Hermite polynomials: Difference between revisions

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
imported>OAbot
m Open access bot: url-access updated in citation with #oabot.
 
Line 28: Line 28:
<math display="block">H_n(x)=2^\frac{n}{2} \operatorname{He}_n\left(\sqrt{2} \,x\right), \quad \operatorname{He}_n(x)=2^{-\frac{n}{2}} H_n\left(\frac {x}{\sqrt 2} \right).</math>
<math display="block">H_n(x)=2^\frac{n}{2} \operatorname{He}_n\left(\sqrt{2} \,x\right), \quad \operatorname{He}_n(x)=2^{-\frac{n}{2}} H_n\left(\frac {x}{\sqrt 2} \right).</math>


These are Hermite polynomial sequences of different variances; see the material on variances below.
These are Hermite polynomial sequences of different variances; see [[#Variance|the material on variances below]].


The notation {{mvar|He}} and {{mvar|H}} is that used in the standard references.<ref>{{harvs|txt|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek|first4=René F. |last4=Swarttouw|year=2010}} and [[Abramowitz & Stegun]].</ref>
The notation <math>\operatorname{He}</math> and <math>H</math> is that used in the standard references.<ref>{{harvs|txt|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek|first4=René F. |last4=Swarttouw|year=2010}} and [[Abramowitz & Stegun]].</ref>
The polynomials {{mvar|He<sub>n</sub>}} are sometimes denoted by {{mvar|H<sub>n</sub>}}, especially in probability theory, because
The polynomials <math>\operatorname{He}_n</math> are sometimes denoted by <math>H_n</math>, especially in probability theory, because
<math display="block">\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}</math>
<math display="block">\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}</math>
is the [[probability density function]] for the [[normal distribution]] with [[expected value]] 0 and [[standard deviation]] 1.
is the [[probability density function]] for the [[normal distribution]] with [[expected value]] 0 and [[standard deviation]] 1. The probabilist's Hermite polynomials are also called the '''monic Hermite polynomials''', because they are [[Monic polynomial|monic]].
* The first eleven probabilist's Hermite polynomials are: <math display="block">\begin{align}
* The first eleven probabilist's Hermite polynomials are: <math display="block">\begin{align}
\operatorname{He}_0(x) &= 1, \\
\operatorname{He}_0(x) &= 1, \\
Line 106: Line 106:
|-
|-
|inner product
|inner product
|<math>\int H_m(x) H_n(x) \frac{e^{-x^2}}{\sqrt{\pi}}dx = 2^n  n! \delta_{mn}</math>
|<math>\int H_m(x) H_n(x) \frac{e^{-x^2}}{\sqrt{\pi}}dx = 2^n  n!\, \delta_{mn}</math>
|<math>\int \operatorname{He}_m(x) \operatorname{He}_n(x)\, \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} \,dx = n!\, \delta_{nm}, </math>
|<math>\int \operatorname{He}_m(x) \operatorname{He}_n(x)\, \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} \,dx = n!\, \delta_{nm}  </math>
|-
|-
|generating function
|generating function
Line 130: Line 130:


===Symmetry===
===Symmetry===
From the Rodrigues formulae given above, we can see that {{math|''H<sub>n</sub>''(''x'')}} and {{math|''He<sub>n</sub>''(''x'')}} are [[Even and odd functions|even or odd functions]] depending on {{mvar|n}}:
From the Rodrigues formulae given above, we can see that {{math|''H<sub>n</sub>''(''x'')}} and {{math|''He<sub>n</sub>''(''x'')}} are [[Even and odd functions|even or odd functions]], with the same [[Parity (mathematics)|parity]] as {{mvar|n}}:
<math display="block">H_n(-x)=(-1)^nH_n(x),\quad \operatorname{He}_n(-x)=(-1)^n\operatorname{He}_n(x).</math>
<math display="block">H_n(-x)=(-1)^nH_n(x),\quad \operatorname{He}_n(-x)=(-1)^n\operatorname{He}_n(x).</math>


Line 170: Line 170:


