Somos' quadratic recurrence constant: Difference between revisions

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
imported>OAbot
m Open access bot: doi updated in citation with #oabot.
 
imported>OAbot
m Open access bot: url-access=subscription updated in citation with #oabot.
 
Line 56: Line 56:
:<math>\gamma(z)=\sum_{n=1}^\infty z^{n-1}\left(\frac1n  - \ln\left(\frac{n+1}{n}\right)\right)</math>
:<math>\gamma(z)=\sum_{n=1}^\infty z^{n-1}\left(\frac1n  - \ln\left(\frac{n+1}{n}\right)\right)</math>


one has:<ref>{{Cite journal |last1=Chen |first1=Chao-Ping |last2=Han |first2=Xue-Feng |date=2016-09-01 |title=On Somos' quadratic recurrence constant |url=https://www.sciencedirect.com/science/article/pii/S0022314X16300257 |journal=Journal of Number Theory |volume=166 |pages=31–40 |doi=10.1016/j.jnt.2016.02.018 |issn=0022-314X}}</ref><ref name=":2">{{Cite journal |last1=Sondow |first1=Jonathan |last2=Hadjicostas |first2=Petros |date=2007 |title=The generalized-Euler-constant function $\gamma(z)$ and a generalization of Somos's quadratic recurrence constant |journal=Journal of Mathematical Analysis and Applications |volume=332 |issue=1 |pages=292–314 |doi=10.1016/j.jmaa.2006.09.081|arxiv=math/0610499 |bibcode=2007JMAA..332..292S }}</ref><ref>{{Cite journal |last1=Pilehrood |first1=Khodabakhsh Hessami |last2=Pilehrood |first2=Tatiana Hessami |date=2007-01-01 |title=Arithmetical properties of some series with logarithmic coefficients |url=https://link.springer.com/article/10.1007/s00209-006-0015-1 |journal=Mathematische Zeitschrift |language=en |volume=255 |issue=1 |pages=117–131 |doi=10.1007/s00209-006-0015-1 |issn=1432-1823}}</ref>
one has:<ref>{{Cite journal |last1=Chen |first1=Chao-Ping |last2=Han |first2=Xue-Feng |date=2016-09-01 |title=On Somos' quadratic recurrence constant |url=https://www.sciencedirect.com/science/article/pii/S0022314X16300257 |journal=Journal of Number Theory |volume=166 |pages=31–40 |doi=10.1016/j.jnt.2016.02.018 |issn=0022-314X}}</ref><ref name=":2">{{Cite journal |last1=Sondow |first1=Jonathan |last2=Hadjicostas |first2=Petros |date=2007 |title=The generalized-Euler-constant function $\gamma(z)$ and a generalization of Somos's quadratic recurrence constant |journal=Journal of Mathematical Analysis and Applications |volume=332 |issue=1 |pages=292–314 |doi=10.1016/j.jmaa.2006.09.081|arxiv=math/0610499 |bibcode=2007JMAA..332..292S }}</ref><ref>{{Cite journal |last1=Pilehrood |first1=Khodabakhsh Hessami |last2=Pilehrood |first2=Tatiana Hessami |date=2007-01-01 |title=Arithmetical properties of some series with logarithmic coefficients |url=https://link.springer.com/article/10.1007/s00209-006-0015-1 |journal=Mathematische Zeitschrift |language=en |volume=255 |issue=1 |pages=117–131 |doi=10.1007/s00209-006-0015-1 |issn=1432-1823|url-access=subscription }}</ref>


:<math>\gamma(\tfrac12)=2\ln\frac2 \sigma</math>
:<math>\gamma(\tfrac12)=2\ln\frac2 \sigma</math>


==Universality==
==Universality==
One may define a ''"continued binary expansion"'' for all real numbers in the [[Set (mathematics)|set]] <math>(0,1]</math>, similarly to the [[decimal expansion]] or [[Simple continued fraction|simple continued fraction expansion]]. This is done by considering the unique [[Base-2|base-2 representation]] for a number <math>x\in(0,1]</math> which does not contain an infinite tail of 0's (for example write [[one half]] as <math>0.01111..._2</math> instead of <math>0.1_2</math>). Then define a [[sequence]] <math>(a_k)\sube \N</math> which gives the difference in positions of the 1's in this base-2 representation. This expansion for <math>x</math> is now given by:<ref name=":5">{{Cite journal |last=Neunhäuserer |first=Jörg |date=2011-11-01 |title=On the Hausdorff dimension of fractals given by certain expansions of real numbers |url=https://link.springer.com/article/10.1007/s00013-011-0320-8 |journal=Archiv der Mathematik |language=en |volume=97 |issue=5 |pages=459–466 |doi=10.1007/s00013-011-0320-8 |issn=1420-8938}}</ref>
One may define a ''"continued binary expansion"'' for all real numbers in the [[Set (mathematics)|set]] <math>(0,1]</math>, similarly to the [[decimal expansion]] or [[Simple continued fraction|simple continued fraction expansion]]. This is done by considering the unique [[Base-2|base-2 representation]] for a number <math>x\in(0,1]</math> which does not contain an infinite tail of 0's (for example write [[one half]] as <math>0.01111..._2</math> instead of <math>0.1_2</math>). Then define a [[sequence]] <math>(a_k)\sube \N</math> which gives the difference in positions of the 1's in this base-2 representation. This expansion for <math>x</math> is now given by:<ref name=":5">{{Cite journal |last=Neunhäuserer |first=Jörg |date=2011-11-01 |title=On the Hausdorff dimension of fractals given by certain expansions of real numbers |url=https://link.springer.com/article/10.1007/s00013-011-0320-8 |journal=Archiv der Mathematik |language=en |volume=97 |issue=5 |pages=459–466 |doi=10.1007/s00013-011-0320-8 |issn=1420-8938|url-access=subscription }}</ref>


