T \geq T_0(\varepsilon) \quad\text{ and }\quad H=T^{\frac14+\varepsilon},</math>
: <math>T \geq T_0(\varepsilon) \quad\text{ and }\quad H=T^{\frac14+\varepsilon},</math>
the interval {{math|(''T'', ''T'' + ''H'']}} contains a zero of odd order.
the interval {{math|(''T'', ''T'' + ''H'']}} contains a zero of odd order.
|For any {{math|''ε'' > 0}}, there exists a {{math|''T''<sub>0</sub>(''ε'') > 0}} and {{math|''c<sub>ε</sub>'' > 0}} such that the inequality
|For any {{math|''ε'' > 0}}, there exists a {{math|''T''<sub>0</sub>(''ε'') > 0}} and {{math|''c''<sub>''ε''</sub> > 0}} such that the inequality
:<math>N_0(T+H)-N_0(T) \geq c_\varepsilon H</math>
: <math>N_0(T+H)-N_0(T) \geq c_\varepsilon H</math>
holds when
holds when
:<math>T \geq T_0(\varepsilon) \quad\text{ and }\quad H=T^{\frac12+\varepsilon}.</math>
: <math>T \geq T_0(\varepsilon) \quad\text{ and }\quad H=T^{\frac12+\varepsilon}.</math>
}}
}}
These two conjectures opened up new directions in the investigation of the Riemann zeta function.
These two conjectures opened up new directions in the investigation of the Riemann zeta function.


=== Zero-free region ===
=== Zero-free region ===
The location of the Riemann zeta function's zeros is of great importance in number theory. The [[prime number theorem]] is equivalent to the fact that there are no zeros of the zeta function on the {{math|Re(''s'') {{=}} 1}} line.<ref name="Diamond1982">{{cite journal|first=Harold G.|last=Diamond|title=Elementary methods in the study of the distribution of prime numbers|journal=Bulletin of the American Mathematical Society|volume=7|issue=3|year=1982|pages=553–89|mr=670132|doi=10.1090/S0273-0979-1982-15057-1|doi-access=free}}</ref> It is also known that zeros do not exist in certain regions slightly to the left of the {{math|Re(''s'') {{=}} 1}} line, known as zero-free regions. For instance, Korobov<ref>{{cite journal | first1 =  Nikolai Mikhailovich| last1 = Korobov  | title = Estimates of trigonometric sums and their applications | journal = Usp. Mat. Nauk | volume = 13 | number = 4 | year = 1958 | pages =185–192  }}</ref> and Vinogradov<ref>{{cite journal | first1 = I.M.| last1 = Vinogradov  | title = Eine neue Abschätzung der Funktion <math>\zeta(1+ it)</math>| journal = Russian. Izv. Akad. Nauk SSSR, Ser. Mat | volume = 22 | year = 1958 | pages =161–164  }}</ref> independently showed via the [[Vinogradov's mean-value theorem]] that for sufficiently large <math>|t|</math>, <math>\zeta(\sigma + it) \neq 0</math> for
The location of the Riemann zeta function's zeros is of great importance in number theory. The [[prime number theorem]] is equivalent to the fact that there are no zeros of the zeta function on the line {{math|1=Re(''s'') = 1}}.<ref name="Diamond1982">{{cite journal |first=Harold G. |last=Diamond |title=Elementary methods in the study of the distribution of prime numbers |journal=Bulletin of the American Mathematical Society |volume=7 |issue=3 |year=1982 |pages=553–589 |mr=670132 |doi=10.1090/S0273-0979-1982-15057-1 |doi-access=free }}</ref> It is also known that zeros do not exist in certain regions slightly to the left of the line {{math|1=Re(''s'') = 1}}, known as zero-free regions. For instance, Korobov<ref>{{cite journal | first1 =  Nikolai Mikhailovich| last1 = Korobov  | title = Estimates of trigonometric sums and their applications | journal = Usp. Mat. Nauk | volume = 13 | number = 4 | year = 1958 | pages=185–192  }}</ref> and Vinogradov<ref>{{cite journal | first1 = I.M.| last1 = Vinogradov  | title = Eine neue Abschätzung der Funktion {{nowrap|''ζ''(1 + ''it'')}} | journal = Russian. Izv. Akad. Nauk SSSR, Ser. Mat | volume = 22 | year = 1958 | pages =161–164  }}</ref> independently showed via the [[Vinogradov's mean-value theorem]] that for sufficiently large {{math|{{abs|''t''}}}}, {{math|''ζ''(''σ'' + ''it'') 0}} for
:<math>\sigma \geq 1 - \frac{c}{(\log|t|)^{2/3 + \varepsilon}}</math>
: <math>\sigma \geq 1 - \frac{c}{(\log|t|)^{2/3 + \varepsilon}}</math>
for any <math>\varepsilon > 0</math> and a number <math>c >0</math> depending on <math>\varepsilon</math>. Asymptotically, this is the largest known zero-free region for the zeta function.
for any {{math|''ε'' > 0}} and a number {{math|''c'' > 0}} depending on {{math|''ε''}}. Asymptotically, this is the largest known zero-free region for the zeta function.


Explicit zero-free regions are also known. Platt and Trudgian<ref>{{cite journal | first1 =  David| last1 = Platt  | first2= Timothy S. | last2= Trudgian | title = The Riemann hypothesis is true up to <math>3\cdot 10^{12}</math> | journal = Bulletin of the London Mathematical Society| volume = 53 | number = 3 | year = 2021 | pages =792–797 | doi = 10.1112/blms.12460 | arxiv = 2004.09765}}</ref>
Explicit zero-free regions are also known. Platt and Trudgian<ref>{{cite journal | first1 =  David| last1 = Platt  | first2= Timothy S. | last2= Trudgian | title = The Riemann hypothesis is true up to 3⋅10<sup>12</sup> | journal = Bulletin of the London Mathematical Society| volume = 53 | number = 3 | year = 2021 | pages =792–797 | doi = 10.1112/blms.12460 | arxiv = 2004.09765}}</ref>
verified computationally that <math>\zeta(\sigma + it)\neq 0</math> if <math>\sigma \neq 1/2</math> and <math>|t| \leq 3\cdot 10^{12}</math>. Mossinghoff, Trudgian and Yang proved<ref>{{cite journal | first1 = Michael J. | last1 = Mossinghoff | first2 = Timothy S. | last2 = Trudgian |first3 = Andrew | last3 = Yang | title = Explicit zero-free regions for the Riemann zeta-function | journal = Res. Number Theory | volume = 10 | year = 2024 | pages = 11 | arxiv = 2212.06867 | doi = 10.1007/s40993-023-00498-y }}</ref> that zeta has no zeros in the region
verified computationally that {{math|''ζ''(''σ'' + ''it'') 0}} if {{math|''σ'' ≠ 1/2}} and {{math|{{abs|''t''}} ≤ 3⋅10<sup>12</sup>}}. Mossinghoff, Trudgian and Yang proved<ref>{{cite journal | first1 = Michael J. | last1 = Mossinghoff | first2 = Timothy S. | last2 = Trudgian |first3 = Andrew | last3 = Yang | title = Explicit zero-free regions for the Riemann zeta-function | journal = Res. Number Theory | volume = 10 | year = 2024 | article-number = 11 | arxiv = 2212.06867 | doi = 10.1007/s40993-023-00498-y }}</ref> that zeta has no zeros in the region
:<math>\sigma\ge 1 - \frac{1}{5.558691\log|t|}</math>
: <math>\sigma\ge 1 - \frac{1}{5.558691\log|t|}</math>
for {{math|{{abs|''t''}} ≥ 2}}, which is the largest known zero-free region in the critical strip for <math>3\cdot 10^{12} < |t| < e^{64.1} \approx 7 \cdot 10^{27}</math> (for previous results see<ref>{{cite journal | first1 = Michael J. | last1 = Mossinghoff | first2 = Timothy S. | last2 = Trudgian | title = Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function | journal = J. Number Theory | volume = 157 | year = 2015 | pages = 329–349 | arxiv = 1410.3926 | doi = 10.1016/J.JNT.2015.05.010| s2cid = 117968965 }}</ref>).
for {{math|{{abs|''t''}} ≥ 2}}, which is the largest known zero-free region in the critical strip for {{math|3⋅10<sup>12</sup> < {{abs|''t''}} < exp(64.1) ≈ 7⋅10<sup>27</sup>}} (for previous results see<ref>{{cite journal | first1 = Michael J. | last1 = Mossinghoff | first2 = Timothy S. | last2 = Trudgian | title = Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function | journal = J. Number Theory | volume = 157 | year = 2015 | pages = 329–349 | arxiv = 1410.3926 | doi = 10.1016/J.JNT.2015.05.010| s2cid = 117968965 }}</ref>).
Yang<ref>{{cite journal | first1 =  Andrew| last1 = Yang | title =Explicit bounds on <math>\zeta(s)</math> in the critical strip and a zero-free region | journal = J. Math. Anal. Appl.| volume = 534 | number = 2 | year = 2024 | pages =128124  | doi=10.1016/j.jmaa.2024.128124 | arxiv = 2301.03165 }}</ref> showed that <math>\zeta(\sigma+it)\neq 0</math> if
Yang<ref>{{cite journal | first1 =  Andrew| last1 = Yang | title =Explicit bounds on <math>\zeta(s)</math> in the critical strip and a zero-free region | journal = J. Math. Anal. Appl.| volume = 534 | number = 2 | year = 2024 | article-number =128124  | doi=10.1016/j.jmaa.2024.128124 | arxiv = 2301.03165 }}</ref> showed that {{math|''ζ''(''σ'' + ''it'') 0}} if
:<math>\sigma \geq 1 - \frac{\log\log|t|}{21.233\log|t|}</math> and <math>|t|\geq 3</math>
: <math>\sigma \geq 1 - \frac{\log\log|t|}{21.233\log|t|}</math> and <math>|t| \geq 3</math>
which is the largest known zero-free region for <math>e^{170.2}< |t| < e^{4.8\cdot 10^{5}}</math>.
which is the largest known zero-free region for {{math|exp(170.2) < {{abs|''t''}} < exp(4.8⋅10<sup>5</sup>)}}.
Bellotti proved<ref>{{cite journal | first1 =  Chiara| last1 = Bellotti | title =Explicit bounds for the Riemann zeta function and a new zero-free region | journal = J. Math. Anal. Appl.| volume = 536 | number = 2 | year = 2024 | pages =128249 | doi = 10.1016/j.jmaa.2024.128249 | arxiv = 2306.10680}}</ref> (building on the work of Ford<ref>{{cite journal | last1 = Ford | first1 = K. | year = 2002 | title = Vinogradov's integral and bounds for the Riemann zeta function | journal = Proc. London Math. Soc. | volume = 85 | issue = 3| pages = 565–633 | doi = 10.1112/S0024611502013655 | arxiv = 1910.08209 | s2cid = 121144007 }}</ref>) the zero-free region
Bellotti proved<ref>{{cite journal | first1 =  Chiara| last1 = Bellotti | title =Explicit bounds for the Riemann zeta function and a new zero-free region | journal = J. Math. Anal. Appl.| volume = 536 | number = 2 | year = 2024 | article-number =128249 | doi = 10.1016/j.jmaa.2024.128249 | arxiv = 2306.10680}}</ref> (building on the work of Ford<ref>{{cite journal | last1 = Ford | first1 = K. | year = 2002 | title = Vinogradov's integral and bounds for the Riemann zeta function | journal = Proc. London Math. Soc. | volume = 85 | issue = 3| pages = 565–633 | doi = 10.1112/S0024611502013655 | arxiv = 1910.08209 | s2cid = 121144007 }}</ref>) the zero-free region
:<math>\sigma \ge 1 - \frac{1}{53.989(\log|t|)^{2/3}(\log\log|t|)^{1/3}}</math> and <math>|t| \ge 3</math>.
: <math>\sigma \ge 1 - \frac{1}{53.989(\log|t|)^{2/3}(\log\log|t|)^{1/3}}</math> and <math>|t| \ge 3</math>.
This is the largest known zero-free region for fixed <math>|t| \geq \exp(4.8\cdot 10^{5}).</math> Bellotti also showed that for sufficiently large <math>|t|</math>, the following better result is known: <math>\zeta(\sigma +it) \neq 0</math> for
This is the largest known zero-free region for fixed {{math|{{abs|''t''}} ≥ exp(4.8⋅10<sup>5</sup>)}}. Bellotti also showed that for sufficiently large {{math|{{abs|''t''}}}}, the following better result is known: {{math|''ζ''(''σ'' + ''it'') 0}} for
:<math>\sigma \geq 1 - \frac{1}{48.0718(\log|t|)^{2/3}(\log\log|t|)^{1/3}}.</math>
: <math>\sigma \geq 1 - \frac{1}{48.0718(\log|t|)^{2/3}(\log\log|t|)^{1/3}}.</math>
The strongest result of this kind one can hope for is the truth of the Riemann hypothesis, which would have many profound [[Riemann hypothesis#Consequences|consequences]] in the theory of numbers.
The strongest result of this kind one can hope for is the truth of the Riemann hypothesis, which would have many profound [[Riemann hypothesis#Consequences|consequences]] in the theory of numbers.


=== Other results ===
=== Other results ===
It is known that there are infinitely many zeros on the critical line. [[John Edensor Littlewood|Littlewood]] showed that if the sequence ({{math|''γ<sub>n</sub>''}}) contains the imaginary parts of all zeros in the [[upper half-plane]] in ascending order, then
It is known that there are infinitely many zeros on the critical line. [[John Edensor Littlewood|Littlewood]] showed that if the sequence ({{math|''γ<sub>n</sub>''}}) contains the imaginary parts of all zeros in the [[upper half-plane]] in ascending order, then
: <math>\lim_{n\rightarrow\infty}\left(\gamma_{n+1}-\gamma_n\right)=0.</math>


:<math>\lim_{n\rightarrow\infty}\left(\gamma_{n+1}-\gamma_n\right)=0.</math>
The [[critical line theorem]] asserts that a positive proportion of the nontrivial zeros lies on the critical line. (The Riemann hypothesis would imply that this proportion is {{math|1}}.)


The [[critical line theorem]] asserts that a positive proportion of the nontrivial zeros lies on the critical line. (The Riemann hypothesis would imply that this proportion is 1.)
In the critical strip, the zero with smallest non-negative imaginary part is {{math|1/2 + 14.13472514... ''i''}} ({{OEIS2C|A058303}}). The fact that, for all complex {{math|''s'' ≠ 1}},
: <math>\zeta(s)=\overline{\zeta(\overline{s})}</math>
implies that the zeros of the Riemann zeta function are symmetric about the real axis. Combining this symmetry with the functional equation, furthermore, one sees that the non-trivial zeros are symmetric about the critical line {{math|1=Re(''s'') = 1/2}}.


In the critical strip, the zero with smallest non-negative imaginary part is {{math|{{sfrac|1|2}} + 14.13472514...''i''}} ({{OEIS2C|A058303}}). The fact that
It is also known that no zeros lie on the line with real part {{math|1}}.
:<math>\zeta(s)=\overline{\zeta(\overline{s})}</math>
for all complex {{math|''s'' ≠ 1}} implies that the zeros of the Riemann zeta function are symmetric about the real axis. Combining this symmetry with the functional equation, furthermore, one sees that the non-trivial zeros are symmetric about the critical line {{math|Re(''s'') {{=}} {{sfrac|1|2}}}}.


It is also known that no zeros lie on the line with real part 1.
A large class of modified zeta functions exists that share the same non-trivial zeros as the Riemann zeta function, where modification means replacing the prime numbers in the Euler product by real numbers, which was shown in a [[Grosswald–Schnitzer theorem|result by Grosswald and Schnitzer]].


==Specific values==
== Specific values ==
{{main|Particular values of the Riemann zeta function}}
{{main|Particular values of the Riemann zeta function}}
For any positive even integer {{math|2''n''}},
For any positive even integer {{math|2''n''}},
<math display="block"> \zeta(2n) = \frac{|{B_{2n}}|(2\pi)^{2n}}{2(2n)!},</math>
<math display="block"> \zeta(2n) = \frac{|{B_{2n}}|(2\pi)^{2n}}{2(2n)!},</math>
where {{math|''B''<sub>2''n''</sub>}} is the {{math|2''n''}}-th [[Bernoulli number]].
where {{math|''B''<sub>2''n''</sub>}} is the {{math|(2''n'')}}th [[Bernoulli number]].
For odd positive integers, no such simple expression is known, although these values are thought to be related to the algebraic {{mvar|K}}-theory of the integers; see [[Special values of L-functions|Special values of {{mvar|L}}-functions]].
For odd positive integers, no such simple expression is known, although these values are thought to be related to the algebraic {{math|''K''}}-theory of the integers; see [[Special values of L-functions|Special values of {{math|''L''}}-functions]].


For nonpositive integers, one has
For nonpositive integers, one has
<math display="block">\zeta(-n)= -\frac{B_{n+1}}{n+1}</math>
<math display="block">\zeta(-n)= -\frac{B_{n+1}}{n+1}</math>
for {{math|''n'' ≥ 0}} (using the convention that {{math|''B''<sub>1</sub> {{=}} {{sfrac|1|2}}}}).
for {{math|''n'' ≥ 0}} (using the convention that {{math|''B''<sub>1</sub> {{=}} 1/2}}).
In particular, {{mvar|ζ}} vanishes at the negative even integers because {{math|''B''<sub>''m''</sub> {{=}} 0}} for all odd {{mvar|m}} other than&nbsp;1. These are the so-called "trivial zeros" of the zeta function.
In particular, {{math|''ζ''}} vanishes at the negative even integers because {{math|''B''<sub>''m''</sub> {{=}} 0}} for all odd {{math|''m''}} other than&nbsp;{{math|1}}. These are the so-called "trivial zeros" of the zeta function.