===Hermite's differential equation===
===Hermite's differential equation===
The probabilist's Hermite polynomials are solutions of the [[differential equation]]
The probabilist's Hermite polynomials are solutions of the [[Sturm–Liouville theory|Sturm–Liouville]] [[differential equation]]
<math display="block">\left(e^{-\frac12 x^2}u'\right)' + \lambda e^{-\frac 1 2 x^2}u = 0,</math>
<math display="block">\left(e^{-\frac12 x^2}u'\right)' + \lambda e^{-\frac 1 2 x^2}u = 0,</math>
where {{mvar|λ}} is a constant. Imposing the boundary condition that {{mvar|u}} should be polynomially bounded at infinity, the equation has solutions only if {{mvar|λ}} is a non-negative integer, and the solution is uniquely given by <math>u(x) = C_1 \operatorname{He}_\lambda(x) </math>, where <math>C_{1}</math> denotes a constant.
where {{mvar|λ}} is a constant. Imposing the boundary condition that {{mvar|u}} should be polynomially bounded at infinity, the equation has solutions only if {{mvar|λ}} is a non-negative integer, and the solution is uniquely given by <math>u(x) = C_1 \operatorname{He}_\lambda(x) </math>, where <math>C_{1}</math> denotes a constant.
Line 317: Line 317:


=== Other properties ===
=== Other properties ===
The [[discriminant]] is expressed as a [[hyperfactorial]]:<ref name=":3">{{Cite web |title=DLMF: §18.16 Zeros ‣ Classical Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials |url=https://dlmf.nist.gov/18.16 |access-date=2025-07-12 |website=dlmf.nist.gov}}</ref>
<math display="block">\begin{aligned}
\operatorname{Disc}(H_n) &= 2^{\frac{3}{2} n(n-1)} \prod_{j=1}^n j^j \\
\operatorname{Disc}(\operatorname{He}_n) &= \prod_{j=1}^n j^j
\end{aligned}
</math>
The addition theorem, or the summation theorem, states that<ref name=":1">{{Cite web |title=DLMF: §18.18 Sums ‣ Classical Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials |url=https://dlmf.nist.gov/18.18 |access-date=2025-03-18 |website=dlmf.nist.gov}}</ref><ref>{{Cite book |last1=Gradshteĭn |first1=I. S. |title=Table of integrals, series, and products |last2=Zwillinger |first2=Daniel |date=2015 |publisher=Elsevier, Academic Press is an imprint of Elsevier |isbn=978-0-12-384933-5 |edition=8 |location=Amsterdam ; Boston}}</ref>{{Pg|location=8.958}}<math display="block">\frac{\left(\sum_{k=1}^r a_k^2\right)^{\frac{n}{2}}}{n!} H_n\left(\frac{\sum_{k=1}^r a_k x_k}{\sqrt{\sum_{k=1}^r a_k^2}}\right)=\sum_{m_1+m_2+\ldots+m_r=n, m_i \geq 0} \prod_{k=1}^r\left\{\frac{a_k^{m_k}}{m_{k}!} H_{m_k}\left(x_k\right)\right\}  </math>for any nonzero vector <math>a_{1:r}</math>.
The addition theorem, or the summation theorem, states that<ref name=":1">{{Cite web |title=DLMF: §18.18 Sums ‣ Classical Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials |url=https://dlmf.nist.gov/18.18 |access-date=2025-03-18 |website=dlmf.nist.gov}}</ref><ref>{{Cite book |last1=Gradshteĭn |first1=I. S. |title=Table of integrals, series, and products |last2=Zwillinger |first2=Daniel |date=2015 |publisher=Elsevier, Academic Press is an imprint of Elsevier |isbn=978-0-12-384933-5 |edition=8 |location=Amsterdam ; Boston}}</ref>{{Pg|location=8.958}}<math display="block">\frac{\left(\sum_{k=1}^r a_k^2\right)^{\frac{n}{2}}}{n!} H_n\left(\frac{\sum_{k=1}^r a_k x_k}{\sqrt{\sum_{k=1}^r a_k^2}}\right)=\sum_{m_1+m_2+\ldots+m_r=n, m_i \geq 0} \prod_{k=1}^r\left\{\frac{a_k^{m_k}}{m_{k}!} H_{m_k}\left(x_k\right)\right\}  </math>for any nonzero vector <math>a_{1:r}</math>.


