Halobacteriales: Difference between revisions
imported>OAbot m Open access bot: url-access updated in citation with #oabot. |
No edit summary |
||
| Line 21: | Line 21: | ||
}} | }} | ||
'''Halobacteriales''' are an [[order (biology)|order]] of the [[Halobacteria]],<ref>See the [[National Center for Biotechnology Information|NCBI]] [https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=2235 webpage on Halobacteriales]. Data extracted from the {{cite web | url=http://ftp.ncbi.nih.gov/pub/taxonomy/ | title=NCBI taxonomy resources | publisher=[[National Center for Biotechnology Information]] | access-date=2007-03-19}}</ref> found in water saturated or nearly saturated with salt. They are also called [[halophile]]s, though this name is also used for other organisms which live in somewhat less concentrated salt water. They are common in most environments where large amounts of salt, moisture, and organic material are available. Large blooms appear reddish, from the pigment [[bacteriorhodopsin]]. This pigment is used to absorb light, which provides energy to create [[Adenosine triphosphate|ATP]]. Halobacteria also possess a second pigment, [[halorhodopsin]], which pumps in chloride ions in response to photons, creating a voltage gradient and assisting in the production of energy from light. The process is unrelated to other forms of [[photosynthesis]] involving electron transport; however, and halobacteria are incapable of [[carbon fixation|fixing carbon]] from [[carbon dioxide]]. | '''Halobacteriales''', from [[Ancient Greek]] ἅλς (''háls''), meaning "salt", and "bacterium", are an [[order (biology)|order]] of the [[Halobacteria]],<ref>See the [[National Center for Biotechnology Information|NCBI]] [https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=2235 webpage on Halobacteriales]. Data extracted from the {{cite web | url=http://ftp.ncbi.nih.gov/pub/taxonomy/ | title=NCBI taxonomy resources | publisher=[[National Center for Biotechnology Information]] | access-date=2007-03-19}}</ref> found in water saturated or nearly saturated with salt. They are also called [[halophile]]s, though this name is also used for other organisms which live in somewhat less concentrated salt water. They are common in most environments where large amounts of salt, moisture, and organic material are available. Large blooms appear reddish, from the pigment [[bacteriorhodopsin]]. This pigment is used to absorb light, which provides energy to create [[Adenosine triphosphate|ATP]]. Halobacteria also possess a second pigment, [[halorhodopsin]], which pumps in chloride ions in response to photons, creating a voltage gradient and assisting in the production of energy from light. The process is unrelated to other forms of [[photosynthesis]] involving electron transport; however, and halobacteria are incapable of [[carbon fixation|fixing carbon]] from [[carbon dioxide]]. | ||
Halobacteria can exist in salty environments because although they are [[aerobes]] they have a separate and different way of creating energy through [[photosynthesis]]. Parts of the [[biological membrane|membrane]]s of halobacteria are purplish in color. These parts conduct photosynthetic reactions with retinal [[pigment]] rather than [[chlorophyll]]. This allows them to create a [[proton gradient]] across the membrane of the cell which can be used to create [[adenosine triphosphate|ATP]] for their own use. Some species in this order are used as model organisms to study how some microorganisms can survive in hypersaline environments, understand cellular processes and to research their physiology.<ref name=":0" /> | Halobacteria can exist in salty environments because although they are [[aerobes]] they have a separate and different way of creating energy through [[photosynthesis]]. Parts of the [[biological membrane|membrane]]s of halobacteria are purplish in color. These parts conduct photosynthetic reactions with retinal [[pigment]] rather than [[chlorophyll]]. This allows them to create a [[proton gradient]] across the membrane of the cell which can be used to create [[adenosine triphosphate|ATP]] for their own use. Some species in this order are used as model organisms to study how some microorganisms can survive in hypersaline environments, understand cellular processes and to research their physiology.<ref name=":0" /> | ||
Latest revision as of 23:24, 28 June 2025
Template:Short description Template:Automatic taxobox
Halobacteriales, from Ancient Greek ἅλς (háls), meaning "salt", and "bacterium", are an order of the Halobacteria,[1] found in water saturated or nearly saturated with salt. They are also called halophiles, though this name is also used for other organisms which live in somewhat less concentrated salt water. They are common in most environments where large amounts of salt, moisture, and organic material are available. Large blooms appear reddish, from the pigment bacteriorhodopsin. This pigment is used to absorb light, which provides energy to create ATP. Halobacteria also possess a second pigment, halorhodopsin, which pumps in chloride ions in response to photons, creating a voltage gradient and assisting in the production of energy from light. The process is unrelated to other forms of photosynthesis involving electron transport; however, and halobacteria are incapable of fixing carbon from carbon dioxide.