Via [[analytic continuation]], one can show that
Via [[analytic continuation]], one can show that
<math display="block">\zeta(-1) = -\tfrac{1}{12}</math>
<math display="block">\zeta(-1) = -\tfrac{1}{12}</math>
This gives a pretext for assigning a finite value to the divergent series [[1 + 2 + 3 + 4 + ⋯]], which has been used in certain contexts ([[Ramanujan summation]]) such as [[string theory]].<ref name='polchinski'>{{cite book |last=Polchinski |first=Joseph |author-link=Joseph Polchinski |series=String Theory |volume=I |title=An Introduction to the Bosonic String |publisher=Cambridge University Press |year=1998 |page=22 |isbn=978-0-521-63303-1}}</ref>  Analogously, the particular value
This gives a pretext for assigning a finite value to the divergent series {{math|[[1 + 2 + 3 + 4 + ⋯]]}}, which has been used in certain contexts ([[Ramanujan summation]]) such as [[string theory]].<ref name='polchinski'>{{cite book |last=Polchinski |first=Joseph |author-link=Joseph Polchinski |series=String Theory |volume=I |title=An Introduction to the Bosonic String |publisher=Cambridge University Press |year=1998 |page=22 |isbn=978-0-521-63303-1}}</ref>  Analogously, the particular value
<math display="block">\zeta(0) = -\tfrac{1}{2}</math>
<math display="block">\zeta(0) = -\tfrac{1}{2}</math>
can be viewed as assigning a finite result to the divergent series [[1 + 1 + 1 + 1 + ⋯]].
can be viewed as assigning a finite result to the divergent series {{math|[[1 + 1 + 1 + 1 + ⋯]]}}.


The value
The value
Line 275: Line 265:
diverges, its [[Cauchy principal value]]
diverges, its [[Cauchy principal value]]
<math display="block"> \lim_{\varepsilon \to 0} \frac{\zeta(1+\varepsilon)+\zeta(1-\varepsilon)}{2}</math>
<math display="block"> \lim_{\varepsilon \to 0} \frac{\zeta(1+\varepsilon)+\zeta(1-\varepsilon)}{2}</math>
exists and is equal to the [[Euler–Mascheroni constant]] {{math|''γ'' {{=}} 0.5772...}}.<ref name=Sondow1998>{{cite journal |last1=Sondow |first1=Jonathan |date=1998 |title=An antisymmetric formula for Euler's constant |journal=Mathematics Magazine |volume=71 |issue=3 |pages=219–220 |doi=10.1080/0025570X.1998.11996638 |access-date=2006-05-29 |url=http://home.earthlink.net/~jsondow/id8.html |archive-date=2011-06-04 |archive-url=https://web.archive.org/web/20110604123534/http://home.earthlink.net/~jsondow/id8.html}}</ref>
exists and is equal to the [[Euler–Mascheroni constant]] {{math|1=''γ'' = 0.5772...}}.<ref name=Sondow1998>{{cite journal |last1=Sondow |first1=Jonathan |date=1998 |title=An antisymmetric formula for Euler's constant |journal=Mathematics Magazine |volume=71 |issue=3 |pages=219–220 |doi=10.1080/0025570X.1998.11996638 |access-date=2006-05-29 |url=http://home.earthlink.net/~jsondow/id8.html |archive-date=2011-06-04 |archive-url=https://web.archive.org/web/20110604123534/http://home.earthlink.net/~jsondow/id8.html}}</ref>


The demonstration of the particular value
The demonstration of the particular value
<math display="block">\zeta(2) = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots = \frac{\pi^2}{6}</math>
<math display="block">\zeta(2) = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots = \frac{\pi^2}{6}</math>
is known as the [[Basel problem]]. The reciprocal of this sum answers the question: ''What is the probability that two numbers selected at random are [[coprime|relatively prime]]?''<ref>{{cite book|author-link=C. Stanley Ogilvy|first1=C. S. |last1=Ogilvy |first2=J. T. |last2=Anderson |title=Excursions in Number Theory |pages=29–35 |publisher=Dover Publications |date=1988 |isbn=0-486-25778-9}}</ref>
is known as the [[Basel problem]]. The reciprocal of this sum answers the question: 'What is the probability that two numbers selected from a uniform distribution from {{math|1}} to {{math|''n''}}] are [[coprime]] as {{math|''n'' → ∞}}?'<ref>{{cite book|author-link=C. Stanley Ogilvy|first1=C. S. |last1=Ogilvy |first2=J. T. |last2=Anderson |title=Excursions in Number Theory |pages=29–35 |publisher=Dover Publications |date=1988 |isbn=0-486-25778-9}}</ref>
The value
The value
<math display="block">\zeta(3) = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \cdots = 1.202056903159594285399...</math>
<math display="block">\zeta(3) = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \cdots = 1.202056903159594285399...</math>
is [[Apéry's constant]].
is [[Apéry's constant]].


Taking the limit <math>s \rightarrow +\infty</math> through the real numbers, one obtains <math>\zeta (+\infty) = 1</math>. But at [[complex infinity]] on the [[Riemann sphere]] the zeta function has an [[essential singularity]].<ref name=":0">{{Cite journal|last1=Steuding|first1=Jörn|last2=Suriajaya|first2=Ade Irma|date=2020-11-01|title=Value-Distribution of the Riemann Zeta-Function Along Its Julia Lines|journal=Computational Methods and Function Theory|language=en|volume=20|issue=3|pages=389–401|doi=10.1007/s40315-020-00316-x|s2cid=216323223 |issn=2195-3724|quote=Theorem 2 implies that ζ has an essential singularity at infinity|doi-access=free|hdl=2324/4483207|hdl-access=free|arxiv=2007.14661}}</ref>
Taking the limit {{math|''s'' → +∞}} through the real numbers, one obtains {{math|1=''ζ''(+) = 1}}. But at [[complex infinity]] on the [[Riemann sphere]] the zeta function has an [[essential singularity]].<ref name=":0">{{cite journal |last1=Steuding |first1=Jörn |last2=Suriajaya |first2=Ade Irma |date=2020-11-01 |title=Value-Distribution of the Riemann Zeta-Function Along Its Julia Lines |journal=Computational Methods and Function Theory |language=en |volume=20 |issue=3 |pages=389–401 |doi=10.1007/s40315-020-00316-x|s2cid=216323223 |issn=2195-3724|quote=Theorem 2 implies that ''ζ'' has an essential singularity at infinity |doi-access=free |hdl=2324/4483207 |hdl-access=free |arxiv=2007.14661 }}</ref>


==Various properties==
== Various properties ==
For sums involving the zeta function at integer and [[half-integer]] values, see [[rational zeta series]].
For sums involving the zeta function at integer and [[half-integer]] values, see [[rational zeta series]].


===Reciprocal===
=== Reciprocal ===
The reciprocal of the zeta function may be expressed as a [[Dirichlet series]] over the [[Möbius function]] {{math|''μ''(''n'')}}:
The reciprocal of the zeta function may be expressed as a [[Dirichlet series]] over the [[Möbius function]] {{math|''μ''(''n'')}}:
:<math>\frac{1}{\zeta(s)} = \sum_{n=1}^\infty \frac{\mu(n)}{n^s}</math>
: <math>\frac{1}{\zeta(s)} = \sum_{n=1}^\infty \frac{\mu(n)}{n^s}</math>
for every complex number {{mvar|s}} with real part greater than 1. There are a number of similar relations involving various well-known [[multiplicative function]]s; these are given in the article on the [[Dirichlet series]].
for every complex number {{math|''s''}} with real part greater than {{math|1}}. There are a number of similar relations involving various well-known [[multiplicative function]]s; these are given in the article on the [[Dirichlet series]].


<!--The paragraph below needs to be explained better; we need a section on RH equivalents. -->
<!--The paragraph below needs to be explained better; we need a section on RH equivalents. -->
The Riemann hypothesis is equivalent to the claim that this expression is valid when the real part of {{mvar|s}} is greater than {{sfrac|1|2}}.
The Riemann hypothesis is equivalent to the claim that this expression is valid when the real part of {{math|''s''}} is greater than {{math|1/2}}.


===Universality===
=== Universality ===
The critical strip of the Riemann zeta function has the remarkable property of '''universality'''. This [[zeta function universality]] states that there exists some location on the critical strip that approximates any [[holomorphic function]] arbitrarily well. Since holomorphic functions are very general, this property is quite remarkable. The first proof of universality was provided by Sergei Mikhailovitch Voronin in 1975.<ref>{{cite journal|last=Voronin|first=S. M.|date=1975|title=Theorem on the Universality of the Riemann Zeta Function|journal=Izv. Akad. Nauk SSSR, Ser. Matem.|volume=39|pages=475–486}} Reprinted in ''Math. USSR Izv.'' (1975) '''9''': 443–445.</ref> More recent work has included [[Zeta function universality#Effective universality|effective]] versions of Voronin's theorem<ref>{{ cite journal |author1=Ramūnas Garunkštis |author2=Antanas Laurinčikas |author3=Kohji Matsumoto
The critical strip of the Riemann zeta function has the remarkable property of '''universality'''. This [[zeta function universality]] states that there exists some location on the critical strip that approximates any [[holomorphic function]] arbitrarily well. Since holomorphic functions are very general, this property is quite remarkable. The first proof of universality was provided by [[Sergei Mikhailovitch Voronin]] in 1975.<ref>{{cite journal |last=Voronin |first=S. M. |date=1975 |title=Theorem on the Universality of the Riemann Zeta Function |journal=Izv. Akad. Nauk SSSR, Ser. Matem. |volume=39 |pages=475–486 }} Reprinted in ''Math. USSR Izv.'' (1975) '''9''': 443–445.</ref> More recent work has included [[Zeta function universality#Effective universality|effective]] versions of Voronin's theorem<ref>{{cite journal |author1=Ramūnas Garunkštis |author2=Antanas Laurinčikas |author3=Kohji Matsumoto |author4=Jörn Steuding |author5=Rasa Steuding |title=Effective uniform approximation by the Riemann zeta-function |journal=Publicacions Matemàtiques  |date=2010 |volume=54 |issue=1 |pages=209–219 |doi=10.5565/PUBLMAT_54110_12 |jstor=43736941 |url=http://ddd.uab.cat/record/52304 }}</ref> and [[Zeta function universality#Universality of other zeta functions|extending]] it to [[Dirichlet L-function|Dirichlet {{math|''L''}}-function]]s.<ref>{{ cite journal |author=Bhaskar Bagchi |title=A Joint Universality Theorem for Dirichlet L-Functions |journal=Mathematische Zeitschrift |issn=0025-5874 |volume=181 |issue=3 |date=1982 |pages=319–334 |doi=10.1007/bf01161980 |s2cid=120930513 }}</ref><ref>{{cite book |last=Steuding |first=Jörn |date=2007 |title=Value-Distribution of L-Functions  |volume=1877 |location=Berlin |publisher=Springer |page=19 |isbn=978-3-540-26526-9 |series=Lecture Notes in Mathematics |doi=10.1007/978-3-540-44822-8 |arxiv=1711.06671 }}</ref>
|author4=Jörn Steuding |author5=Rasa Steuding |title=Effective uniform approximation by the Riemann zeta-function |journal=Publicacions Matemàtiques  |date=2010 |volume=54 |issue=1 |pages=209–219 |doi=10.5565/PUBLMAT_54110_12 |jstor=43736941 |url=http://ddd.uab.cat/record/52304 }}</ref> and [[Zeta function universality#Universality of other zeta functions|extending]] it to [[Dirichlet L-function]]s.<ref>{{ cite journal |author=Bhaskar Bagchi |title=A Joint Universality Theorem for Dirichlet L-Functions
|journal=Mathematische Zeitschrift |issn=0025-5874 |volume=181 |issue=3
|date=1982 |pages=319–334 |doi=10.1007/bf01161980|s2cid=120930513
}}</ref><ref>{{cite book |last=Steuding |first=Jörn |date=2007 |title=Value-Distribution of L-Functions
  |volume=1877 |location=Berlin |publisher=Springer |page=19 |isbn=978-3-540-26526-9 |series=Lecture Notes in Mathematics
|doi=10.1007/978-3-540-44822-8|arxiv=1711.06671 }}</ref>
 
===Estimates of the maximum of the modulus of the zeta function===
Let the functions {{math|''F''(''T'';''H'')}} and {{math|''G''(''s''<sub>0</sub>;Δ)}} be defined by the equalities


=== Estimates of the maximum of the modulus of the zeta function ===
Let the functions {{math|''F''(''T''; ''H'')}} and {{math|''G''(''s''<sub>0</sub>; Δ)}} be defined by the equalities
: <math> F(T;H) = \max_{|t-T|\le H}\left|\zeta\left(\tfrac{1}{2}+it\right)\right|,\qquad G(s_{0};\Delta) = \max_{|s-s_{0}|\le\Delta}|\zeta(s)|. </math>
: <math> F(T;H) = \max_{|t-T|\le H}\left|\zeta\left(\tfrac{1}{2}+it\right)\right|,\qquad G(s_{0};\Delta) = \max_{|s-s_{0}|\le\Delta}|\zeta(s)|. </math>


Here {{mvar|T}} is a sufficiently large positive number, {{math|0 < ''H'' ≪ log log ''T''}}, {{math|''s''<sub>0</sub> {{=}} ''σ''<sub>0</sub> + ''iT''}}, {{math|{{sfrac|1|2}} ≤ ''σ''<sub>0</sub> ≤ 1}}, {{math|0 < Δ < {{sfrac|1|3}}}}. Estimating the values {{mvar|F}} and {{mvar|G}} from below shows, how large (in modulus) values {{math|''ζ''(''s'')}} can take on short intervals of the critical line or in small neighborhoods of points lying in the critical strip {{math|0 ≤ Re(''s'') ≤ 1}}.
Here {{math|''T''}} is a sufficiently large positive number, {{math|0 < ''H'' ≪ log log ''T''}}, {{math|1=''s''<sub>0</sub> = ''σ''<sub>0</sub> + ''iT''}}, {{math|1/2 ≤ ''σ''<sub>0</sub> ≤ 1}}, {{math|0 < Δ < 1/3}}. Estimating the values {{math|''F''}} and {{math|''G''}} from below shows, how large (in modulus) values {{math|''ζ''(''s'')}} can take on short intervals of the critical line or in small neighborhoods of points lying in the critical strip {{math|0 ≤ Re(''s'') ≤ 1}}.


The case {{math|''H'' ≫ log log ''T''}} was studied by [[Kanakanahalli Ramachandra]]; the case {{math|Δ > ''c''}}, where {{math|''c''}} is a sufficiently large constant, is trivial.
The case {{math|''H'' ≫ log log ''T''}} was studied by [[Kanakanahalli Ramachandra]]; the case {{math|Δ > ''c''}}, where {{math|''c''}} is a sufficiently large constant, is trivial.


[[Anatolii Alexeevitch Karatsuba|Anatolii Karatsuba]] proved,<ref>{{cite journal| first=A. A.| last=Karatsuba| title= Lower bounds for the maximum modulus of {{math|''ζ''(''s'')}} in small domains of the critical strip | pages=796–798| journal= Mat. Zametki| volume=70|issue=5| year=2001}}</ref><ref>{{cite journal| first=A. A.| last=Karatsuba| title= Lower bounds for the maximum modulus of the Riemann zeta function on short segments of the critical line| pages=99–104| journal= Izv. Ross. Akad. Nauk, Ser. Mat.| volume=68|issue=8| year=2004| doi=10.1070/IM2004v068n06ABEH000513| bibcode=2004IzMat..68.1157K| s2cid=250796539}}</ref> in particular, that if the values {{mvar|H}} and {{math|Δ}} exceed certain sufficiently small constants, then the estimates
[[Anatolii Alexeevitch Karatsuba|Anatolii Karatsuba]] proved,<ref>{{cite journal| first=A. A.| last=Karatsuba| title=Lower bounds for the maximum modulus of ''ζ''(''s'') in small domains of the critical strip | pages=796–798| journal= Mat. Zametki| volume=70|issue=5| year=2001}}</ref><ref>{{cite journal| first=A. A.| last=Karatsuba| title= Lower bounds for the maximum modulus of the Riemann zeta function on short segments of the critical line| pages=99–104| journal= Izv. Ross. Akad. Nauk, Ser. Mat.| volume=68|issue=8| year=2004| doi=10.1070/IM2004v068n06ABEH000513| bibcode=2004IzMat..68.1157K| s2cid=250796539}}</ref> in particular, that if the values {{math|''H''}} and {{math|Δ}} exceed certain sufficiently small constants, then the estimates
 
: <math> F(T;H) \ge T^{- c_1},\qquad G(s_0; \Delta) \ge T^{-c_2}, </math>
: <math> F(T;H) \ge T^{- c_1},\qquad G(s_0; \Delta) \ge T^{-c_2}, </math>
hold, where {{math|''c''<sub>1</sub>}} and {{math|''c''<sub>2</sub>}} are certain absolute constants.
hold, where {{math|''c''<sub>1</sub>}} and {{math|''c''<sub>2</sub>}} are certain absolute constants.


===The argument of the Riemann zeta function===
=== Argument of the Riemann zeta function ===
The function
The function
:<math>S(t) = \frac{1}{\pi}\arg{\zeta\left(\tfrac12+it\right)}</math>
: <math>S(t) = \frac{1}{\pi}\arg{\zeta\left(\tfrac12+it\right)}</math>
is called the [[complex argument|argument]] of the Riemann zeta function. Here {{math|arg ''ζ''({{sfrac|1|2}} + ''it'')}} is the increment of an arbitrary continuous branch of {{math|arg ''ζ''(''s'')}} along the broken line joining the points {{math|2}}, {{math|2 + ''it''}} and {{math|{{sfrac|1|2}} + ''it''}}.
is called the [[complex argument|argument]] of the Riemann zeta function. Here {{math|arg ''ζ''(1/2 + ''it'')}} is the increment of an arbitrary continuous branch of {{math|arg ''ζ''(''s'')}} along the broken line joining the points {{math|2}}, {{math|2 + ''it''}} and {{math|1/2 + ''it''}}.