<math>x=\langle a_1, a_2, a_3, ... \rangle</math>
<math>x=\langle a_1, a_2, a_3, ... \rangle</math>

Latest revision as of 13:30, 24 June 2025

Template:Short description In mathematical analysis and number theory, Somos' quadratic recurrence constant or simply Somos' constant is a constant defined as an expression of infinitely many nested square roots. It arises when studying the asymptotic behaviour of a certain sequence[1] and also in connection to the binary representations of real numbers between zero and one.[2] The constant named after Michael Somos. It is defined by:

σ=12345

which gives a numerical value of approximately:[3]

σ=1.661687949633594121295 (sequence A112302 in the OEIS).

Sums and products

Somos' constant can be alternatively defined via the following infinite product:

σ=k=1k1/2k=11/221/431/841/16

This can be easily rewritten into the far more quickly converging product representation

σ=(21)1/2(32)1/4(43)1/8(54)1/16

which can then be compactly represented in infinite product form by:

σ=k=1(1+1k)1/2k

Another product representation is given by:[4]

σ=n=1k=0n(k+1)(1)k+n(nk)

Expressions for lnσ (sequence A114124 in the OEIS) include:[4][5]

lnσ=k=1lnk2k
lnσ=k=1(1)k+1kLik(12)
lnσ2=k=112k(ln(1+1k)1k)

Integrals

Integrals for lnσ are given by:[4][6]

lnσ=011x(x2)lnxdx
lnσ=0101x(2xy)ln(xy)dxdy

Other formulas

The constant σ arises when studying the asymptotic behaviour of the sequence[1]

g0=1
gn=ngn12,n1

with first few terms 1, 1, 2, 12, 576, 1658880, ... (sequence A052129 in the OEIS). This sequence can be shown to have asymptotic behaviour as follows:[4]

gnσ2n(n+2n1+4n221n3+138n4+O(n5))1

Guillera and Sondow give a representation in terms of the derivative of the Lerch transcendent Φ(z,s,q):[6]

lnσ=12Φs(1/2,0,1)

If one defines the Euler-constant function (which gives Euler's constant for z=1) as:

γ(z)=n=1zn1(1nln(n+1n))

one has:[7][8][9]

γ(12)=2ln2σ

Universality

One may define a "continued binary expansion" for all real numbers in the set (0,1], similarly to the decimal expansion or simple continued fraction expansion. This is done by considering the unique base-2 representation for a number x(0,1] which does not contain an infinite tail of 0's (for example write one half as 0.01111...2 instead of 0.12). Then define a sequence (ak) which gives the difference in positions of the 1's in this base-2 representation. This expansion for x is now given by:[10]

x=a1,a2,a3,...

File:SomosConstant.png
The geometric means of the terms of Pi and e appear to tend to Somos' constant.

For example the fractional part of Pi we have:

{π}=0.141592653589793...=0.001001000011111...2 (sequence A004601 in the OEIS)

The first 1 occurs on position 3 after the radix point. The next 1 appears three places after the first one, the third 1 appears five places after the second one, etc. By continuing in this manner, we obtain:

π3=3,3,5,1,1,1,1... (sequence A320298 in the OEIS)

This gives a bijective map (0,1], such that for every real number x(0,1] we uniquely can give:[10]

x=a1,a2,a3,...:x=k=12(a1+...+ak)

It can now be proven that for almost all numbers x(0,1] the limit of the geometric mean of the terms ak converges to Somos' constant. That is, for almost all numbers in that interval we have:[2]

σ=limna1a2...ann

Somos' constant is universal for the "continued binary expansion" of numbers x(0,1] in the same sense that Khinchin's constant is universal for the simple continued fraction expansions of numbers x.

Generalizations

The generalized Somos' constants may be given by:

σt=k=1k1/tk=11/t21/t231/t341/t4

for t>1.

The following series holds:

lnσt=k=1lnktk

We also have a connection to the Euler-constant function:[8]

γ(1t)=tln(t(t1)σtt1)

and the following limit, where γ is Euler's constant:

limt0+tσt+1t=eγ

See also

References

Template:Reflist

  1. a b Script error: No such module "citation/CS1".
  2. a b Script error: No such module "citation/CS1".
  3. Script error: No such module "Citation/CS1".
  4. a b c d Script error: No such module "Template wrapper".
  5. Script error: No such module "Citation/CS1".
  6. a b Script error: No such module "Citation/CS1".
  7. Script error: No such module "Citation/CS1".
  8. a b Script error: No such module "Citation/CS1".
  9. Script error: No such module "Citation/CS1".
  10. a b Script error: No such module "Citation/CS1".