Line 327: Line 335:
\end{aligned}</math>where <math>a \in \mathbb C</math> has a positive real part. As a special case,<ref name=":2" />{{Pg|location=Eq 52}}<math display="block">\frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-t^2} H_m(t \sin \theta+v \cos \theta) H_n(t \cos \theta-v \sin \theta) d t =(-1)^n \cos ^m \theta \sin ^n \theta H_{m+n}(v)</math>
\end{aligned}</math>where <math>a \in \mathbb C</math> has a positive real part. As a special case,<ref name=":2" />{{Pg|location=Eq 52}}<math display="block">\frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} e^{-t^2} H_m(t \sin \theta+v \cos \theta) H_n(t \cos \theta-v \sin \theta) d t =(-1)^n \cos ^m \theta \sin ^n \theta H_{m+n}(v)</math>


===Asymptotic expansion===
===Asymptotics===
Asymptotically, as {{math|''n'' → ∞}}, the expansion<ref>{{harvnb|Abramowitz|Stegun|1983|page=508–510}}, [http://www.math.sfu.ca/~cbm/aands/page_508.htm 13.6.38 and 13.5.16].</ref>
As {{math|''n'' → ∞}},<ref>{{harvnb|Abramowitz|Stegun|1983|page=508–510}}, [http://www.math.sfu.ca/~cbm/aands/page_508.htm 13.6.38 and 13.5.16].</ref>
<math display="block">e^{-\frac{x^2}{2}}\cdot H_n(x) \sim \frac{2^n}{\sqrt \pi}\Gamma\left(\frac{n+1}2\right) \cos \left(x \sqrt{2 n}- \frac{n\pi}{2} \right)</math>  
<math display="block">e^{-\frac{x^2}{2}}\cdot H_n(x) \sim \frac{2^n}{\sqrt \pi}\Gamma\left(\frac{n+1}2\right) \cos \left(x \sqrt{2 n}- \frac{n\pi}{2} \right)</math>For certain cases concerning a wider range of evaluation, it is necessary to include a factor for changing amplitude:
holds true. For certain cases concerning a wider range of evaluation, it is necessary to include a factor for changing amplitude:
<math display="block">e^{-\frac{x^2}{2}}\cdot H_n(x) \sim \frac{2^n}{\sqrt \pi}\Gamma\left(\frac{n+1}2\right) \cos \left(x \sqrt{2 n}- \frac{n\pi}{2} \right)\left(1-\frac{x^2}{2n+1}\right)^{-\frac14}=\frac{\Gamma(n+1)}{\Gamma\left(\frac{n}{2} +1\right)} \cos \left(x \sqrt{2 n}- \frac{n\pi}{2} \right)\left(1-\frac{x^2}{2n+1}\right)^{-\frac14},</math>
<math display="block">e^{-\frac{x^2}{2}}\cdot H_n(x) \sim \frac{2^n}{\sqrt \pi}\Gamma\left(\frac{n+1}2\right) \cos \left(x \sqrt{2 n}- \frac{n\pi}{2} \right)\left(1-\frac{x^2}{2n+1}\right)^{-\frac14}=\frac{\Gamma(n+1)}{\Gamma\left(\frac{n}{2} +1\right)} \cos \left(x \sqrt{2 n}- \frac{n\pi}{2} \right)\left(1-\frac{x^2}{2n+1}\right)^{-\frac14},</math>
which, using [[Stirling's approximation]], can be further simplified, in the limit, to
which, using [[Stirling's approximation]], can be further simplified, in the limit, to
<math display="block">e^{-\frac{x^2}{2}}\cdot H_n(x) \sim \left(\frac{2n}{e}\right)^{\frac{n}{2}} \sqrt{2} \cos \left(x \sqrt{2n}- \frac{n\pi}{2} \right)\left(1-\frac{x^2}{2n+1}\right)^{-\frac14}.</math>
<math display="block">e^{-\frac{x^2}{2}}\cdot H_n(x) \sim \left(\frac{2n}{e}\right)^{\frac{n}{2}} \sqrt{2} \cos \left(x \sqrt{2n}- \frac{n\pi}{2} \right)\left(1-\frac{x^2}{2n+1}\right)^{-\frac14}.</math>This expansion is needed to resolve the [[wavefunction]] of a [[quantum harmonic oscillator]] such that it agrees with the classical approximation in the limit of the [[correspondence principle]]. The term <math>\left(1-\frac{x^2}{2n+1}\right)^{-\frac12}</math> corresponds to the probability of finding a classical particle in a potential well of shape <math>V(x) = \frac 12 x^2</math> at location <math>x</math>, if its total energy is <math>n + \frac 12</math>. This is a general method in [[Semiclassical physics|semiclassical analysis]]. The semiclassical approximation breaks down near <math>\pm\sqrt{2n + 1}</math>, the location where the classical particle would be turned back. This is a [[Catastrophe theory#Fold catastrophe|fold catastrophe]], at which point the [[Airy function]] is needed.<ref>{{Cite journal |last=Berry |first=M.V. |date=1976-01-01 |title=Waves and Thom's theorem |url=https://doi.org/10.1080/00018737600101342 |journal=Advances in Physics |volume=25 |issue=1 |pages=1–26 |doi=10.1080/00018737600101342 |bibcode=1976AdPhy..25....1B |issn=0001-8732|url-access=subscription }}</ref>
 