There are some theorems on properties of the function {{math|''S''(''t'')}}. Among those results<ref>{{cite journal |first=A. A. |last=Karatsuba |title=Density theorem and the behavior of the argument of the Riemann zeta function |pages=448–449 |journal=Mat. Zametki |issue=60 |year=1996}}</ref><ref>{{cite journal |first=A. A. |last=Karatsuba |title=On the function {{math|''S''(''t'')}}| pages=27–56| journal= Izv. Ross. Akad. Nauk, Ser. Mat. |volume=60 |issue=5 |year=1996}}</ref> are the [[Mean value theorems for definite integrals|mean value theorems]] for {{math|''S''(''t'')}} and its first integral
There are some theorems on properties of the function {{math|''S''(''t'')}}. Among those results<ref>{{cite journal |first=A. A. |last=Karatsuba |title=Density theorem and the behavior of the argument of the Riemann zeta function |pages=448–449 |journal=Mat. Zametki |issue=60 |year=1996}}</ref><ref>{{cite journal |first=A. A. |last=Karatsuba |title=On the function ''S''(''t'') | pages=27–56| journal= Izv. Ross. Akad. Nauk, Ser. Mat. |volume=60 |issue=5 |year=1996}}</ref> are the [[Mean value theorems for definite integrals|mean value theorems]] for {{math|''S''(''t'')}} and its first integral
:<math>S_1(t) = \int_0^t S(u) \, \mathrm{d}u</math>
: <math>S_1(t) = \int_0^t S(u) \, \mathrm{d}u</math>
on intervals of the real line, and also the theorem claiming that every interval {{math|(''T'', ''T'' + ''H'']}} for
on intervals of the real line, and also the theorem claiming that every interval {{math|(''T'', ''T'' + ''H'']}} for
:<math>H \ge T^{\frac{27}{82}+\varepsilon}</math>
: <math>H \ge T^{\frac{27}{82}+\varepsilon}</math>
contains at least
contains at least
: <math> H\sqrt[3]{\ln T}e^{-c\sqrt{\ln\ln T}} </math>
: <math> H\sqrt[3]{\ln T}e^{-c\sqrt{\ln\ln T}} </math>
points where the function {{math|''S''(''t'')}} changes sign. Earlier similar results were obtained by [[Atle Selberg]] for the case
points where the function {{math|''S''(''t'')}} changes sign. Earlier similar results were obtained by [[Atle Selberg]] for the case
:<math>H\ge T^{\frac12+\varepsilon}.</math>
: <math>H\ge T^{\frac12+\varepsilon}.</math>


==Representations==
== Representations ==
===Dirichlet series===
=== Dirichlet series ===
An extension of the area of convergence can be obtained by rearranging the original series.<ref name="Knopp">{{cite book|first=Konrad|last=Knopp|title=Theory of Functions, Part Two|url=https://archive.org/details/in.ernet.dli.2015.212186|date=1947|pages=[https://archive.org/details/in.ernet.dli.2015.212186/page/n57/mode/2up 51–55]|publisher=New York, Dover publications}}</ref> The series
An extension of the area of convergence can be obtained by rearranging the original series.<ref name="Knopp">{{cite book |first=Konrad |last=Knopp |title=Theory of Functions, Part Two |url=https://archive.org/details/in.ernet.dli.2015.212186 |date=1947 |pages=[https://archive.org/details/in.ernet.dli.2015.212186/page/n57/mode/2up 51–55] |publisher=New York, Dover publications }}</ref> The series
:<math>\zeta(s)=\frac{1}{s-1}\sum_{n=1}^\infty \left(\frac{n}{(n+1)^s}-\frac{n-s}{n^s}\right)</math>
: <math>\zeta(s)=\frac{1}{s-1}\sum_{n=1}^\infty \left(\frac{n}{(n+1)^s}-\frac{n-s}{n^s}\right)</math>
converges for {{math|Re(''s'') > 0}}, while
converges for {{math|Re(''s'') > 0}}, while
:<math>\zeta(s) =\frac{1}{s-1}\sum_{n=1}^\infty\frac{n(n+1)}{2}\left(\frac{2n+3+s}{(n+1)^{s+2}}-\frac{2n-1-s}{n^{s+2}}\right)</math>
: <math>\zeta(s) =\frac{1}{s-1}\sum_{n=1}^\infty\frac{n(n+1)}{2}\left(\frac{2n+3+s}{(n+1)^{s+2}}-\frac{2n-1-s}{n^{s+2}}\right)</math>
converge even for {{math|Re(''s'') > −1}}. In this way, the area of convergence can be extended to {{math|Re(''s'') > −''k''}} for any negative integer {{math|−''k''}}.
converge even for {{math|Re(''s'') > −1}}. In this way, the area of convergence can be extended to {{math|Re(''s'') > −''k''}} for any negative integer {{math|−''k''}}.


The recurrence connection is clearly visible from the expression valid for {{math|Re(''s'') > −2}} enabling further expansion by integration by parts.
The recurrence connection is clearly visible from the expression valid for {{math|Re(''s'') > −2}} enabling further expansion by integration by parts.
 
: <math>\begin{aligned}
:<math>\begin{aligned}
\zeta(s)= & 1+\frac{1}{s-1}-\frac{s}{2 !}[\zeta(s+1)-1] \\
\zeta(s)= & 1+\frac{1}{s-1}-\frac{s}{2 !}[\zeta(s+1)-1] \\
- & \frac{s(s+1)}{3 !}[\zeta(s+2)-1] \\
- & \frac{s(s+1)}{3 !}[\zeta(s+2)-1] \\
& -\frac{s(s+1)(s+2)}{3 !} \sum_{n=1}^{\infty} \int_0^1 \frac{t^3 d t}{(n+t)^{s+3}}
& -\frac{s(s+1)(s+2)}{3 !} \sum_{n=1}^{\infty} \int_0^1 \frac{t^3 d t}{(n+t)^{s+3}}.
\end{aligned}</math>
\end{aligned}</math>
This recurrence leads to this other series development that uses the [[Pochhammer symbol|rising factorial]] and is valid for the entire complex plane <ref name="Knopp" />
: <math>\zeta(s) = \frac{s}{s-1} - \sum_{n=1}^\infty \bigl(\zeta(s+n)-1\bigr)\frac{s(s+1)\cdots(s+n-1)}{(n+1)!}.</math>


===Mellin-type integrals===
This can be used recursively to extend the Dirichlet series definition to all complex numbers.
The [[Mellin transform]] of a function {{math|''f''(''x'')}} is defined as<ref>{{cite journal |last=Riemann| first=Bernhard |title=[[On the number of primes less than a given magnitude]]|year=1859|journal=Monatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin}} translated and reprinted in {{cite book|last=Edwards|first=H. M. |authorlink=Harold Edwards (mathematician) |year=1974 |title=Riemann's Zeta Function |publisher=Academic Press |location=New York |isbn=0-12-232750-0 |zbl=0315.10035}}</ref>


:<math> \int_0^\infty f(x)x^s\, \frac{\mathrm{d}x}{x} </math>
The Riemann zeta function also appears in a form similar to the Mellin transform in an integral over the [[Gauss–Kuzmin–Wirsing operator]] acting on {{math|''x''<sup>''s''−1</sup>}}; that context gives rise to a series expansion in terms of the [[falling factorial]].<ref>{{cite web |title=A series representation for the Riemann Zeta derived from the Gauss-Kuzmin-Wirsing Operator |url=http://linas.org/math/poch-zeta.pdf |access-date=2017-01-04 |website=Linas.org}}</ref>


in the region where the integral is defined. There are various expressions for the zeta function as Mellin transform-like integrals. If the real part of {{mvar|s}} is greater than one, we have
=== Mellin-type integrals ===
 
The [[Mellin transform]] of a function {{math|''f''(''x'')}} is defined as<ref>{{cite journal |last=Riemann |first=Bernhard |title=[[On the number of primes less than a given magnitude]] |year=1859 |journal=Monatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin }} translated and reprinted in {{cite book |last=Edwards |first=H. M. |author-link=Harold Edwards (mathematician) |year=1974 |title=Riemann's Zeta Function |publisher=Academic Press |location=New York |isbn=0-12-232750-0 |zbl=0315.10035 }}</ref>
:<math>\Gamma(s)\zeta(s) =\int_0^\infty\frac{x^{s-1}}{e^x-1} \,\mathrm{d}x \quad</math> and <math>\quad\Gamma(s)\zeta(s) =\frac1{2s}\int_0^\infty\frac{x^{s}}{\cosh(x)-1} \,\mathrm{d}x</math>,
: <math> \int_0^\infty f(x)x^s\, \frac{\mathrm{d}x}{x} </math>


in the region where the integral is defined. There are various expressions for the zeta function as Mellin transform-like integrals. If the real part of {{math|''s''}} is greater than one, we have
: <math>\Gamma(s)\zeta(s) =\int_0^\infty\frac{x^{s-1}}{e^x-1} \,\mathrm{d}x \quad</math> and <math>\quad\Gamma(s)\zeta(s) =\frac1{2s}\int_0^\infty\frac{x^{s}}{\cosh(x)-1} \,\mathrm{d}x ,</math>
where {{math|Γ}} denotes the [[gamma function]]. By modifying the [[Contour integration|contour]], Riemann showed that
where {{math|Γ}} denotes the [[gamma function]]. By modifying the [[Contour integration|contour]], Riemann showed that
 
: <math>2\sin(\pi s)\Gamma(s)\zeta(s) =i\oint_H \frac{(-x)^{s-1}}{e^x-1}\,\mathrm{d}x </math>
:<math>2\sin(\pi s)\Gamma(s)\zeta(s) =i\oint_H \frac{(-x)^{s-1}}{e^x-1}\,\mathrm{d}x </math>
for all {{math|''s''}}<ref>Trivial exceptions of values of {{math|''s''}} that cause removable singularities are not taken into account throughout this article.</ref> (where {{math|''H''}} denotes the [[Hankel contour]]).
 
for all {{mvar|s}}<ref>Trivial exceptions of values of {{mvar|s}} that cause removable singularities are not taken into account throughout this article.</ref> (where {{mvar|H}} denotes the [[Hankel contour]]).


We can also find expressions which relate to prime numbers and the [[prime number theorem]]. If {{math|''π''(''x'')}} is the [[prime-counting function]], then
We can also find expressions which relate to prime numbers and the [[prime number theorem]]. If {{math|''π''(''x'')}} is the [[prime-counting function]], then
 
: <math>\ln \zeta(s) = s \int_0^\infty \frac{\pi(x)}{x(x^s-1)}\,\mathrm{d}x,</math>
:<math>\ln \zeta(s) = s \int_0^\infty \frac{\pi(x)}{x(x^s-1)}\,\mathrm{d}x,</math>
 
for values with {{math|Re(''s'') > 1}}.
for values with {{math|Re(''s'') > 1}}.


A similar Mellin transform involves the Riemann function {{math|''J''(''x'')}}, which counts prime powers {{math|''p''<sup>''n''</sup>}} with a weight of {{math|{{sfrac|1|''n''}}}}, so that
A similar Mellin transform involves the Riemann function {{math|''J''(''x'')}}, which counts prime powers {{math|''p''<sup>''n''</sup>}} with a weight of {{math|1/''n''}}, so that
 
: <math>J(x) = \sum \frac{\pi\left(x^\frac{1}{n}\right)}{n}.</math>
: <math>J(x) = \sum \frac{\pi\left(x^\frac{1}{n}\right)}{n}.</math>


Now
Now
 
: <math>\ln \zeta(s) = s\int_0^\infty J(x)x^{-s-1}\,\mathrm{d}x. </math>
:<math>\ln \zeta(s) = s\int_0^\infty J(x)x^{-s-1}\,\mathrm{d}x. </math>


These expressions can be used to prove the prime number theorem by means of the inverse Mellin transform. Riemann's [[prime-counting function]] is easier to work with, and {{math|''π''(''x'')}} can be recovered from it by [[Möbius inversion formula|Möbius inversion]].
These expressions can be used to prove the prime number theorem by means of the inverse Mellin transform. Riemann's [[prime-counting function]] is easier to work with, and {{math|''π''(''x'')}} can be recovered from it by [[Möbius inversion formula|Möbius inversion]].


===Theta functions===
=== Theta functions ===
The Riemann zeta function can be given by a Mellin transform<ref>{{Cite book |first=Jürgen |last=Neukirch |title=Algebraic number theory |publisher=Springer |date=1999 |page=422 |isbn=3-540-65399-6}}</ref>
The Riemann zeta function can be given by a Mellin transform<ref>{{cite book |first=Jürgen |last=Neukirch |title=Algebraic number theory |publisher=Springer |date=1999 |page=422 |isbn=3-540-65399-6}}</ref>
 
: <math>2\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s) = \int_0^\infty \bigl(\theta(it)-1\bigr)t^{\frac{s}{2}-1}\,\mathrm{d}t,</math>
:<math>2\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s) = \int_0^\infty \bigl(\theta(it)-1\bigr)t^{\frac{s}{2}-1}\,\mathrm{d}t,</math>
 
in terms of [[Theta function|Jacobi's theta function]]
in terms of [[Theta function|Jacobi's theta function]]
: <math>\theta(\tau)= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}.</math>


:<math>\theta(\tau)= \sum_{n=-\infty}^\infty e^{\pi i n^2\tau}.</math>
However, this integral only converges if the real part of {{math|''s''}} is greater than {{math|1}}, but it can be regularized. This gives the following expression for the zeta function, which is well defined for all {{math|''s''}} except {{math|0}} and {{math|1}}:
: <math> \pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s) = \frac{1}{s-1}-\frac{1}{s} +\frac{1}{2} \int_0^1 \left(\theta(it)-t^{-\frac12}\right)t^{\frac{s}{2}-1}\,\mathrm{d}t + \frac{1}{2}\int_1^\infty \bigl(\theta(it)-1\bigr)t^{\frac{s}{2}-1}\,\mathrm{d}t.</math>


However, this integral only converges if the real part of {{mvar|s}} is greater than 1, but it can be regularized. This gives the following expression for the zeta function, which is well defined for all {{mvar|s}} except 0 and 1:
=== Laurent series ===
 
The Riemann zeta function is [[meromorphic]] with a single [[pole (complex analysis)|pole]] of order one at {{math|''s'' {{=}} 1}}. It can therefore be expanded as a [[Laurent series]] about {{math|1=''s'' = 1}}; the series development is then<ref>{{cite journal | last1 = Hashimoto | first1 = Yasufumi | last2 = Iijima | first2 = Yasuyuki | last3 = Kurokawa | first3 = Nobushige | last4 = Wakayama | first4 = Masato | doi = 10.36045/bbms/1102689119 | issue = 4 | journal = [[Simon Stevin (journal)|Bulletin of the Belgian Mathematical Society, Simon Stevin]] | mr = 2115723 | pages = 493–516 | title = Euler's constants for the Selberg and the Dedekind zeta functions | url = https://projecteuclid.org/euclid.bbms/1102689119 | volume = 11 | year = 2004| doi-access = free | url-access = subscription }}</ref>
:<math> \pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s) = \frac{1}{s-1}-\frac{1}{s} +\frac{1}{2} \int_0^1 \left(\theta(it)-t^{-\frac12}\right)t^{\frac{s}{2}-1}\,\mathrm{d}t + \frac{1}{2}\int_1^\infty \bigl(\theta(it)-1\bigr)t^{\frac{s}{2}-1}\,\mathrm{d}t.</math>
: <math>\zeta(s)=\frac{1}{s-1}+\sum_{n=0}^\infty \frac{\gamma_n}{n!}(1-s)^n.</math>
 
===Laurent series===
The Riemann zeta function is [[meromorphic]] with a single [[pole (complex analysis)|pole]] of order one at {{math|''s'' {{=}} 1}}. It can therefore be expanded as a [[Laurent series]] about {{math|''s'' {{=}} 1}}; the series development is then<ref>{{cite journal | last1 = Hashimoto | first1 = Yasufumi | last2 = Iijima | first2 = Yasuyuki | last3 = Kurokawa | first3 = Nobushige | last4 = Wakayama | first4 = Masato | doi = 10.36045/bbms/1102689119 | issue = 4 | journal = [[Simon Stevin (journal)|Bulletin of the Belgian Mathematical Society, Simon Stevin]] | mr = 2115723 | pages = 493–516 | title = Euler's constants for the Selberg and the Dedekind zeta functions | url = https://projecteuclid.org/euclid.bbms/1102689119 | volume = 11 | year = 2004| doi-access = free | url-access = subscription }}</ref>
 
:<math>\zeta(s)=\frac{1}{s-1}+\sum_{n=0}^\infty \frac{\gamma_n}{n!}(1-s)^n.</math>


The constants {{math|''γ''<sub>''n''</sub>}} here are called the [[Stieltjes constants]] and can be defined by the [[limit of a sequence|limit]]
The constants {{math|''γ''<sub>''n''</sub>}} here are called the [[Stieltjes constants]] and can be defined by the [[limit of a sequence|limit]]
: <math> \gamma_n = \lim_{m \rightarrow \infty}{\left(\left(\sum_{k = 1}^m \frac{(\ln k)^n}{k}\right) - \frac{(\ln m)^{n+1}}{n+1}\right)}.</math>
: <math> \gamma_n = \lim_{m \rightarrow \infty}{\left(\left(\sum_{k = 1}^m \frac{(\ln k)^n}{k}\right) - \frac{(\ln m)^{n+1}}{n+1}\right)}.</math>


Line 407: Line 378:


=== Integral ===
=== Integral ===
For all {{math|''s'' ∈ }}, {{math|''s'' ≠ 1}}, the integral relation (cf. [[Abel–Plana formula]])
For all {{math|''s'' ∈ <math>\C</math>}}, {{math|''s'' ≠ 1}}, the integral relation (cf. [[Abel–Plana formula]])
:<math>\ \zeta(s)\ =\ \frac{ 1 }{\ s - 1\ } + \frac{\ 1\ }{ 2 } + 2 \int_0^{\infty} \frac{ \sin(\ s\ \arctan t\ ) }{\ \left( 1 + t^2 \right)^{s/2} \left( e^{2\pi t} - 1 \right)\ }\ \operatorname{d} t\ </math>
: <math>\zeta(s) = \frac{ 1 }{s - 1} + \frac{1}{2} + 2 \int_0^{\infty} \frac{\sin(s\arctan t) }{ \left(1 + t^2 \right)^{s/2} \left(e^{2\pi t} - 1\right)\ }\ \operatorname{d}t </math>
holds true, which may be used for a numerical evaluation of the zeta function.
holds true, which may be used for a numerical evaluation of the zeta function.