Halobacteria can exist in salty environments because although they are aerobes they have a separate and different way of creating energy through photosynthesis. Parts of the membranes of halobacteria are purplish in color. These parts conduct photosynthetic reactions with retinal pigment rather than chlorophyll. This allows them to create a proton gradient across the membrane of the cell which can be used to create ATP for their own use. Some species in this order are used as model organisms to study how some microorganisms can survive in hypersaline environments, understand cellular processes and to research their physiology.[2]
Ecology
Habitats
Usually, Halobacteriales grow in aerobic and high salinity environments.[3] Halobacteriales have been found in salt lakes, marine salterns, seawater, solar salts and salted food products.[4] Mostly, members of the order Halobacteriales can be located in environments where concentration of salt (NaCl) exceeds 25%.[2] However, they can also survive in environments with low concentrations of salt, between 1 and 3.5%.[2] Studies show Halobacteriales can also be found in environments where sulfur reduction takes part as well as in salinity salterns, seawater black smoker, coastal salt marshes and chimney structures.[3] These results show Halobacteriales only need enough salt to prevent their lysis and thus can grow in environments with low salinity concentration.[3]
Current taxonomy
Halobacteriales was a large phylogenetically diverse lineage encompassing all Halobacteria species.[4] The wide variety of biochemical characteristics and different ecological niches of the class Haloarchaea proved to be an unreliable tool in clarifying the evolutionary relationships of Halobacteria above the genus level.[4]
In 2015, Gupta et al. proposed the division of class Halobacteria into three orders, Halobacteriales, Haloferacales and Natrialbales based on comparative genomic analyses and the branching pattern of various phylogenetic trees constructed from several different datasets of conserved proteins and 16S rRNA sequences.[5] This division greatly restricted the membership of the order Halobacteriales to include only species which were closely related to the type genus, Halobacterium.
A subsequent study examining higher taxonomic relationships within the order Halobacteriales resulted in the division of the order into three families, Halobacteriaceae, Haloarculaceae and Halococcaceae, each of which can be distinguished from each other and all other species through the presence of multiple highly specific molecular signatures, known as conserved signature indels.[6]
Phylogeny
The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN)[7] and National Center for Biotechnology Information (NCBI).[8]
| 16S rRNA based LTP_10_2024[9][10][11] | 53 marker proteins based GTDB 09-RS220[12][13][14] |
|---|---|
Note: * polyphyletic Natronoarchaeaceae
- ** polyphyletic Haloferacaceae
See also
References
Further reading
Journals
- Script error: No such module "Citation/CS1".
- Script error: No such module "Citation/CS1".
- Script error: No such module "Citation/CS1".
- Script error: No such module "Citation/CS1".
- Script error: No such module "Citation/CS1".
- Script error: No such module "Citation/CS1".
Books
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
Template:Portal bar Template:Archaea classification Template:Taxonbar
- ↑ See the NCBI webpage on Halobacteriales. Data extracted from the Script error: No such module "citation/CS1".
- ↑ a b c Script error: No such module "Citation/CS1".
- ↑ a b c Script error: No such module "Citation/CS1".
- ↑ a b c Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".