This expansion is needed to resolve the [[wavefunction]] of a [[quantum harmonic oscillator]] such that it agrees with the classical approximation in the limit of the [[correspondence principle]].


A better approximation, which accounts for the variation in frequency, is given by
A better approximation, which accounts for the variation in frequency, is given by
<math display="block">e^{-\frac{x^2}{2}}\cdot H_n(x) \sim \left(\frac{2n}{e}\right)^{\frac{n}{2}} \sqrt{2} \cos \left(x \sqrt{2n+1-\frac{x^2}{3}}- \frac {n\pi}{2} \right)\left(1-\frac{x^2}{2n+1}\right)^{-\frac14}.</math>
<math display="block">e^{-\frac{x^2}{2}}\cdot H_n(x) \sim \left(\frac{2n}{e}\right)^{\frac{n}{2}} \sqrt{2} \cos \left(x \sqrt{2n+1-\frac{x^2}{3}}- \frac {n\pi}{2} \right)\left(1-\frac{x^2}{2n+1}\right)^{-\frac14}.</math>


A finer approximation,<ref>{{harvnb|Szegő|1955|p=201}}</ref> which takes into account the uneven spacing of the zeros near the edges, makes use of the substitution  
The [[Plancherel–Rotach asymptotics]] method, applied to Hermite polynomials, takes into account the uneven spacing of the zeros near the edges.<ref>{{harvnb|Szegő|1975|p=201}}</ref> It makes use of the substitution  
<math display="block">x = \sqrt{2n + 1}\cos(\varphi), \quad 0 < \varepsilon \leq \varphi \leq \pi - \varepsilon,</math>  
<math display="block">x = \sqrt{2n + 1}\cos(\varphi), \quad 0 < \varepsilon \leq \varphi \leq \pi - \varepsilon,</math>  
with which one has the uniform approximation
with which one has the uniform approximation
Line 370: Line 375:
=== Kibble–Slepian formula ===
=== Kibble–Slepian formula ===