===Rising factorial===
=== Hadamard product ===
Another series development using the [[Pochhammer symbol|rising factorial]] valid for the entire complex plane is <ref name="Knopp"/>
 
:<math>\zeta(s) = \frac{s}{s-1} - \sum_{n=1}^\infty \bigl(\zeta(s+n)-1\bigr)\frac{s(s+1)\cdots(s+n-1)}{(n+1)!}.</math>
 
This can be used recursively to extend the Dirichlet series definition to all complex numbers.
 
The Riemann zeta function also appears in a form similar to the Mellin transform in an integral over the [[Gauss–Kuzmin–Wirsing operator]] acting on {{math|''x''<sup>''s'' − 1</sup>}}; that context gives rise to a series expansion in terms of the [[falling factorial]].<ref>{{cite web|url=http://linas.org/math/poch-zeta.pdf |title=A series representation for the Riemann Zeta derived from the Gauss-Kuzmin-Wirsing Operator |website=Linas.org |access-date=2017-01-04}}</ref>
 
===Hadamard product===
On the basis of [[Weierstrass factorization theorem|Weierstrass's factorization theorem]], [[Hadamard]] gave the [[infinite product]] expansion
On the basis of [[Weierstrass factorization theorem|Weierstrass's factorization theorem]], [[Hadamard]] gave the [[infinite product]] expansion
: <math>\zeta(s) = \frac{e^{\left(\log(2\pi)-1-\frac{\gamma}{2}\right)s}}{2(s-1)\Gamma\left(1+\frac{s}{2}\right)} \prod_\rho \left(1 - \frac{s}{\rho} \right) e^\frac{s}{\rho},</math>
where the product is over the non-trivial zeros {{math|''ρ''}} of {{math|''ζ''}} and the letter {{math|''γ''}} again denotes the [[Euler–Mascheroni constant]]. A simpler [[infinite product]] expansion is
: <math>\zeta(s) = \pi^\frac{s}{2} \frac{\prod_\rho \left(1 - \frac{s}{\rho} \right)}{2(s-1)\Gamma\left(1+\frac{s}{2}\right)}.</math>


:<math>\zeta(s) = \frac{e^{\left(\log(2\pi)-1-\frac{\gamma}{2}\right)s}}{2(s-1)\Gamma\left(1+\frac{s}{2}\right)} \prod_\rho \left(1 - \frac{s}{\rho} \right) e^\frac{s}{\rho},</math>
This form clearly displays the simple pole at {{math|1=''s'' = 1}}, the trivial zeros at {{math|−2, −4, }}... due to the gamma function term in the denominator, and the non-trivial zeros at {{math|1=''s'' = ''ρ''}}. (To ensure convergence in the latter formula, the product should be taken over "matching pairs" of zeros, i.e. the factors for a pair of zeros of the form {{math|''ρ''}} and {{math|1 − ''ρ''}} should be combined.)


where the product is over the non-trivial zeros {{mvar|ρ}} of {{math|''ζ''}} and the letter {{mvar|γ}} again denotes the [[Euler–Mascheroni constant]]. A simpler [[infinite product]] expansion is
=== Globally convergent series ===
A globally convergent series for the zeta function, valid for all complex numbers {{math|''s''}} except {{math|1=''s'' = 1 + {{sfrac|2π''i''|ln 2}}''n''}} for some integer {{math|''n''}}, was conjectured by [[Konrad Knopp]] in 1926 <ref name="blag2018" /> and proven by [[Helmut Hasse]] in 1930<ref name = Hasse1930 /> (cf. [[Euler summation]]):
: <math>\zeta(s)=\frac{1}{1-2^{1-s}} \sum_{n=0}^\infty \frac {1}{2^{n+1}} \sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{(k+1)^{s}}.</math>


:<math>\zeta(s) = \pi^\frac{s}{2} \frac{\prod_\rho \left(1 - \frac{s}{\rho} \right)}{2(s-1)\Gamma\left(1+\frac{s}{2}\right)}.</math>
The series appeared in an appendix to Hasse's paper, and was published for the second time by Jonathan Sondow in 1994.<ref>{{cite journal |first = Jonathan |last = Sondow |title = Analytic continuation of Riemann's zeta function and values at negative integers via Euler's transformation of series |journal = [[Proceedings of the American Mathematical Society]] |year = 1994 |volume = 120 |issue = 2 |pages = 421–424 |url = https://www.ams.org/journals/proc/1994-120-02/S0002-9939-1994-1172954-7/S0002-9939-1994-1172954-7.pdf |doi = 10.1090/S0002-9939-1994-1172954-7 |doi-access = free }}</ref>
 
This form clearly displays the simple pole at {{math|''s'' {{=}} 1}}, the trivial zeros at −2,&nbsp;−4,&nbsp;... due to the gamma function term in the denominator, and the non-trivial zeros at {{math|''s'' {{=}} ''ρ''}}. (To ensure convergence in the latter formula, the product should be taken over "matching pairs" of zeros, i.e. the factors for a pair of zeros of the form {{mvar|ρ}} and {{math|1 − ''ρ''}} should be combined.)
 
===Globally convergent series===
A globally convergent series for the zeta function, valid for all complex numbers {{mvar|s}} except {{math|''s'' {{=}} 1 + {{sfrac|2π''i''|ln 2}}''n''}} for some integer {{mvar|n}}, was conjectured by [[Konrad Knopp]] in 1926 <ref name="blag2018" /> and proven by [[Helmut Hasse]] in 1930<ref name = Hasse1930 /> (cf. [[Euler summation]]):
 
:<math>\zeta(s)=\frac{1}{1-2^{1-s}} \sum_{n=0}^\infty \frac {1}{2^{n+1}} \sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{(k+1)^{s}}.</math>
 
The series appeared in an appendix to Hasse's paper, and was published for the second time by Jonathan Sondow in 1994.<ref>{{cite journal|first = Jonathan|last = Sondow|title = Analytic continuation of Riemann's zeta function and values at negative integers via Euler's transformation of series|journal = [[Proceedings of the American Mathematical Society]]|year = 1994|volume = 120|issue = 2|pages = 421–424|url = https://www.ams.org/journals/proc/1994-120-02/S0002-9939-1994-1172954-7/S0002-9939-1994-1172954-7.pdf|doi = 10.1090/S0002-9939-1994-1172954-7|doi-access = free}}</ref>


Hasse also proved the globally converging series
Hasse also proved the globally converging series
:<math>\zeta(s)=\frac 1{s-1}\sum_{n=0}^\infty \frac 1{n+1}\sum_{k=0}^n\binom {n}{k}\frac{(-1)^k}{(k+1)^{s-1}}</math>
: <math>\zeta(s)=\frac 1{s-1}\sum_{n=0}^\infty \frac 1{n+1}\sum_{k=0}^n\binom {n}{k}\frac{(-1)^k}{(k+1)^{s-1}}</math>
in the same publication.<ref name = Hasse1930 /> Research by Iaroslav Blagouchine<ref>{{cite journal
in the same publication.<ref name = Hasse1930 /> Research by Iaroslav Blagouchine<ref>
{{cite journal
  | last = Blagouchine | first = Iaroslav V.
  | last = Blagouchine | first = Iaroslav V.
  | arxiv = 1501.00740
  | arxiv = 1501.00740
Line 448: Line 407:
  | title = Expansions of generalized Euler's constants into the series of polynomials in {{pi}}<sup>&minus;2</sup> and into the formal enveloping series with rational coefficients only
  | title = Expansions of generalized Euler's constants into the series of polynomials in {{pi}}<sup>&minus;2</sup> and into the formal enveloping series with rational coefficients only
  | volume = 158
  | volume = 158
  | year = 2016}}</ref><ref name="blag2018">{{cite journal
  | year = 2016}}</ref><ref name="blag2018">
{{cite journal
  | last = Blagouchine | first = Iaroslav V.
  | last = Blagouchine | first = Iaroslav V.
  | arxiv = 1606.02044
  | arxiv = 1606.02044
Line 458: Line 418:
  | year = 2018| doi = 10.5281/zenodo.10581385
  | year = 2018| doi = 10.5281/zenodo.10581385
  | bibcode = 2016arXiv160602044B}}</ref>
  | bibcode = 2016arXiv160602044B}}</ref>
has found that a similar, equivalent series was published by [[Joseph Ser]] in 1926.<ref>{{cite journal|first = Joseph|last = Ser|author-link = Joseph Ser|title = Sur une expression de la fonction ζ(s) de Riemann|trans-title = Upon an expression for Riemann's ζ function|year = 1926|journal = [[Comptes rendus hebdomadaires des séances de l'Académie des Sciences]]|volume = 182|pages = 1075–1077|language = fr}}</ref>
has found that a similar, equivalent series was published by [[Joseph Ser]] in 1926.<ref>{{cite journal|first = Joseph|last = Ser|author-link = Joseph Ser|title = Sur une expression de la fonction ''ζ''(''s'') de Riemann|trans-title = Upon an expression for Riemann's ''ζ'' function|year = 1926|journal = [[Comptes rendus hebdomadaires des séances de l'Académie des Sciences]]|volume = 182|pages = 1075–1077|language = fr}}</ref>
 
In 1997 K. Maślanka gave another globally convergent (except {{math|s {{=}} 1}}) series for the Riemann zeta function:


:<math>\zeta (s)=\frac{1}{s-1}\sum_{k=0}^\infty \biggl(\prod_{i=1}^{k} (i-\frac{s}{2})\biggl) \frac{A_{k}}{k!}=
In 1997 K. Maślanka gave another globally convergent (except {{math|1=''s'' = 1}}) series for the Riemann zeta function:
: <math>\zeta (s)=\frac{1}{s-1}\sum_{k=0}^\infty \biggl(\prod_{i=1}^{k} (i-\frac{s}{2})\biggl) \frac{A_{k}}{k!}=
\frac{1}{s-1} \sum_{k=0}^\infty \biggl(1-\frac{s}{2}\biggl)_{k}
\frac{1}{s-1} \sum_{k=0}^\infty \biggl(1-\frac{s}{2}\biggl)_{k}
\frac{A_{k}}{k!}</math>
\frac{A_{k}}{k!}</math>
where real coefficients <math>A_k</math> are given by:
where real coefficients <math>A_k</math> are given by:
 
: <math>A_k=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}(2j+1)\zeta
:<math>A_k=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}(2j+1)\zeta
(2j+2)=\sum_{j=0}^{k}\binom{k}{j}\frac{B_{2j+2}\pi ^{2j+2}}{\left(2\right) _{j}\left( \frac{1}{2}\right) _{j}} </math>
(2j+2)=\sum_{j=0}^{k}\binom{k}{j}\frac{B_{2j+2}\pi ^{2j+2}}{\left(2\right) _{j}\left( \frac{1}{2}\right) _{j}} </math>


Here <math>B_{n}</math> are the Bernoulli numbers and <math>(x)_{k}</math> denotes the Pochhammer symbol.<ref>{{cite journal
Here {{math|''B''<sub>''n''</sub>}} are the Bernoulli numbers and {{math|(''x'')<sub>''k''</sub>}} denotes the Pochhammer symbol.<ref>{{cite journal
  |first = Krzysztof
  |first = Krzysztof |last = Maślanka
|last = Maślanka
  |title = The Beauty of Nothingness
  |title = The Beauty of Nothingness
  |year = 1997
  |year = 1997
  |journal = Acta Cosmologica
  |journal = Acta Cosmologica
  |volume = XXIII-I
  |volume = XXIII-I
  |pages = 13–17}}</ref><ref>{{cite journal
  |pages = 13–17}}</ref><ref>
  |first = Luis
{{cite journal
|last = Báez-Duarte
  |first = Luis |last = Báez-Duarte
  |title = On Maslanka's Representation for the Riemann Zeta Function
  |title = On Maslanka's Representation for the Riemann Zeta Function
  |year = 2010
  |year = 2010
Line 486: Line 442:
  |volume = 2010
  |volume = 2010
  |pages = 1–9
  |pages = 1–9
|doi = 10.1155/2010/714147
|doi = 10.1155/2010/714147
  |doi-access = free
  |doi-access = free
  |arxiv = math/0307214
  |arxiv = math/0307214
  }}</ref>
  }}</ref>


Note that this representation of the zeta function is essentially an interpolation with nodes, where the nodes are points <math>s=2,4,6,\ldots </math>, i.e. exactly those where the zeta values are precisely known, as Euler showed. An elegant and very short proof of this representation of the zeta function, based on [[Carlson's theorem]], was presented by Philippe Flajolet in 2006.<ref>{{cite journal
Note that this representation of the zeta function is essentially an interpolation with nodes, where the nodes are points {{math|1=''s'' = 2, 4, 6, ...}}, i.e. exactly those where the zeta values are precisely known, as Euler showed. An elegant and very short proof of this representation of the zeta function, based on [[Carlson's theorem]], was presented by Philippe Flajolet in 2006.<ref>{{cite journal
  |first1 = Philippe
  |first1 = Philippe |last1 = Flajolet
|last1 = Flajolet
  |first2 = Linas |last2 = Vepstas
  |first2 = Linas
|last2 = Vepstas
  |title = On Differences of Zeta Values
  |title = On Differences of Zeta Values
  |year = 2008
  |year = 2008
Line 503: Line 457:
  |pages = 58–73
  |pages = 58–73
  |doi = 10.1016/j.cam.2007.07.040
  |doi = 10.1016/j.cam.2007.07.040
  |arxiv = math/0611332|bibcode = 2008JCoAM.220...58F
  |arxiv = math/0611332 |bibcode = 2008JCoAM.220...58F
  }}</ref>
  }}</ref>


The asymptotic behavior of the coefficients <math>A_{k}</math> is rather curious: for growing <math>k</math> values, we observe regular oscillations with a nearly exponentially decreasing amplitude and slowly decreasing frequency (roughly as <math>k^{-2/3}</math>). Using the saddle point method, we can show that
The asymptotic behavior of the coefficients <math>A_{k}</math> is rather curious: for growing <math>k</math> values, we observe regular oscillations with a nearly exponentially decreasing amplitude and slowly decreasing frequency (roughly as <math>k^{-2/3}</math>). Using the saddle point method, we can show that
 
: <math>A_{k}\sim \frac{4\pi ^{3/2}}{\sqrt{3\kappa }}\exp \biggl( -\frac{3\kappa }{2}+\frac{\pi ^{2}}{4\kappa }\biggl) \cos \biggl( \frac{4\pi }{3}-\frac{3\sqrt{3}
:<math>A_{k}\sim \frac{4\pi ^{3/2}}{\sqrt{3\kappa }}\exp \biggl( -\frac{3\kappa }{2}+\frac{\pi ^{2}}{4\kappa }\biggl) \cos \biggl( \frac{4\pi }{3}-\frac{3\sqrt{3}
\kappa }{2}+\frac{\sqrt{3}\pi ^{2}}{4\kappa }\biggl)</math>
\kappa }{2}+\frac{\sqrt{3}\pi ^{2}}{4\kappa }\biggl)</math>
where <math>\kappa</math> stands for:
where <math>\kappa</math> stands for:
 
: <math>\kappa :=\sqrt[3]{\pi ^{2}k} </math>
:<math>\kappa :=\sqrt[3]{\pi ^{2}k} </math>
 
(see <ref>{{cite journal
(see <ref>{{cite journal
  |first1 = Krzysztof
  |first1 = Krzysztof |last1 = Maślanka
|last1 = Maślanka
  |first2 = Andrzej |last2 = Koleżyński
  |first2 = Andrzej
|last2 = Koleżyński
  |title = The High Precision Numerical Calculation of Stieltjes Constants. Simple and Fast Algorithm
  |title = The High Precision Numerical Calculation of Stieltjes Constants. Simple and Fast Algorithm
  |journal = Computational Methods in Science and Technology
  |journal = Computational Methods in Science and Technology
Line 526: Line 474:
  |issue = 2
  |issue = 2
  |pages = 47–59
  |pages = 47–59
|doi = 10.12921/cmst.2022.0000014
|doi = 10.12921/cmst.2022.0000014
  |arxiv = 2210.04609
  |arxiv = 2210.04609
  |s2cid = 252780397
  |s2cid = 252780397
Line 532: Line 480:


On the basis of this representation, in 2003 Luis Báez-Duarte provided a new criterion for the Riemann hypothesis.<ref>{{cite journal
On the basis of this representation, in 2003 Luis Báez-Duarte provided a new criterion for the Riemann hypothesis.<ref>{{cite journal
  |first = Luis
  |first = Luis |last = Báez-Duarte
|last = Báez-Duarte
  |title = A New Necessary and Sufficient Condition for the Riemann Hypothesis
  |title = A New Necessary and Sufficient Condition for the Riemann Hypothesis
  |journal = Number Theory
  |journal = Number Theory
  |arxiv = math/0307215
  |arxiv = math/0307215
  |year = 2003
  |year = 2003
|bibcode = 2003math......7215B
|bibcode = 2003math......7215B
  }}</ref><ref>{{cite journal
  }}</ref><ref>
  |first = Krzysztof
{{cite journal
|last = Maślanka
  |first = Krzysztof |last = Maślanka
  |title = Báez-Duarte's Criterion for the Riemann Hypothesis and Rice's Integrals
  |title = Báez-Duarte's Criterion for the Riemann Hypothesis and Rice's Integrals
  |journal = Number Theory
  |journal = Number Theory
  |arxiv = math/0603713v2
  |arxiv = math/0603713v2
  |year = 2006
  |year = 2006
|bibcode = 2006math......3713M
|bibcode = 2006math......3713M
  }}</ref><ref>{{cite journal
  }}</ref><ref>
  |first = Marek
{{cite journal
|last = Wolf
  |first = Marek |last = Wolf
  |title = Some remarks on the Báez-Duarte criterion for the Riemann Hypothesis
  |title = Some remarks on the Báez-Duarte criterion for the Riemann Hypothesis
  |journal = Computational Methods in Science and Technology
  |journal = Computational Methods in Science and Technology
Line 556: Line 503:
  |issue = 2
  |issue = 2
  |pages = 39–47
  |pages = 39–47
|doi = 10.12921/cmst.2014.20.02.39-47
|doi = 10.12921/cmst.2014.20.02.39-47 |doi-access = free
|doi-access = free
  }}</ref> Namely, if we define the coefficients {{math|''c''<sub>''k''</sub>}} as
  }}</ref> Namely, if we define the coefficients <math>c_{k}</math> as
: <math>c_{k}:=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}\frac{1}{\zeta (2j+2)}</math>
 
:<math>c_{k}:=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}\frac{1}{\zeta (2j+2)}</math>
 
then the Riemann hypothesis is equivalent to
then the Riemann hypothesis is equivalent to
: <math>c_{k}=\mathcal{O}\left( k^{-3/4+\varepsilon }\right) \qquad (\forall\varepsilon >0) </math>


:<math>c_{k}=\mathcal{O}\biggl( k^{-3/4+\varepsilon }\biggl) \qquad (\forall\varepsilon >0) </math>
=== Rapidly convergent series ===
 
[[Peter Borwein]] developed an algorithm that applies [[Chebyshev polynomial]]s to the [[Dirichlet eta function]] to produce a [[Dirichlet eta function#Borwein's method|very rapidly convergent series suitable for high precision numerical calculations]].<ref>{{cite book|first = Peter|last = Borwein|author-link = Peter Borwein|chapter-url = http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf|chapter = An Efficient Algorithm for the Riemann Zeta Function|series = Conference Proceedings, Canadian Mathematical Society|year = 2000|title = Constructive, Experimental, and Nonlinear Analysis|volume = 27|pages = 29–34|isbn = 978-0-8218-2167-1|editor-first = Michel A.|editor-last = Théra|publisher = [[American Mathematical Society]], on behalf of the [[Canadian Mathematical Society]]|location = Providence, RI|access-date = 25 November 2017|archive-date = 26 July 2011|archive-url = https://web.archive.org/web/20110726090927/http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf}}</ref>
===Rapidly convergent series===
[[Peter Borwein]] developed an algorithm that applies [[Chebyshev polynomial]]s to the [[Dirichlet eta function]] to produce a [[Dirichlet eta function#Borwein's method|very rapidly convergent series suitable for high precision numerical calculations]].<ref>{{cite book|first = Peter|last = Borwein|author-link = Peter Borwein|chapter-url = http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf|chapter = An Efficient Algorithm for the Riemann Zeta Function|series = Conference Proceedings, Canadian Mathematical Society|year = 2000|title = Constructive, Experimental, and Nonlinear Analysis|volume = 27|pages = 29–34|isbn = 978-0-8218-2167-1|editor-first = Michel A.|editor-last = Théra|publisher = [[American Mathematical Society]], on behalf of the [[Canadian Mathematical Society]]|location = Providence, RI|access-date = 25 November 2017|archive-date = 26 July 2011|archive-url = https://web.archive.org/web/20110726090927/http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf|url-status = dead}}</ref>


===Series representation at positive integers via the primorial===
=== Series representation at positive integers via the primorial ===
: <math> \zeta(k)=\frac{2^k}{2^k-1}+\sum_{r=2}^\infty\frac{(p_{r-1}\#)^k}{J_k(p_r\#)}\qquad k=2,3,\ldots.</math>
: <math> \zeta(k)=\frac{2^k}{2^k-1}+\sum_{r=2}^\infty\frac{(p_{r-1}\#)^k}{J_k(p_r\#)}\qquad k=2,3,\ldots.</math>
Here {{math|''p<sub>n</sub>''#}} is the [[primorial]] sequence and {{math|''J<sub>k</sub>''}} is [[Jordan's totient function]].<ref>{{cite journal
Here {{math|''p<sub>n</sub>''#}} is the [[primorial]] sequence and {{math|''J<sub>k</sub>''}} is [[Jordan's totient function]].<ref>{{cite journal
|first=István
|first=István |last=Mező
|last=Mező
|title=The primorial and the Riemann zeta function
|title=The primorial and the Riemann zeta function
|journal= The American Mathematical Monthly
|journal=The American Mathematical Monthly
|year=2013
|year=2013
|volume=120
|volume=120
Line 582: Line 524:
}}</ref>
}}</ref>


===Series representation by the incomplete poly-Bernoulli numbers===
=== Series representation by the incomplete poly-Bernoulli numbers ===
The function {{mvar|ζ}} can be represented, for {{math|Re(''s'') > 1}}, by the infinite series
The function {{math|''ζ''}} can be represented, for {{math|Re(''s'') > 1}}, by the infinite series
:<math>\zeta(s)=\sum_{n=0}^\infty B_{n,\ge2}^{(s)}\frac{(W_k(-1))^n}{n!},</math>
: <math>\zeta(s)=\sum_{n=0}^\infty B_{n,\ge2}^{(s)}\frac{(W_k(-1))^n}{n!},</math>
where {{math|''k'' ∈ {−1, 0{{)}}}}, {{math|''W<sub>k</sub>''}} is the {{mvar|k}}th branch of the [[Lambert W function|Lambert {{mvar|W}}-function]], and {{math|''B''{{su|b=''n'', ≥2|p=(''μ'')}}}} is an incomplete poly-Bernoulli number.<ref>{{cite journal
where {{math|''k'' ∈ {{mset|−1, 0}}}}, {{math|''W<sub>k</sub>''}} is the {{mvar|k}}th branch of the [[Lambert W function|Lambert {{mvar|W}}-function]], and {{math|''B''{{su|b=''n'',≥2|p=(''μ'')|lh=1}}}} is an incomplete poly-Bernoulli number.<ref>{{cite journal
|first1=Takao
|first1=Takao |last1=Komatsu
|last1=Komatsu
|first2=István |last2=Mező
|first2=István
|title=Incomplete poly-Bernoulli numbers associated with incomplete Stirling numbers
|last2=Mező
|journal=Publicationes Mathematicae Debrecen
|title=Incomplete poly-Bernoulli numbers associated with incomplete Stirling numbers
|year=2016
|journal=Publicationes Mathematicae Debrecen
|volume=88 |issue=3–4
|year=2016
|pages=357–368
|volume=88
|doi=10.5486/pmd.2016.7361 |arxiv=1510.05799 |s2cid=55741906
|issue=3–4
|pages=357–368
|doi=10.5486/pmd.2016.7361
|arxiv=1510.05799
|s2cid=55741906
}}</ref>
}}</ref>


===The Mellin transform of the Engel map===
=== Mellin transform of the Engel map ===
The function <math>g(x) = x \left( 1+\left\lfloor x^{-1}\right\rfloor \right) -1</math> is iterated to find the coefficients appearing in [[Engel expansion]]s.<ref>{{Cite web|url=http://oeis.org/A220335|title=A220335 - OEIS|website=oeis.org|access-date=2019-04-17}}</ref>
The function {{math|1=''g''(''x'') = ''x''(1 + {{floor|''x''<sup>−1</sup>}}) 1}} is iterated to find the coefficients appearing in [[Engel expansion]]s.<ref>{{cite web |url=http://oeis.org/A220335 |title=A220335 OEIS |website=oeis.org |access-date=2019-04-17 }}</ref>


The [[Mellin transform]] of the map <math>g(x)</math> is related to the Riemann zeta function by the formula
The [[Mellin transform]] of the map <math>g(x)</math> is related to the Riemann zeta function by the formula
:<math>  \begin{align}
: <math>  \begin{align}
     \int_0^1 g (x) x^{s - 1} \, dx & = \sum_{n = 1}^\infty
     \int_0^1 g (x) x^{s - 1} \, dx & = \sum_{n = 1}^\infty
     \int_{\frac{1}{n + 1}}^{\frac{1}{n}} (x (n + 1) - 1) x^{s - 1} \, d x\\[6pt]
     \int_{\frac{1}{n + 1}}^{\frac{1}{n}} (x (n + 1) - 1) x^{s - 1} \, d x\\[6pt]
Line 612: Line 549:
   \end{align}</math>
   \end{align}</math>


===Thue-Morse sequence===
=== Stochastic representations ===
Certain linear combinations of Dirichlet series whose coefficients are terms of the [[Thue-Morse sequence]] give rise to identities involving the Riemann Zeta function.<ref>
The [[Brownian motion and Riemann zeta function]] are connected through the [[moment-generating function]]s of [[stochastic process]]es derived from the [[Brownian motion]].<ref>{{cite journal
{{cite journal|author1-link=Tóth|last1=Tóth|first1=László|title=Linear Combinations of Dirichlet Series Associated with the Thue-Morse Sequence|journal=Integers|volume=22|year=2022|issue=article 98|arxiv=2211.13570 }}
| last1 = Biane | first1 = Philippe
</ref> For instance:
| last2 = Pitman | first2 = Jim
:<math> \begin{align}
| last3 = Yor | first3 = Marc
    \sum_{n\geq1} \frac{5 t_{n-1} + 3 t_n}{n^2} &= 4 \zeta(2) = \frac{2 \pi^2}{3}, \\
| title = Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions
\sum_{n\geq1} \frac{9 t_{n-1} + 7 t_n}{n^3} &= 8 \zeta(3),\end{align}</math>
| journal = Bulletin of the American Mathematical Society |series=New Series
where <math>(t_n)_{n\geq0}</math> is the <math>n^{\rm th}</math> term of the Thue-Morse sequence. In fact, for all <math>s</math> with real part greater than <math>1</math>, we have
| volume = 38 | issue = 4
:<math> (2^s+1) \sum_{n\geq1} \frac{t_{n-1}}{n^s} + (2^s-1) \sum_{n\geq1} \frac{t_{n}}{n^s} = 2^s \zeta(s).</math>
| pages = 435–465
 
| year = 2001
===Stochastic representations===
  | doi = 10.1090/S0273-0979-01-00912-0 | doi-access = free
The [[Brownian motion and Riemann zeta function]] are connected through the [[moment-generating function]]s of [[stochastic process]]es derived from the [[Brownian motion]].
| url = https://www.ams.org/journals/bull/2001-38-04/S0273-0979-01-00912-0/
  | publisher = American Mathematical Society
| access-date = 2025-07-27
}}</ref>


== Numerical algorithms ==
== Numerical algorithms ==
A classical algorithm, in use prior to about 1930, proceeds by applying the [[Euler-Maclaurin formula]] to obtain, for ''n'' and ''m'' positive integers,
A classical algorithm, in use prior to about 1930, proceeds by applying the [[Euler–Maclaurin formula]] to obtain, for positive integers {{math|''n''}} and {{math|''m''}},
 
: <math>\zeta(s) = \sum_{j=1}^{n-1}j^{-s} + \tfrac12 n^{-s} + \frac{n^{1-s}}{s-1} + \sum_{k=1}^m T_{k,n}(s) + E_{m,n}(s)</math>
:<math>\zeta(s) = \sum_{j=1}^{n-1}j^{-s} + \tfrac12 n^{-s} + \frac{n^{1-s}}{s-1} + \sum_{k=1}^m T_{k,n}(s) + E_{m,n}(s)</math>
 
where, letting <math>B_{2k}</math> denote the indicated [[Bernoulli number]],
where, letting <math>B_{2k}</math> denote the indicated [[Bernoulli number]],
 
: <math>T_{k,n}(s) = \frac{B_{2k}}{(2k)!} n^{1-s-2k}\prod_{j=0}^{2k-2}(s+j)</math>
:<math>T_{k,n}(s) = \frac{B_{2k}}{(2k)!} n^{1-s-2k}\prod_{j=0}^{2k-2}(s+j)</math>
 
and the error satisfies
and the error satisfies
 
: <math>|E_{m,n}(s)| < \left|\frac{s+2m+1}{\sigma + 2m + 1}T_{m+1,n}(s)\right|,</math>
:<math>|E_{m,n}(s)| < \left|\frac{s+2m+1}{\sigma + 2m + 1}T_{m+1,n}(s)\right|,</math>
with {{math|1=''σ'' = Re(''s'')}}.<ref>{{cite journal |mr=0961614
 
|last1=Odlyzko |first1= A. M. |author1-link=Odlyzko |last2= Schönhage |first2= A. |author2-link=Schönhage
with ''&sigma;'' = Re(''s'').<ref>{{cite journal|mr=0961614
|author1-link=Odlyzko|author2-link=Schönhage|last1=Odlyzko|first1= A. M.|last2= Schönhage|first2= A.
|title=Fast algorithms for multiple evaluations of the Riemann zeta function
|title=Fast algorithms for multiple evaluations of the Riemann zeta function
|journal=Trans. Amer. Math. Soc.|volume= 309 |year=1988|issue= 2|pages= 797–809
|journal=Trans. Amer. Math. Soc. |volume=309 |year=1988 |issue=2 |pages=797–809
|doi=10.2307/2000939|jstor=2000939|doi-access=free}}.
|doi=10.2307/2000939 |doi-access=free |jstor=2000939 }}
</ref>
</ref>


A modern numerical algorithm is the [[Odlyzko–Schönhage algorithm]].
A modern numerical algorithm is the [[Odlyzko–Schönhage algorithm]].


==Applications==
== Applications ==
The zeta function occurs in applied [[statistics]] including [[Zipf's law]], [[Zipf–Mandelbrot law]], and [[Lotka's law]].
The zeta function occurs in applied [[statistics]] including [[Zipf's law]], [[Zipf–Mandelbrot law]], and [[Lotka's law]].


[[Zeta function regularization]] is used as one possible means of [[regularization (physics)|regularization]] of [[divergent series]] and [[divergent integral]]s in [[quantum field theory]]. In one notable example, the Riemann zeta function shows up explicitly in one method of calculating the [[Casimir effect]]. The zeta function is also useful for the analysis of [[dynamical systems]].<ref>{{cite web|url=http://empslocal.ex.ac.uk/people/staff/mrwatkin/zeta/spinchains.htm |title=Work on spin-chains by A. Knauf, et. al |website=Empslocal.ex.ac.uk |access-date=2017-01-04}}</ref>
[[Zeta function regularization]] is used as one possible means of [[regularization (physics)|regularization]] of [[divergent series]] and [[divergent integral]]s in [[quantum field theory]]. In one notable example, the Riemann zeta function shows up explicitly in one method of calculating the [[Casimir effect]]. The zeta function is also useful for the analysis of [[dynamical systems]].<ref>{{cite web |url=http://empslocal.ex.ac.uk/people/staff/mrwatkin/zeta/spinchains.htm |title=Work on spin-chains by A. Knauf, et. al |website=Empslocal.ex.ac.uk |access-date=2017-01-04 }}</ref>


===Musical tuning===
=== Musical tuning ===
In the theory of [[musical tuning]]s, the zeta function can be used to find [[Equal temperament|equal divisions of the octave]] (EDOs) that closely approximate the intervals of the [[Harmonic series (music)|harmonic series]]. For increasing values of <math>t \in \mathbb{R}</math>, the value of
In the theory of [[musical tuning]]s, the zeta function can be used to find [[Equal temperament|equal divisions of the octave]] (EDOs) that closely approximate the intervals of the [[Harmonic series (music)|harmonic series]]. For increasing values of <math>t \in \mathbb{R}</math>, the value of
: <math>\left\vert \zeta \left( \frac{1}{2} + \frac{2\pi{i}}{\ln{(2)}}t \right) \right\vert</math>
peaks near integers that correspond to such EDOs.<ref>{{cite web |url=https://oeis.org/A117536 |title=Nearest integer to locations of increasingly large peaks of abs(zeta(0.5 + i×2×Pi/log(2)×t)) for increasing real t |author=Gene Ward Smith |website=The On-Line Encyclopedia of Integer Sequences |access-date=2022-03-04}}</ref> Examples include popular choices such as 12, 19, and 53.<ref>{{cite book |title=Tuning, Timbre, Spectrum, Scale |author=William A. Sethares |date=2005 |edition=2nd |publisher=Springer-Verlag London |page=74 |quote=... there are many different ways to evaluate the goodness, reasonableness, fitness, or quality of a scale ... Under some measures, 12-tet is the winner, under others 19-tet appears best, 53-tet often appears among the victors ...}}</ref>