Let <math display="inline">M</math> be a real <math display="inline">n\times n</math> symmetric matrix, then the '''Kibble–Slepian formula''' states that<math display="block">\det(I+M)^{-\frac 12 } e^{x^T M (I+M)^{-1}x} = \sum_K \left[\prod_{1\leq i \leq j \leq n} \frac{(M_{ij}/2)^{k_{ij}}}{k_{ij}!}\right] 2^{-tr(K)} H_{k_1}(x_1) \cdots H_{k_n}(x_n)</math> where <math display="inline">\sum_K</math> is the <math>\frac{n(n+1)}{2}</math>-fold summation over all <math display="inline">n \times n</math> symmetric matrices with non-negative integer entries, <math>tr(K)</math> is the [[Trace (linear algebra)|trace]] of <math>K</math>, and <math display="inline">k_i</math> is defined as <math display="inline">k_{ii} + \sum_{j=1}^n k_{ij}</math>. This gives [[Mehler kernel|Mehler's formula]] when <math>M = \begin{bmatrix} 0 & u \\ u & 0\end{bmatrix}</math>.
Let <math display="inline">M</math> be a real <math display="inline">n\times n</math> [[symmetric matrix]], then the '''Kibble–Slepian formula''' states that<math display="block">\det(I+M)^{-\frac 12 } e^{x^T M (I+M)^{-1}x} = \sum_K \left[\prod_{1\leq i \leq j \leq n} \frac{(M_{ij}/2)^{k_{ij}}}{k_{ij}!}\right] 2^{-tr(K)} H_{k_1}(x_1) \cdots H_{k_n}(x_n)</math> where <math display="inline">\sum_K</math> is the <math>\frac{n(n+1)}{2}</math>-fold summation over all <math display="inline">n \times n</math> symmetric matrices with non-negative integer entries, <math>tr(K)</math> is the [[Trace (linear algebra)|trace]] of <math>K</math>, and <math display="inline">k_i</math> is defined as <math display="inline">k_{ii} + \sum_{j=1}^n k_{ij}</math>. This gives [[Mehler kernel|Mehler's formula]] when <math>M = \begin{bmatrix} 0 & u \\ u & 0\end{bmatrix}</math>.


Equivalently stated, if <math display="inline">T</math> is a [[Positive semidefinite matrices|positive semidefinite matrix]], then set <math display="inline">M = -T(I+T)^{-1}</math>, we have <math display="inline">M(I+M)^{-1} = -T</math>, so <math display="block">
Equivalently stated, if <math display="inline">T</math> is a [[Positive semidefinite matrices|positive semidefinite matrix]], then set <math display="inline">M = -T(I+T)^{-1}</math>, we have <math display="inline">M(I+M)^{-1} = -T</math>, so <math display="block">
e^{-x^T T x} = \det(I+T)^{-\frac 12} \sum_K \left[\prod_{1\leq i \leq j \leq n} \frac{(M_{ij}/2)^{k_{ij}}}{k_{ij}!}\right] 2^{-tr(K)} H_{k_1}(x_1) \dots H_{k_n}(x_n)
e^{-x^T T x} = \det(I+T)^{-\frac 12} \sum_K \left[\prod_{1\leq i \leq j \leq n} \frac{(M_{ij}/2)^{k_{ij}}}{k_{ij}!}\right] 2^{-tr(K)} H_{k_1}(x_1) \dots H_{k_n}(x_n)
</math>Equivalently stated in a form closer to the [[boson]] [[quantum mechanics]] of the [[harmonic oscillator]]:<ref name=":0">{{Cite journal |last=Louck |first=J. D |date=1981-09-01 |title=Extension of the Kibble-Slepian formula for Hermite polynomials using boson operator methods |url=https://dx.doi.org/10.1016/0196-8858%2881%2990005-1 |journal=Advances in Applied Mathematics |volume=2 |issue=3 |pages=239–249 |doi=10.1016/0196-8858(81)90005-1 |issn=0196-8858}}</ref><math display="block">
</math>Equivalently stated in a form closer to the [[boson]] [[quantum mechanics]] of the [[harmonic oscillator]]:<ref name=":0">{{Cite journal |last=Louck |first=J. D |date=1981-09-01 |title=Extension of the Kibble-Slepian formula for Hermite polynomials using boson operator methods |url=https://dx.doi.org/10.1016/0196-8858%2881%2990005-1 |journal=Advances in Applied Mathematics |volume=2 |issue=3 |pages=239–249 |doi=10.1016/0196-8858(81)90005-1 |issn=0196-8858|url-access=subscription }}</ref><math display="block">
\pi^{-n/4}\det(I+M)^{-\frac 12 }e^{- \frac 12  x^T(I-M)(I+M)^{-1} x}= \sum_K\left[\prod_{1 \leq i \leq j \leq n} M_{i j}^{k_{i j}} / k_{i j}!\right]\left[\prod_{1 \leq i \leq n} k_{i}!\right]^{1 / 2}  2^{-\operatorname{tr} K} \psi_{k_1}\left(x_1\right) \cdots \psi_{k_n}\left(x_n\right) .
\pi^{-n/4}\det(I+M)^{-\frac 12 }e^{- \frac 12  x^T(I-M)(I+M)^{-1} x}= \sum_K\left[\prod_{1 \leq i \leq j \leq n} M_{i j}^{k_{i j}} / k_{i j}!\right]\left[\prod_{1 \leq i \leq n} k_{i}!\right]^{1 / 2}  2^{-\operatorname{tr} K} \psi_{k_1}\left(x_1\right) \cdots \psi_{k_n}\left(x_n\right) .
</math> where each <math display="inline">\psi_n(x)</math> is the <math display="inline">n</math>-th eigenfunction of the harmonic oscillator, defined as <math display="block">\psi_n(x) := \frac{1}{\sqrt{2^n n!}}\left(\frac{1}{\pi}\right)^{\frac{1}{4}} e^{-\frac{1}{2} x^2} H_n(x)  </math>The Kibble–Slepian formula was proposed by Kibble in 1945<ref>{{Cite journal |last=Kibble |first=W. F. |date=June 1945 |title=An extension of a theorem of Mehler's on Hermite polynomials |url=https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/abs/an-extension-of-a-theorem-of-mehlers-on-hermite-polynomials/6CD265E3054D1595062F1CA83D492AC2 |journal=Mathematical Proceedings of the Cambridge Philosophical Society |language=en |volume=41 |issue=1 |pages=12–15 |doi=10.1017/S0305004100022313 |bibcode=1945PCPS...41...12K |issn=1469-8064|url-access=subscription }}</ref> and proven by Slepian in 1972 using Fourier analysis.<ref>{{Cite journal |last=Slepian |first=David |date=November 1972 |title=On the Symmetrized Kronecker Power of a Matrix and Extensions of Mehler's Formula for Hermite Polynomials |url=https://epubs.siam.org/doi/abs/10.1137/0503060 |journal=SIAM Journal on Mathematical Analysis |volume=3 |issue=4 |pages=606–616 |doi=10.1137/0503060 |issn=0036-1410|url-access=subscription }}</ref> Foata gave a combinatorial proof<ref>{{Cite journal |last=Foata |first=Dominique |date=1981-09-01 |title=Some Hermite polynomial identities and their combinatorics |url=https://dx.doi.org/10.1016/0196-8858%2881%2990006-3 |journal=Advances in Applied Mathematics |volume=2 |issue=3 |pages=250–259 |doi=10.1016/0196-8858(81)90006-3 |issn=0196-8858}}</ref> while Louck gave a proof via boson quantum mechanics.<ref name=":0" /> It has a generalization for complex-argument Hermite polynomials.<ref>{{Cite journal |last1=Ismail |first1=Mourad E.H. |last2=Zhang |first2=Ruiming |date=September 2016 |title=Kibble–Slepian formula and generating functions for 2D polynomials |url=https://doi.org/10.1016/j.aam.2016.05.003 |journal=Advances in Applied Mathematics |volume=80 |pages=70–92 |doi=10.1016/j.aam.2016.05.003 |issn=0196-8858|arxiv=1508.01816 }}</ref><ref>{{Cite journal |last1=Ismail |first1=Mourad E. H. |last2=Zhang |first2=Ruiming |date=2017-04-01 |title=A review of multivariate orthogonal polynomials |journal=Journal of the Egyptian Mathematical Society |volume=25 |issue=2 |pages=91–110 |doi=10.1016/j.joems.2016.11.001 |issn=1110-256X|doi-access=free }}</ref>
</math> where each <math display="inline">\psi_n(x)</math> is the <math display="inline">n</math>-th eigenfunction of the harmonic oscillator, defined as <math display="block">\psi_n(x) := \frac{1}{\sqrt{2^n n!}}\left(\frac{1}{\pi}\right)^{\frac{1}{4}} e^{-\frac{1}{2} x^2} H_n(x)  </math>The Kibble–Slepian formula was proposed by Kibble in 1945<ref>{{Cite journal |last=Kibble |first=W. F. |date=June 1945 |title=An extension of a theorem of Mehler's on Hermite polynomials |url=https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/abs/an-extension-of-a-theorem-of-mehlers-on-hermite-polynomials/6CD265E3054D1595062F1CA83D492AC2 |journal=Mathematical Proceedings of the Cambridge Philosophical Society |language=en |volume=41 |issue=1 |pages=12–15 |doi=10.1017/S0305004100022313 |bibcode=1945PCPS...41...12K |issn=1469-8064|url-access=subscription }}</ref> and proven by Slepian in 1972 using Fourier analysis.<ref>{{Cite journal |last=Slepian |first=David |date=November 1972 |title=On the Symmetrized Kronecker Power of a Matrix and Extensions of Mehler's Formula for Hermite Polynomials |url=https://epubs.siam.org/doi/abs/10.1137/0503060 |journal=SIAM Journal on Mathematical Analysis |volume=3 |issue=4 |pages=606–616 |doi=10.1137/0503060 |issn=0036-1410|url-access=subscription }}</ref> Foata gave a combinatorial proof<ref>{{Cite journal |last=Foata |first=Dominique |date=1981-09-01 |title=Some Hermite polynomial identities and their combinatorics |url=https://dx.doi.org/10.1016/0196-8858%2881%2990006-3 |journal=Advances in Applied Mathematics |volume=2 |issue=3 |pages=250–259 |doi=10.1016/0196-8858(81)90006-3 |issn=0196-8858|url-access=subscription }}</ref> while Louck gave a proof via boson quantum mechanics.<ref name=":0" /> It has a generalization for complex-argument Hermite polynomials.<ref>{{Cite journal |last1=Ismail |first1=Mourad E.H. |last2=Zhang |first2=Ruiming |date=September 2016 |title=Kibble–Slepian formula and generating functions for 2D polynomials |url=https://doi.org/10.1016/j.aam.2016.05.003 |journal=Advances in Applied Mathematics |volume=80 |pages=70–92 |doi=10.1016/j.aam.2016.05.003 |issn=0196-8858|arxiv=1508.01816 }}</ref><ref>{{Cite journal |last1=Ismail |first1=Mourad E. H. |last2=Zhang |first2=Ruiming |date=2017-04-01 |title=A review of multivariate orthogonal polynomials |journal=Journal of the Egyptian Mathematical Society |volume=25 |issue=2 |pages=91–110 |doi=10.1016/j.joems.2016.11.001 |issn=1110-256X|doi-access=free }}</ref>
 