:<math>\left\vert \zeta \left( \frac{1}{2} + \frac{2\pi{i}}{\ln{(2)}}t \right) \right\vert</math>
=== Infinite series ===
 
peaks near integers that correspond to such EDOs.<ref>{{cite web|url=https://oeis.org/A117536 |title=Nearest integer to locations of increasingly large peaks of abs(zeta(0.5 + i*2*Pi/log(2)*t)) for increasing real t |author=Gene Ward Smith |website=The On-Line Encyclopedia of Integer Sequences |access-date=2022-03-04}}</ref> Examples include popular choices such as 12, 19, and 53.<ref>{{cite book|title=Tuning, Timbre, Spectrum, Scale |author=William A. Sethares |date=2005 |edition=2nd |publisher=Springer-Verlag London |page=74 |quote=...there are many different ways to evaluate the goodness, reasonableness, fitness, or quality of a scale...Under some measures, 12-tet is the winner, under others 19-tet appears best, 53-tet often appears among the victors...}}</ref>
 
===Infinite series===
The zeta function evaluated at equidistant positive integers appears in infinite series representations of a number of constants.<ref>Most of the formulas in this section are from § 4 of J. M. Borwein et al. (2000)</ref>
The zeta function evaluated at equidistant positive integers appears in infinite series representations of a number of constants.<ref>Most of the formulas in this section are from § 4 of J. M. Borwein et al. (2000)</ref>
*<math>\sum_{n=2}^\infty\bigl(\zeta(n)-1\bigr) = 1</math>
* <math>\sum_{n=2}^\infty\bigl(\zeta(n)-1\bigr) = 1</math>


In fact the even and odd terms give the two sums
In fact the even and odd terms give the two sums
*<math>\sum_{n=1}^\infty\bigl(\zeta(2n)-1\bigr)=\frac{3}{4}</math>
* <math>\sum_{n=1}^\infty\bigl(\zeta(2n)-1\bigr)=\frac{3}{4}</math>
and
and
 
* <math>\sum_{n=1}^\infty\bigl(\zeta(2n+1)-1\bigr)=\frac{1}{4}</math>
*<math>\sum_{n=1}^\infty\bigl(\zeta(2n+1)-1\bigr)=\frac{1}{4}</math>
Parametrized versions of the above sums are given by
Parametrized versions of the above sums are given by
 
* <math>\sum_{n=1}^\infty(\zeta(2n)-1)\,t^{2n} = \frac{t^2}{t^2-1} + \frac{1}{2} \left(1- \pi t\cot(t\pi)\right)</math>
*<math>\sum_{n=1}^\infty(\zeta(2n)-1)\,t^{2n} = \frac{t^2}{t^2-1} + \frac{1}{2} \left(1- \pi t\cot(t\pi)\right)</math>
and
and
 
* <math>\sum_{n=1}^\infty(\zeta(2n+1)-1)\,t^{2n} = \frac{t^2}{t^2-1} -\frac{1}{2}\left(\psi^0(t)+\psi^0(-t) \right) - \gamma</math>
*<math>\sum_{n=1}^\infty(\zeta(2n+1)-1)\,t^{2n} = \frac{t^2}{t^2-1} -\frac{1}{2}\left(\psi^0(t)+\psi^0(-t) \right) - \gamma</math>
with {{math|{{abs|''t''}} < 2}} and where <math>\psi</math> and <math>\gamma</math> are the [[polygamma function]] and [[Euler's constant]], respectively, as well as
 
* <math>\sum_{n=1}^\infty \frac{\zeta(2n)-1}{n}\,t^{2n} = \log\left(\dfrac{1-t^2}{\operatorname{sinc}(\pi\,t)}\right)</math>
with <math>|t|<2</math> and where <math>\psi</math> and <math>\gamma</math> are the [[polygamma function]] and [[Euler's constant]], respectively, as well as
 
*<math>\sum_{n=1}^\infty \frac{\zeta(2n)-1}{n}\,t^{2n} = \log\left(\dfrac{1-t^2}{\operatorname{sinc}(\pi\,t)}\right)</math>
 
all of which are continuous at <math>t=1</math>. Other sums include
all of which are continuous at <math>t=1</math>. Other sums include
 
* <math>\sum_{n=2}^\infty\frac{\zeta(n)-1}{n} = 1-\gamma</math>
*<math>\sum_{n=2}^\infty\frac{\zeta(n)-1}{n} = 1-\gamma</math>
* <math>\sum_{n=1}^\infty\frac{\zeta(2n)-1}{n} = \ln 2</math>
*<math>\sum_{n=1}^\infty\frac{\zeta(2n)-1}{n} = \ln 2</math>
* <math>\sum_{n=2}^\infty\frac{\zeta(n)-1}{n} \left(\left(\tfrac{3}{2}\right)^{n-1}-1\right) = \frac{1}{3} \ln \pi</math>
*<math>\sum_{n=2}^\infty\frac{\zeta(n)-1}{n} \left(\left(\tfrac{3}{2}\right)^{n-1}-1\right) = \frac{1}{3} \ln \pi</math>
* <math>\sum_{n=1}^\infty\bigl(\zeta(4n)-1\bigr) = \frac78-\frac{\pi}{4}\left(\frac{e^{2\pi}+1}{e^{2\pi}-1}\right)</math>
*<math>\sum_{n=1}^\infty\bigl(\zeta(4n)-1\bigr) = \frac78-\frac{\pi}{4}\left(\frac{e^{2\pi}+1}{e^{2\pi}-1}\right).</math>
* <math>\sum_{n=2}^\infty\frac{\zeta(n)-1}{n}\Im \bigl((1+i)^n-1-i^n\bigr) = \frac{\pi}{4}</math>
*<math>\sum_{n=2}^\infty\frac{\zeta(n)-1}{n}\Im \bigl((1+i)^n-1-i^n\bigr) = \frac{\pi}{4}</math>
 
where <math>\Im</math> denotes the [[imaginary part]] of a complex number.
where <math>\Im</math> denotes the [[imaginary part]] of a complex number.


Another interesting series that relates to the [[natural logarithm]] of the [[lemniscate constant]] is the following
Another interesting series that relates to the [[natural logarithm]] of the [[lemniscate constant]] is the following
 
* <math>\sum_{n=2}^\infty\left[\frac{2(-1)^n\zeta(n)}{4^n n}-\frac{(-1)^n\zeta(n)}{2^n n} \right]= \ln \left( \frac{\varpi}{2\sqrt2} \right)
*<math>\sum_{n=2}^\infty\left[\frac{2(-1)^n\zeta(n)}{4^n n}-\frac{(-1)^n\zeta(n)}{2^n n} \right]= \ln \left( \frac{\varpi}{2\sqrt2} \right)
</math>
</math>


There are yet more formulas in the article [[Harmonic number#Relation to the Riemann zeta function|Harmonic number.]]
There are yet more formulas in the article [[Harmonic number#Relation to the Riemann zeta function|Harmonic number.]]


==Generalizations==<!-- This section is linked from [[Power law]] -->
== Generalizations ==
<!-- This section is linked from [[Power law]] -->
There are a number of related [[zeta function]]s that can be considered to be generalizations of the Riemann zeta function. These include the [[Hurwitz zeta function]]
There are a number of related [[zeta function]]s that can be considered to be generalizations of the Riemann zeta function. These include the [[Hurwitz zeta function]]
 
: <math>\zeta(s,q) = \sum_{k=0}^\infty \frac{1}{(k+q)^s}</math>
:<math>\zeta(s,q) = \sum_{k=0}^\infty \frac{1}{(k+q)^s}</math>
(the convergent series representation was given by [[Helmut Hasse]] in 1930,<ref name = Hasse1930>{{cite journal |first=Helmut |last=Hasse |author-link=Helmut Hasse |title=Ein Summierungsverfahren für die Riemannsche ''ζ''-Reihe |trans-title=A summation method for the Riemann ''ζ'' series |year=1930 |journal=[[Mathematische Zeitschrift]] |volume=32 |issue=1 |pages=458–464 |doi=10.1007/BF01194645 |s2cid=120392534 |language=de}}</ref> cf. [[Hurwitz zeta function]]), which coincides with the Riemann zeta function when {{math|''q'' {{=}} 1}} (the lower limit of summation in the Hurwitz zeta function is {{math|0}}, not {{math|1}}), the [[Dirichlet L-function|Dirichlet {{math|''L''}}-functions]] and the [[Dedekind zeta function]]. For other related functions see the articles [[zeta function]] and [[L-function|{{math|''L''}}-function]].
(the convergent series representation was given by [[Helmut Hasse]] in 1930,<ref name = Hasse1930>{{Cite journal |first=Helmut |last=Hasse |author-link=Helmut Hasse |title=Ein Summierungsverfahren für die Riemannsche {{mvar|ζ}}-Reihe |trans-title=A summation method for the Riemann ζ series |year=1930 |journal=[[Mathematische Zeitschrift]] |volume=32 |issue=1 |pages=458–464 |doi=10.1007/BF01194645 |s2cid=120392534 |language=de}}</ref> cf. [[Hurwitz zeta function]]), which coincides with the Riemann zeta function when {{math|''q'' {{=}} 1}} (the lower limit of summation in the Hurwitz zeta function is 0, not 1), the [[Dirichlet L-function|Dirichlet {{mvar|L}}-functions]] and the [[Dedekind zeta function]]. For other related functions see the articles [[zeta function]] and [[L-function|{{mvar|L}}-function]].


The [[polylogarithm]] is given by
The [[polylogarithm]] is given by
 
: <math>\operatorname{Li}_s(z) = \sum_{k=1}^\infty \frac{z^k}{k^s}</math>
:<math>\operatorname{Li}_s(z) = \sum_{k=1}^\infty \frac{z^k}{k^s}</math>
which coincides with the Riemann zeta function when {{math|1=''z'' = 1}}.
 
which coincides with the Riemann zeta function when {{math|''z'' {{=}} 1}}.
The [[Clausen function]] {{math|Cl<sub>''s''</sub>(''θ'')}} can be chosen as the real or imaginary part of {{math|Li<sub>''s''</sub>(''e''{{isup|''iθ''}})}}.
The [[Clausen function]] {{math|Cl<sub>''s''</sub>(''θ'')}} can be chosen as the real or imaginary part of {{math|Li<sub>''s''</sub>(''e''{{isup|''iθ''}})}}.


The [[Lerch transcendent]] is given by
The [[Lerch transcendent]] is given by
:<math>\Phi(z, s, q) = \sum_{k=0}^\infty\frac { z^k} {(k+q)^s}</math>
: <math>\Phi(z, s, q) = \sum_{k=0}^\infty\frac {z^k} {(k+q)^s}</math>
which coincides with the Riemann zeta function when {{math|''z'' {{=}} 1}} and {{math|''q'' {{=}} 1}} (the lower limit of summation in the Lerch transcendent is&nbsp;0, not&nbsp;1).
which coincides with the Riemann zeta function when {{math|1=''z'' = 1}} and {{math|1=''q'' = 1}} (the lower limit of summation in the Lerch transcendent is&nbsp;{{math|0}}, not&nbsp;{{math|1}}).


The [[multiple zeta functions]] are defined by
The [[multiple zeta functions]] are defined by
: <math>\zeta(s_1,s_2,\ldots,s_n) = \sum_{k_1>k_2>\cdots>k_n>0} {k_1}^{-s_1}{k_2}^{-s_2}\cdots {k_n}^{-s_n}.</math>


:<math>\zeta(s_1,s_2,\ldots,s_n) = \sum_{k_1>k_2>\cdots>k_n>0} {k_1}^{-s_1}{k_2}^{-s_2}\cdots {k_n}^{-s_n}.</math>
One can analytically continue these functions to the {{math|''n''}}-dimensional complex space. The special values taken by these functions at positive integer arguments are called [[multiple zeta values]] by number theorists and have been connected to many different branches in mathematics and physics.


One can analytically continue these functions to the {{mvar|n}}-dimensional complex space. The special values taken by these functions at positive integer arguments are called [[multiple zeta values]] by number theorists and have been connected to many different branches in mathematics and physics.
== See also ==
* [[1 + 2 + 3 + 4 + ···]]
* [[Arithmetic zeta function]]
* [[Dirichlet eta function]]
* [[Generalized Riemann hypothesis]]
* [[Lehmer pair]]
* [[Particular values of the Riemann zeta function]]
* [[Prime zeta function]]
* [[Renormalization]]
* [[Riemann–Siegel theta function]]
* [[ZetaGrid]]


==See also==
== References ==
*[[1 + 2 + 3 + 4 + ···]]
*[[Arithmetic zeta function]]
*[[Dirichlet eta function]]
*[[Generalized Riemann hypothesis]]
*[[Lehmer pair]]
*[[Particular values of the Riemann zeta function]]
*[[Prime zeta function]]
*[[Renormalization]]
*[[Riemann–Siegel theta function]]
*[[ZetaGrid]]
 
==References==
{{reflist|25em}}
{{reflist|25em}}


==Sources==
== Sources ==
{{refbegin|colwidth=25em|small=yes}}
{{refbegin|colwidth=25em|small=yes}}
* {{dlmf
* {{dlmf
Line 752: Line 672:
  | doi=10.1016/S0377-0427(00)00336-8  | doi-access=free
  | doi=10.1016/S0377-0427(00)00336-8  | doi-access=free
  | bibcode = 2000JCoAM.121..247B
  | bibcode = 2000JCoAM.121..247B
}}
}}
* {{cite journal
* {{cite journal
  | first1=Djurdje |last1= Cvijović
  | first1=Djurdje |last1= Cvijović
Line 784: Line 704:
  | last1 = Hadamard | first1 = Jacques | author-link = Jacques Hadamard
  | last1 = Hadamard | first1 = Jacques | author-link = Jacques Hadamard
  | year = 1896
  | year = 1896
  | title = Sur la distribution des zéros de la fonction {{math|''ζ''(''s'')}} et ses conséquences arithmétiques  |language=fr
  | title = Sur la distribution des zéros de la fonction ''ζ''(''s'') et ses conséquences arithmétiques  |language=fr
  | trans-title = Regarding the distribution of the zeros of the function {{math|''ζ''(''s'')}} and the arithmetical consequences
  | trans-title = Regarding the distribution of the zeros of the function ''ζ''(''s'') and the arithmetical consequences
  | journal = Bulletin de la Société Mathématique de France
  | journal = Bulletin de la Société Mathématique de France
  | volume = 14 | pages = 199–220
  | volume = 14 | pages = 199–220
Line 800: Line 720:
  |first = Helmut |last = Hasse  |author-link = Helmut Hasse
  |first = Helmut |last = Hasse  |author-link = Helmut Hasse
  |year=1930
  |year=1930
  |title=Ein Summierungsverfahren für die Riemannsche {{mvar|ζ}}-Reihe  |language=de
  |title=Ein Summierungsverfahren für die Riemannsche ''ζ''-Reihe  |language=de
  |trans-title=A summation method for the Riemann {{mvar|ζ}} series
  |trans-title=A summation method for the Riemann ''ζ'' series
  |journal=Math. Z.
  |journal=Math. Z.
  |volume=32  |pages=458–464
  |volume=32  |pages=458–464
Line 819: Line 739:
  | title=Spectral Theory of the Riemann Zeta-Function
  | title=Spectral Theory of the Riemann Zeta-Function
  | publisher= Cambridge University Press
  | publisher= Cambridge University Press
  | isbn=0521445205
  | isbn=0-521-44520-5
}}
}}
* {{cite book
* {{cite book
Line 846: Line 766:
  | publisher=Springer-Verlag
  | publisher=Springer-Verlag
  | isbn=0-387-98308-2
  | isbn=0-387-98308-2
  |at=Ch. 6}}
  |at=Ch. 6
}}
* {{cite journal
* {{cite journal
  |first1=Guo |last1=Raoh
  |first1=Guo |last1=Raoh
Line 865: Line 786:
}} Also available in {{cite book
}} Also available in {{cite book
  |first=Bernhard  |last=Riemann |author-link=Bernhard Riemann
  |first=Bernhard  |last=Riemann |author-link=Bernhard Riemann
  |orig-year=1892  |year=1953
  |orig-date=1892  |year=1953
  |title=Gesammelte Werke |language=de
  |title=Gesammelte Werke |language=de
  |trans-title=Collected Works
  |trans-title=Collected Works
Line 909: Line 830:
{{refend}}
{{refend}}


==External links==
== External links ==
*{{Commons category-inline}}
*{{Commons category-inline}}
* {{springer|title=Zeta-function|id=p/z099260|mode=cs1}}
* {{springer|title=Zeta-function|id=p/z099260|mode=cs1}}
Line 918: Line 839:
* [http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/Zeta/ Formulas and identities for the Riemann Zeta function] functions.wolfram.com
* [http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/Zeta/ Formulas and identities for the Riemann Zeta function] functions.wolfram.com
* [http://www.math.sfu.ca/~cbm/aands/page_807.htm Riemann Zeta Function and Other Sums of Reciprocal Powers], section 23.2 of [[Abramowitz and Stegun]]
* [http://www.math.sfu.ca/~cbm/aands/page_807.htm Riemann Zeta Function and Other Sums of Reciprocal Powers], section 23.2 of [[Abramowitz and Stegun]]
* {{cite web|last=Frenkel|first=Edward|author-link=Edward Frenkel|title=Million Dollar Math Problem|url=https://www.youtube.com/watch?v=d6c6uIyieoo |archive-url=https://ghostarchive.org/varchive/youtube/20211211/d6c6uIyieoo| archive-date=2021-12-11 |url-status=live|publisher=[[Brady Haran]]|access-date=11 March 2014|format=video}}{{cbignore}}
* {{cite web|last=Frenkel|first=Edward|author-link=Edward Frenkel|title=Million Dollar Math Problem|date=11 March 2014 |url=https://www.youtube.com/watch?v=d6c6uIyieoo |archive-url=https://ghostarchive.org/varchive/youtube/20211211/d6c6uIyieoo| archive-date=2021-12-11 |url-status=live|publisher=[[Brady Haran]]|access-date=11 March 2014|format=video}}{{cbignore}}
* [https://combinatorialsums.risc.jku.at/papers/rfeq.pdf Mellin transform and the functional equation of the Riemann Zeta function]—Computational examples of Mellin transform methods involving the Riemann Zeta Function
* [https://combinatorialsums.risc.jku.at/papers/rfeq.pdf Mellin transform and the functional equation of the Riemann Zeta function]—Computational examples of Mellin transform methods involving the Riemann Zeta Function
* [https://www.youtube.com/watch?v=sD0NjbwqlYw Visualizing the Riemann zeta function and analytic continuation] a video from [[3Blue1Brown]]
* [https://www.youtube.com/watch?v=sD0NjbwqlYw Visualizing the Riemann zeta function and analytic continuation] a video from [[3Blue1Brown]]

Latest revision as of 22:42, 9 November 2025

Template:Short description

File:Cplot zeta.svg
The Riemann zeta function Template:Math plotted with domain coloring[1]
File:Riemann-Zeta-Detail.png
The pole at Template:Math and two zeros on the critical line

The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter Template:Math (zeta), is a mathematical function of a complex variable defined as ζ(s)=n=11ns=11s+12s+13s+ for Template:Math, and its analytic continuation elsewhere.[2]

The Riemann zeta function plays a pivotal role in analytic number theory and has applications in physics, probability theory, and applied statistics.