=== Zeroes ===
Let <math>x_{n,1} > \dots > x_{n,n} </math> be the roots of <math>H_n</math> in descending order. Let <math>a_m</math> be the <math>m</math>-th zero of the [[Airy function]] <math>\operatorname{Ai}(x)</math> in descending order: <math>0 > a_1 > a_2 > \cdots</math>. By the symmetry of <math>H_n</math>, we need only consider the positive half of its roots.
 
We have<ref name=":3" /><math display="block">(2 n+1)^{\frac{1}{2}}>x_{n, 1}>x_{n, 2}>\cdots>x_{n,\lfloor n / 2\rfloor}>0 .</math> For each <math>m</math>, asymptotically at <math>n \to\infty</math>,<ref name=":3" /><math display="block">x_{n, m}=(2 n+1)^{\frac{1}{2}}+2^{-\frac{1}{3}}(2 n+1)^{-\frac{1}{6}} a_m+\epsilon_{n, m},</math> where <math>\epsilon_{n, m}=O\left(n^{-\frac{5}{6}}\right)</math>, and <math>\epsilon_{n, m} < 0</math>.
 
See also,<ref>{{Harvard citation|Szegő|1975|loc=Section 6.21. Inequalities for the zeros of the classical polynomials}}</ref> and the formulas involving the zeroes of [[Laguerre polynomials]].
 