Leonhard Euler first introduced and studied the function over the reals in the first half of the eighteenth century. Bernhard Riemann's 1859 article "On the Number of Primes Less Than a Given Magnitude" extended the Euler definition to a complex variable, proved its meromorphic continuation and functional equation, and established a relation between its zeros and the distribution of prime numbers. This paper also contained the Riemann hypothesis, a conjecture about the distribution of complex zeros of the Riemann zeta function that many mathematicians consider the most important unsolved problem in pure mathematics.[3]

The values of the Riemann zeta function at even positive integers were computed by Euler. The first of them, Template:Math, provides a solution to the Basel problem. In 1979 Roger Apéry proved the irrationality of [[Apéry's constant|Template:Math]]. The values at negative integer points, also found by Euler, are rational numbers and play an important role in the theory of modular forms. Many generalizations of the Riemann zeta function, such as Dirichlet series, [[Dirichlet L-function|Dirichlet Template:Math-functions]] and [[L-function|Template:Math-functions]], are known.

Definition

File:Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse.pdf
Bernhard Riemann's article On the number of primes below a given magnitude

The Riemann zeta function Template:Math is a function of a complex variable Template:Math, where Template:Math and Template:Math are real numbers. (The notation Template:Math, Template:Math, and Template:Math is used traditionally in the study of the zeta function, following Riemann.) When Template:Math, the function can be written as a converging summation or as an integral:

ζ(s)=n=11ns=1Γ(s)0xs1ex1dx,

where

Γ(s)=0xs1exdx

is the gamma function. The Riemann zeta function is defined for other complex values via analytic continuation of the function defined for Template:Math.

Leonhard Euler considered the above series in 1740 for positive integer values of Template:Math, and later Chebyshev extended the definition to Template:Math.[4]

The above series is a prototypical Dirichlet series that converges absolutely to an analytic function for Template:Math such that Template:Math and diverges for all other values of Template:Math. Riemann showed that the function defined by the series on the half-plane of convergence can be continued analytically to all complex values Template:Math. For Template:Math, the series is the harmonic series which diverges to Template:Math, and lims1(s1)ζ(s)=1. Thus the Riemann zeta function is a meromorphic function on the whole complex plane, which is holomorphic everywhere except for a simple pole at Template:Math with residue Template:Math.

Euler's product formula

In 1737, the connection between the zeta function and prime numbers was discovered by Euler, who proved the identity

n=11ns=p prime11ps,

where, by definition, the left hand side is Template:Math and the infinite product on the right hand side extends over all prime numbers Template:Math (such expressions are called Euler products):

p prime11ps=112s113s115s117s1111s11ps

Both sides of the Euler product formula converge for Template:Math. The proof of Euler's identity uses only the formula for the geometric series and the fundamental theorem of arithmetic. Since the harmonic series, obtained when Template:Math, diverges, Euler's formula (which becomes Template:Math) implies that there are infinitely many primes.[5] Since the logarithm of Template:Math is approximately Template:Math, the formula can also be used to prove the stronger result that the sum of the reciprocals of the primes is infinite. On the other hand, combining that with the sieve of Eratosthenes shows that the density of the set of primes within the set of positive integers is zero.

The Euler product formula can be used to calculate the asymptotic probability that Template:Math randomly selected integers within a bound are set-wise coprime. Intuitively, the probability that any single number is divisible by a prime (or any integer) Template:Math is Template:Math. Hence the probability that Template:Math numbers are all divisible by this prime is Template:Math, and the probability that at least one of them is not is Template:Math. Now, for distinct primes, these divisibility events are mutually independent because the candidate divisors are coprime (a number is divisible by coprime divisors Template:Math and Template:Math if and only if it is divisible by Template:Math, an event which occurs with probability Template:Math). Thus the asymptotic probability that Template:Math numbers are coprime is given by a product over all primes,[6]

p prime(11ps)=(p prime11ps)1=1ζ(s).

Riemann's functional equation

This zeta function satisfies the functional equation ζ(s)=2sπs1 sin(πs2) Γ(1s) ζ(1s) , where Template:Math is the gamma function. This is an equality of meromorphic functions valid on the whole complex plane. The equation relates values of the Riemann zeta function at the points Template:Math and Template:Math, in particular relating even positive integers with odd negative integers. Owing to the zeros of the sine function, the functional equation implies that Template:Math has a simple zero at each even negative integer Template:Math, known as the trivial zeros of Template:Math. When Template:Math is an even positive integer, the product Template:Nobr on the right is non-zero because Template:Math has a simple pole, which cancels the simple zero of the sine factor. When Template:Math is Template:Math, the zero of the sine factor is cancelled by the simple pole of Template:Math.

Template:Collapse top

A proof of the functional equation proceeds as follows: We observe that if Template:Math, then 0x12s1en2πx dx =  Γ(s2)  ns πs2 .

As a result, if Template:Math then  Γ(s2) ζ(s)  πs2  = n=1 0 xs21 en2πx dx = 0xs21n=1en2πx dx , with the inversion of the limiting processes justified by absolute convergence (hence the stricter requirement on s).

For convenience, let ψ(x) := n=1 en2πx, which is a special case of the theta function.

Because en2πx and 1xen2πx are Fourier transform pairs,[7] then, by the Poisson summation formula, we have n= en2π x = 1 x   n= e n2π x , so that  2 ψ(x)+1 = 1 x  ( 2 ψ(1x)+1 ).

Hence πs2 Γ(s2) ζ(s) = 01 xs21 ψ(x) dx+1xs21ψ(x) dx.

The right side is equivalent to 01xs21(1 x   ψ(1x)+1 2x  12 ) dx+1xs21ψ(x) dx or 1 s1 1 s +01 xs232 ψ(1 x ) dx+1 xs21 ψ(x) dx.

So πs2 Γ( s 2) ζ(s) = 1 s(s1) +1 (xs212+xs21) ψ(x) dx which is convergent for all Template:Math, because Template:Math more quickly than any power of Template:Math for Template:Math, so the integral converges. As the RHS remains the same if Template:Math is replaced by Template:Math,  Γ( s2 ) ζ( s )  πs2   =  Γ( 12s2 ) ζ( 1s )  π12s2  which is the functional equation attributed to Bernhard Riemann.[8]

The functional equation above can be obtained using both the reflection formula and the duplication formula.

First collect terms of Template:Math: Γ(s2)ζ(s)=Γ(12s2)ζ(1s)πs12

Then multiply both sides by Template:Math and use the reflection formula: Γ(1s2)Γ(s2)ζ(s)=Γ(1s2)Γ(12s2)ζ(1s)πs12

ζ(s)=sin(πs2)Γ(1s2)Γ(12s2)ζ(1s)πs32

Use the duplication formula with Template:Math ζ(s)=sin(πs2)211+sπΓ(1s)ζ(1s)πs32 so that ζ(s)=sin(πs2)2sΓ(1s)ζ(1s)πs1

Template:Collapse bottom

The functional equation was established by Riemann in his 1859 paper "On the Number of Primes Less Than a Given Magnitude" and used to construct the analytic continuation in the first place.

Riemann's xi function

Script error: No such module "Labelled list hatnote".

Riemann also found a symmetric version of the functional equation by setting ξ(s)=s(s1)2×πs2Γ(s2)ζ(s)=(s1)πs2Γ(s2+1)ζ(s) that satisfies: ξ(s)=ξ(1s).

Returning to the functional equation's derivation in the previous section, we have ξ(s)=12+s(s1)21(xs212+xs21)ψ(x)dx

Using integration by parts, ξ(s)=12[(sx1s2+(1s)xs2)ψ(x)]1+1(sx1s2+(1s)xs2)ψ(x)dx ξ(s)=12+ψ(1)+1(sx1s2+(1s)xs2)ψ(x)dx

Using integration by parts again with a factorization of Template:Math, ξ(s)=12+ψ(1)2[x32ψ(x)(xs12+xs2)]1+21(xs12+xs2)ddx[x32ψ(x)]dx ξ(s)=12+ψ(1)+4ψ(1)+21ddx[x32ψ(x)](xs12+xs2)dx

As 12+ψ(1)+4ψ(1)=0, ξ(s)=21ddx[x32ψ(x)](xs12+xs2)dx

Remove a factor of Template:Math to make the exponents in the remainder opposites. ξ(s)=21ddx[x32ψ(x)]x14(xs1/22+x1/2s2)dx

Using the hyperbolic functions, namely Template:Math, and letting Template:Math gives ξ(s)=41ddx[x32ψ(x)]x14cos(t2logx)dx and by separating the integral and using the power series for Template:Math, ξ(s)=n=0a2nt2n which led Riemann to his famous hypothesis.

Zeros, the critical line, and the Riemann hypothesis

Script error: No such module "Labelled list hatnote".

File:Zero-free region for the Riemann zeta-function.svg
The Riemann zeta function has no zeros to the right of Template:Math or (apart from the trivial zeros) to the left of Template:Math (nor can the zeros lie too close to those lines). Furthermore, the non-trivial zeros are symmetric about the real axis and the line Template:Math and, according to the Riemann hypothesis, they all lie on the line Template:Math.
File:Zeta polar.svg
This image shows a plot of the Riemann zeta function along the critical line for real values of Template:Math running from 0 to 34. The first five zeros in the critical strip are clearly visible as the place where the spirals pass through the origin.
File:RiemannCriticalLine.svg
The real part (red) and imaginary part (blue) of the Riemann zeta function along the critical line Template:Math. The first non-trivial zeros can be seen at Template:Math Template:Math, Template:Math and Template:Math.

The functional equation shows that the Riemann zeta function has zeros at Template:Math. These are called the trivial zeros. They are trivial in the sense that their existence is relatively easy to prove, for example, from Template:Math being Template:Math in the functional equation. The non-trivial zeros have captured far more attention because their distribution not only is far less understood but, more importantly, their study yields important results concerning prime numbers and related objects in number theory. It is known that any non-trivial zero lies in the open strip Template:Math, which is called the critical strip. The set Template:Math is called the critical line. The Riemann hypothesis, considered one of the greatest unsolved problems in mathematics, asserts that all non-trivial zeros are on the critical line. In 1989, Conrey proved that more than 40% of the non-trivial zeros of the Riemann zeta function are on the critical line.[9] This has since been improved to 41.7%.[10]

For the Riemann zeta function on the critical line, see [[Z function|Template:Math-function]].

First few nontrivial zeros[11][12]
Zero
Template:Math
Template:Math
Template:Math
Template:Math
Template:Math
Template:Math
Template:Math

Number of zeros in the critical strip

Let Template:Math be the number of zeros of Template:Math in the critical strip Template:Math, whose imaginary parts are in the interval Template:Math. Timothy Trudgian proved that, if Template:Math, then[13]

|N(T)T2πlogT2πe|0.112logT+0.278loglogT+3.385+0.2T.

Hardy–Littlewood conjectures

In 1914, G. H. Hardy proved that Template:Math has infinitely many real zeros.[14][15]

Hardy and J. E. Littlewood formulated two conjectures on the density and distance between the zeros of Template:Math on intervals of large positive real numbers. In the following, Template:Math is the total number of real zeros and Template:Math the total number of zeros of odd order of the function Template:Math lying in the interval Template:Math. Template:Numbered list These two conjectures opened up new directions in the investigation of the Riemann zeta function.

Zero-free region

The location of the Riemann zeta function's zeros is of great importance in number theory. The prime number theorem is equivalent to the fact that there are no zeros of the zeta function on the line Template:Math.[16] It is also known that zeros do not exist in certain regions slightly to the left of the line Template:Math, known as zero-free regions. For instance, Korobov[17] and Vinogradov[18] independently showed via the Vinogradov's mean-value theorem that for sufficiently large Template:Math, Template:Math for

σ1c(log|t|)2/3+ε

for any Template:Math and a number Template:Math depending on Template:Math. Asymptotically, this is the largest known zero-free region for the zeta function.

Explicit zero-free regions are also known. Platt and Trudgian[19] verified computationally that Template:Math if Template:Math and Template:Math. Mossinghoff, Trudgian and Yang proved[20] that zeta has no zeros in the region

σ115.558691log|t|

for Template:Math, which is the largest known zero-free region in the critical strip for Template:Math (for previous results see[21]). Yang[22] showed that Template:Math if

σ1loglog|t|21.233log|t| and |t|3

which is the largest known zero-free region for Template:Math. Bellotti proved[23] (building on the work of Ford[24]) the zero-free region

σ1153.989(log|t|)2/3(loglog|t|)1/3 and |t|3.

This is the largest known zero-free region for fixed Template:Math. Bellotti also showed that for sufficiently large Template:Math, the following better result is known: Template:Math for

σ1148.0718(log|t|)2/3(loglog|t|)1/3.

The strongest result of this kind one can hope for is the truth of the Riemann hypothesis, which would have many profound consequences in the theory of numbers.

Other results

It is known that there are infinitely many zeros on the critical line. Littlewood showed that if the sequence (Template:Math) contains the imaginary parts of all zeros in the upper half-plane in ascending order, then

limn(γn+1γn)=0.

The critical line theorem asserts that a positive proportion of the nontrivial zeros lies on the critical line. (The Riemann hypothesis would imply that this proportion is Template:Math.)

In the critical strip, the zero with smallest non-negative imaginary part is Template:Math (OEISA058303). The fact that, for all complex Template:Math,

ζ(s)=ζ(s)

implies that the zeros of the Riemann zeta function are symmetric about the real axis. Combining this symmetry with the functional equation, furthermore, one sees that the non-trivial zeros are symmetric about the critical line Template:Math.

It is also known that no zeros lie on the line with real part Template:Math.

A large class of modified zeta functions exists that share the same non-trivial zeros as the Riemann zeta function, where modification means replacing the prime numbers in the Euler product by real numbers, which was shown in a result by Grosswald and Schnitzer.

Specific values

Script error: No such module "Labelled list hatnote". For any positive even integer Template:Math, ζ(2n)=|B2n|(2π)2n2(2n)!, where Template:Math is the Template:Mathth Bernoulli number. For odd positive integers, no such simple expression is known, although these values are thought to be related to the algebraic Template:Math-theory of the integers; see [[Special values of L-functions|Special values of Template:Math-functions]].

For nonpositive integers, one has ζ(n)=Bn+1n+1 for Template:Math (using the convention that Template:Math). In particular, Template:Math vanishes at the negative even integers because Template:Math for all odd Template:Math other than Template:Math. These are the so-called "trivial zeros" of the zeta function.

Via analytic continuation, one can show that ζ(1)=112 This gives a pretext for assigning a finite value to the divergent series Template:Math, which has been used in certain contexts (Ramanujan summation) such as string theory.[25] Analogously, the particular value ζ(0)=12 can be viewed as assigning a finite result to the divergent series Template:Math.

The value ζ(12)=1.46035450880958681288 is employed in calculating kinetic boundary layer problems of linear kinetic equations.[26][27]

Although ζ(1)=1+12+13+ diverges, its Cauchy principal value limε0ζ(1+ε)+ζ(1ε)2 exists and is equal to the Euler–Mascheroni constant Template:Math.[28]

The demonstration of the particular value ζ(2)=1+122+132+=π26 is known as the Basel problem. The reciprocal of this sum answers the question: 'What is the probability that two numbers selected from a uniform distribution from Template:Math to Template:Math] are coprime as Template:Math?'[29] The value ζ(3)=1+123+133+=1.202056903159594285399... is Apéry's constant.

Taking the limit Template:Math through the real numbers, one obtains Template:Math. But at complex infinity on the Riemann sphere the zeta function has an essential singularity.[2]

Various properties

For sums involving the zeta function at integer and half-integer values, see rational zeta series.

Reciprocal

The reciprocal of the zeta function may be expressed as a Dirichlet series over the Möbius function Template:Math:

1ζ(s)=n=1μ(n)ns

for every complex number Template:Math with real part greater than Template:Math. There are a number of similar relations involving various well-known multiplicative functions; these are given in the article on the Dirichlet series.

The Riemann hypothesis is equivalent to the claim that this expression is valid when the real part of Template:Math is greater than Template:Math.

Universality

The critical strip of the Riemann zeta function has the remarkable property of universality. This zeta function universality states that there exists some location on the critical strip that approximates any holomorphic function arbitrarily well. Since holomorphic functions are very general, this property is quite remarkable. The first proof of universality was provided by Sergei Mikhailovitch Voronin in 1975.[30] More recent work has included effective versions of Voronin's theorem[31] and extending it to [[Dirichlet L-function|Dirichlet Template:Math-function]]s.[32][33]

Estimates of the maximum of the modulus of the zeta function

Let the functions Template:Math and Template:Math be defined by the equalities

F(T;H)=max|tT|H|ζ(12+it)|,G(s0;Δ)=max|ss0|Δ|ζ(s)|.

Here Template:Math is a sufficiently large positive number, Template:Math, Template:Math, Template:Math, Template:Math. Estimating the values Template:Math and Template:Math from below shows, how large (in modulus) values Template:Math can take on short intervals of the critical line or in small neighborhoods of points lying in the critical strip Template:Math.

The case Template:Math was studied by Kanakanahalli Ramachandra; the case Template:Math, where Template:Math is a sufficiently large constant, is trivial.

Anatolii Karatsuba proved,[34][35] in particular, that if the values Template:Math and Template:Math exceed certain sufficiently small constants, then the estimates

F(T;H)Tc1,G(s0;Δ)Tc2,

hold, where Template:Math and Template:Math are certain absolute constants.

Argument of the Riemann zeta function

The function

S(t)=1πargζ(12+it)

is called the argument of the Riemann zeta function. Here Template:Math is the increment of an arbitrary continuous branch of Template:Math along the broken line joining the points Template:Math, Template:Math and Template:Math.

There are some theorems on properties of the function Template:Math. Among those results[36][37] are the mean value theorems for Template:Math and its first integral

S1(t)=0tS(u)du

on intervals of the real line, and also the theorem claiming that every interval Template:Math for

HT2782+ε

contains at least

HlnT3eclnlnT

points where the function Template:Math changes sign. Earlier similar results were obtained by Atle Selberg for the case

HT12+ε.

Representations

Dirichlet series

An extension of the area of convergence can be obtained by rearranging the original series.[38] The series

ζ(s)=1s1n=1(n(n+1)snsns)

converges for Template:Math, while

ζ(s)=1s1n=1n(n+1)2(2n+3+s(n+1)s+22n1sns+2)

converge even for Template:Math. In this way, the area of convergence can be extended to Template:Math for any negative integer Template:Math.

The recurrence connection is clearly visible from the expression valid for Template:Math enabling further expansion by integration by parts.

ζ(s)=1+1s1s2![ζ(s+1)1]s(s+1)3![ζ(s+2)1]s(s+1)(s+2)3!n=101t3dt(n+t)s+3.

This recurrence leads to this other series development that uses the rising factorial and is valid for the entire complex plane [38]

ζ(s)=ss1n=1(ζ(s+n)1)s(s+1)(s+n1)(n+1)!.

This can be used recursively to extend the Dirichlet series definition to all complex numbers.

The Riemann zeta function also appears in a form similar to the Mellin transform in an integral over the Gauss–Kuzmin–Wirsing operator acting on Template:Math; that context gives rise to a series expansion in terms of the falling factorial.[39]

Mellin-type integrals

The Mellin transform of a function Template:Math is defined as[40]

0f(x)xsdxx

in the region where the integral is defined. There are various expressions for the zeta function as Mellin transform-like integrals. If the real part of Template:Math is greater than one, we have

Γ(s)ζ(s)=0xs1ex1dx and Γ(s)ζ(s)=12s0xscosh(x)1dx,

where Template:Math denotes the gamma function. By modifying the contour, Riemann showed that

2sin(πs)Γ(s)ζ(s)=iH(x)s1ex1dx

for all Template:Math[41] (where Template:Math denotes the Hankel contour).

We can also find expressions which relate to prime numbers and the prime number theorem. If Template:Math is the prime-counting function, then

lnζ(s)=s0π(x)x(xs1)dx,

for values with Template:Math.

A similar Mellin transform involves the Riemann function Template:Math, which counts prime powers Template:Math with a weight of Template:Math, so that

J(x)=π(x1n)n.

Now

lnζ(s)=s0J(x)xs1dx.

These expressions can be used to prove the prime number theorem by means of the inverse Mellin transform. Riemann's prime-counting function is easier to work with, and Template:Math can be recovered from it by Möbius inversion.

Theta functions

The Riemann zeta function can be given by a Mellin transform[42]

2πs2Γ(s2)ζ(s)=0(θ(it)1)ts21dt,

in terms of Jacobi's theta function

θ(τ)=n=eπin2τ.

However, this integral only converges if the real part of Template:Math is greater than Template:Math, but it can be regularized. This gives the following expression for the zeta function, which is well defined for all Template:Math except Template:Math and Template:Math:

πs2Γ(s2)ζ(s)=1s11s+1201(θ(it)t12)ts21dt+121(θ(it)1)ts21dt.

Laurent series

The Riemann zeta function is meromorphic with a single pole of order one at Template:Math. It can therefore be expanded as a Laurent series about Template:Math; the series development is then[43]

ζ(s)=1s1+n=0γnn!(1s)n.

The constants Template:Math here are called the Stieltjes constants and can be defined by the limit

γn=limm((k=1m(lnk)nk)(lnm)n+1n+1).

The constant term Template:Math is the Euler–Mascheroni constant.

Integral

For all Template:Math, Template:Math, the integral relation (cf. Abel–Plana formula)

ζ(s)=1s1+12+20sin(sarctant)(1+t2)s/2(e2πt1)  dt

holds true, which may be used for a numerical evaluation of the zeta function.

Hadamard product

On the basis of Weierstrass's factorization theorem, Hadamard gave the infinite product expansion

ζ(s)=e(log(2π)1γ2)s2(s1)Γ(1+s2)ρ(1sρ)esρ,

where the product is over the non-trivial zeros Template:Math of Template:Math and the letter Template:Math again denotes the Euler–Mascheroni constant. A simpler infinite product expansion is

ζ(s)=πs2ρ(1sρ)2(s1)Γ(1+s2).

This form clearly displays the simple pole at Template:Math, the trivial zeros at Template:Math... due to the gamma function term in the denominator, and the non-trivial zeros at Template:Math. (To ensure convergence in the latter formula, the product should be taken over "matching pairs" of zeros, i.e. the factors for a pair of zeros of the form Template:Math and Template:Math should be combined.)

Globally convergent series

A globally convergent series for the zeta function, valid for all complex numbers Template:Math except Template:Math for some integer Template:Math, was conjectured by Konrad Knopp in 1926 [44] and proven by Helmut Hasse in 1930[45] (cf. Euler summation):

ζ(s)=1121sn=012n+1k=0n(nk)(1)k(k+1)s.

The series appeared in an appendix to Hasse's paper, and was published for the second time by Jonathan Sondow in 1994.[46]

Hasse also proved the globally converging series

ζ(s)=1s1n=01n+1k=0n(nk)(1)k(k+1)s1

in the same publication.[45] Research by Iaroslav Blagouchine[47][44] has found that a similar, equivalent series was published by Joseph Ser in 1926.[48]

In 1997 K. Maślanka gave another globally convergent (except Template:Math) series for the Riemann zeta function:

ζ(s)=1s1k=0(i=1k(is2))Akk!=1s1k=0(1s2)kAkk!

where real coefficients Ak are given by:

Ak=j=0k(1)j(kj)(2j+1)ζ(2j+2)=j=0k(kj)B2j+2π2j+2(2)j(12)j

Here Template:Math are the Bernoulli numbers and Template:Math denotes the Pochhammer symbol.[49][50]

Note that this representation of the zeta function is essentially an interpolation with nodes, where the nodes are points Template:Math, i.e. exactly those where the zeta values are precisely known, as Euler showed. An elegant and very short proof of this representation of the zeta function, based on Carlson's theorem, was presented by Philippe Flajolet in 2006.[51]

The asymptotic behavior of the coefficients Ak is rather curious: for growing k values, we observe regular oscillations with a nearly exponentially decreasing amplitude and slowly decreasing frequency (roughly as k2/3). Using the saddle point method, we can show that

Ak4π3/23κexp(3κ2+π24κ)cos(4π333κ2+3π24κ)

where κ stands for:

κ:=π2k3

(see [52] for details).

On the basis of this representation, in 2003 Luis Báez-Duarte provided a new criterion for the Riemann hypothesis.[53][54][55] Namely, if we define the coefficients Template:Math as

ck:=j=0k(1)j(kj)1ζ(2j+2)

then the Riemann hypothesis is equivalent to

ck=𝒪(k3/4+ε)(ε>0)

Rapidly convergent series

Peter Borwein developed an algorithm that applies Chebyshev polynomials to the Dirichlet eta function to produce a very rapidly convergent series suitable for high precision numerical calculations.[56]

Series representation at positive integers via the primorial

ζ(k)=2k2k1+r=2(pr1#)kJk(pr#)k=2,3,.

Here Template:Math is the primorial sequence and Template:Math is Jordan's totient function.[57]

Series representation by the incomplete poly-Bernoulli numbers

The function Template:Math can be represented, for Template:Math, by the infinite series

ζ(s)=n=0Bn,2(s)(Wk(1))nn!,

where Template:Math, Template:Math is the Template:Mvarth branch of the [[Lambert W function|Lambert Template:Mvar-function]], and Template:Math is an incomplete poly-Bernoulli number.[58]

Mellin transform of the Engel map

The function Template:Math is iterated to find the coefficients appearing in Engel expansions.[59]

The Mellin transform of the map g(x) is related to the Riemann zeta function by the formula

01g(x)xs1dx=n=11n+11n(x(n+1)1)xs1dx=n=1ns(s1)+(n+1)s1(n2+2n+1)+ns1sn1s(s+1)s(n+1)=ζ(s+1)s+11s(s+1)

Stochastic representations

The Brownian motion and Riemann zeta function are connected through the moment-generating functions of stochastic processes derived from the Brownian motion.[60]

Numerical algorithms

A classical algorithm, in use prior to about 1930, proceeds by applying the Euler–Maclaurin formula to obtain, for positive integers Template:Math and Template:Math,

ζ(s)=j=1n1js+12ns+n1ss1+k=1mTk,n(s)+Em,n(s)

where, letting B2k denote the indicated Bernoulli number,

Tk,n(s)=B2k(2k)!n1s2kj=02k2(s+j)

and the error satisfies

|Em,n(s)|<|s+2m+1σ+2m+1Tm+1,n(s)|,

with Template:Math.[61]

A modern numerical algorithm is the Odlyzko–Schönhage algorithm.

Applications

The zeta function occurs in applied statistics including Zipf's law, Zipf–Mandelbrot law, and Lotka's law.

Zeta function regularization is used as one possible means of regularization of divergent series and divergent integrals in quantum field theory. In one notable example, the Riemann zeta function shows up explicitly in one method of calculating the Casimir effect. The zeta function is also useful for the analysis of dynamical systems.[62]

Musical tuning

In the theory of musical tunings, the zeta function can be used to find equal divisions of the octave (EDOs) that closely approximate the intervals of the harmonic series. For increasing values of t, the value of

|ζ(12+2πiln(2)t)|

peaks near integers that correspond to such EDOs.[63] Examples include popular choices such as 12, 19, and 53.[64]

Infinite series

The zeta function evaluated at equidistant positive integers appears in infinite series representations of a number of constants.[65]

  • n=2(ζ(n)1)=1

In fact the even and odd terms give the two sums

  • n=1(ζ(2n)1)=34

and

  • n=1(ζ(2n+1)1)=14

Parametrized versions of the above sums are given by

  • n=1(ζ(2n)1)t2n=t2t21+12(1πtcot(tπ))

and

  • n=1(ζ(2n+1)1)t2n=t2t2112(ψ0(t)+ψ0(t))γ

with Template:Math and where ψ and γ are the polygamma function and Euler's constant, respectively, as well as

  • n=1ζ(2n)1nt2n=log(1t2sinc(πt))

all of which are continuous at t=1. Other sums include

  • n=2ζ(n)1n=1γ
  • n=1ζ(2n)1n=ln2
  • n=2ζ(n)1n((32)n11)=13lnπ
  • n=1(ζ(4n)1)=78π4(e2π+1e2π1)
  • n=2ζ(n)1n((1+i)n1in)=π4

where denotes the imaginary part of a complex number.

Another interesting series that relates to the natural logarithm of the lemniscate constant is the following

  • n=2[2(1)nζ(n)4nn(1)nζ(n)2nn]=ln(ϖ22)

There are yet more formulas in the article Harmonic number.

Generalizations

There are a number of related zeta functions that can be considered to be generalizations of the Riemann zeta function. These include the Hurwitz zeta function

ζ(s,q)=k=01(k+q)s

(the convergent series representation was given by Helmut Hasse in 1930,[45] cf. Hurwitz zeta function), which coincides with the Riemann zeta function when Template:Math (the lower limit of summation in the Hurwitz zeta function is Template:Math, not Template:Math), the [[Dirichlet L-function|Dirichlet Template:Math-functions]] and the Dedekind zeta function. For other related functions see the articles zeta function and [[L-function|Template:Math-function]].

The polylogarithm is given by

Lis(z)=k=1zkks

which coincides with the Riemann zeta function when Template:Math. The Clausen function Template:Math can be chosen as the real or imaginary part of Template:Math.

The Lerch transcendent is given by

Φ(z,s,q)=k=0zk(k+q)s

which coincides with the Riemann zeta function when Template:Math and Template:Math (the lower limit of summation in the Lerch transcendent is Template:Math, not Template:Math).

The multiple zeta functions are defined by

ζ(s1,s2,,sn)=k1>k2>>kn>0k1s1k2s2knsn.

One can analytically continue these functions to the Template:Math-dimensional complex space. The special values taken by these functions at positive integer arguments are called multiple zeta values by number theorists and have been connected to many different branches in mathematics and physics.

See also

References

Template:Reflist

Sources

Template:Refbegin

  • Template:Dlmf
  • Script error: No such module "Citation/CS1".
  • Script error: No such module "Citation/CS1".
  • Script error: No such module "Citation/CS1".
  • Script error: No such module "citation/CS1". Has an English translation of Riemann's paper.
  • Script error: No such module "Citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "Citation/CS1". (Globally convergent series expression.)
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "Citation/CS1".
  • Script error: No such module "Citation/CS1". Also available in Script error: No such module "citation/CS1".
  • Script error: No such module "Citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "Citation/CS1".

Template:Refend

External links

Template:Use dmy dates Template:L-functions-footer Template:Series (mathematics) Template:Bernhard Riemann Template:Authority control

  1. Script error: No such module "citation/CS1".
  2. a b Script error: No such module "Citation/CS1".
  3. Script error: No such module "citation/CS1".
  4. Script error: No such module "citation/CS1".
  5. Script error: No such module "citation/CS1".
  6. Script error: No such module "citation/CS1".
  7. Script error: No such module "citation/CS1".
  8. Script error: No such module "citation/CS1".
  9. Script error: No such module "Citation/CS1".
  10. Script error: No such module "Citation/CS1".
  11. Script error: No such module "citation/CS1".
  12. Script error: No such module "citation/CS1".
  13. Script error: No such module "Citation/CS1".
  14. Script error: No such module "Citation/CS1".
  15. Script error: No such module "Citation/CS1".
  16. Script error: No such module "Citation/CS1".
  17. Script error: No such module "Citation/CS1".
  18. Script error: No such module "Citation/CS1".
  19. Script error: No such module "Citation/CS1".
  20. Script error: No such module "Citation/CS1".
  21. Script error: No such module "Citation/CS1".
  22. Script error: No such module "Citation/CS1".
  23. Script error: No such module "Citation/CS1".
  24. Script error: No such module "Citation/CS1".
  25. Script error: No such module "citation/CS1".
  26. Script error: No such module "Citation/CS1".
  27. Further digits and references for this constant are available at OEISA059750.
  28. Script error: No such module "Citation/CS1".
  29. Script error: No such module "citation/CS1".
  30. Script error: No such module "Citation/CS1". Reprinted in Math. USSR Izv. (1975) 9: 443–445.
  31. Script error: No such module "Citation/CS1".
  32. Script error: No such module "Citation/CS1".
  33. Script error: No such module "citation/CS1".
  34. Script error: No such module "Citation/CS1".
  35. Script error: No such module "Citation/CS1".
  36. Script error: No such module "Citation/CS1".
  37. Script error: No such module "Citation/CS1".
  38. a b Script error: No such module "citation/CS1".
  39. Script error: No such module "citation/CS1".
  40. Script error: No such module "Citation/CS1". translated and reprinted in Script error: No such module "citation/CS1".
  41. Trivial exceptions of values of Template:Math that cause removable singularities are not taken into account throughout this article.
  42. Script error: No such module "citation/CS1".
  43. Script error: No such module "Citation/CS1".
  44. a b Script error: No such module "Citation/CS1".
  45. a b c Script error: No such module "Citation/CS1".
  46. Script error: No such module "Citation/CS1".
  47. Script error: No such module "Citation/CS1".
  48. Script error: No such module "Citation/CS1".
  49. Script error: No such module "Citation/CS1".
  50. Script error: No such module "Citation/CS1".
  51. Script error: No such module "Citation/CS1".
  52. Script error: No such module "Citation/CS1".
  53. Script error: No such module "Citation/CS1".
  54. Script error: No such module "Citation/CS1".
  55. Script error: No such module "Citation/CS1".
  56. Script error: No such module "citation/CS1".
  57. Script error: No such module "Citation/CS1".
  58. Script error: No such module "Citation/CS1".
  59. Script error: No such module "citation/CS1".
  60. Script error: No such module "Citation/CS1".
  61. Script error: No such module "Citation/CS1".
  62. Script error: No such module "citation/CS1".
  63. Script error: No such module "citation/CS1".
  64. Script error: No such module "citation/CS1".
  65. Most of the formulas in this section are from § 4 of J. M. Borwein et al. (2000)