Let <math>F_n(t) := \frac 1n \#\{i : x_{n, i} \leq t\}</math> be the [[cumulative distribution function]] for the roots of <math>H_n</math>, then we have the [[Wigner semicircle distribution|semicircle law]]<ref>{{Cite journal |last=Gawronski |first=Wolfgang |date=1987-07-01 |title=On the asymptotic distribution of the zeros of Hermite, Laguerre, and Jonquière polynomials |url=https://dx.doi.org/10.1016/0021-9045%2887%2990020-7 |journal=Journal of Approximation Theory |volume=50 |issue=3 |pages=214–231 |doi=10.1016/0021-9045(87)90020-7 |issn=0021-9045|url-access=subscription }}</ref><math display="block">\lim_{n \to \infty} F_n(\sqrt{2n} t) = \frac 2\pi \int_{-1}^t \sqrt{1- s^2} ds \quad t \in (-1, +1) </math> The '''[[Thomas Joannes Stieltjes|Stieltjes]] relation''' states that<ref>{{Cite journal |last1=Marcellán |first1=F. |last2=Martínez-Finkelshtein |first2=A. |last3=Martínez-González |first3=P. |date=2007-10-15 |title=Electrostatic models for zeros of polynomials: Old, new, and some open problems |url=https://www.sciencedirect.com/science/article/pii/S037704270600611X |journal=Journal of Computational and Applied Mathematics |series=Proceedings of The Conference in Honour of Dr. Nico Temme on the Occasion of his 65th birthday |volume=207 |issue=2 |pages=258–272 |doi=10.1016/j.cam.2006.10.020 |issn=0377-0427|arxiv=math/0512293 |hdl=10016/5921 }}</ref><ref>{{Harvard citation|Szegő|1975|p=|loc=Section 6.7. Electrostatic interpretation of the zeros of the classical polynomials}}</ref><math display="block">-x_{n,i} + \sum_{1 \leq j \leq n, i \neq j} \frac{1}{x_{n,i}-x_{n,j}} = 0</math> and can be physically interpreted as the equilibrium position of <math>n</math> particles on a line, such that each particle <math>i</math> is attracted to the origin by a linear force <math>-x_{n,i}</math>, and repelled by each other particle <math>j</math> by a reciprocal force <math>\frac{1}{x_{n,i} - x_{n,j}}</math>. This can be constructed by confining <math>n</math> positively charged particles in <math>\R^2</math> to the [[Number line|real line]], and connecting each particle to the origin by a [[Spring (device)|spring]]. This is also called the '''[[Electrostatics|electrostatic]] model''', and relates to the [[Coulomb gas]] interpretation of the eigenvalues of [[Gaussian ensemble|gaussian ensembles]].
 
As the zeroes specify the polynomial up to scaling, the Stieltjes relation provides an alternative way to uniquely characterize the Hermite polynomials.
 
Similarly, we have<ref>{{Cite journal |last1=Alıcı |first1=H. |last2=Taşeli |first2=H. |date=2015 |title=Unification of Stieltjes-Calogero type relations for the zeros of classical orthogonal polynomials |url=https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.3285 |journal=Mathematical Methods in the Applied Sciences |language=en |volume=38 |issue=14 |pages=3118–3129 |doi=10.1002/mma.3285 |bibcode=2015MMAS...38.3118A |issn=1099-1476|hdl=11511/35468 |hdl-access=free }}</ref><math display="block">\begin{aligned}
\sum_i x_{n,i}^2 &= \sum_{1 \leq i \leq n}^n \sum_{1 \leq j \leq n, i \neq j} \frac{1}{(x_{n,i} - x_{n,j})^2}\\
x_{n,i} &= \sum_{1 \leq j \leq n, i \neq j} \frac{1}{x_{n,i}-x_{n,j}}\\
\frac{2n - 2 - x_{n,i}^2}{3} &= \sum_{1 \leq j \leq n, i \neq j} \frac{1}{(x_{n,i}-x_{n,j})^2}\\
\frac 12 x_{n,i} &= \sum_{1 \leq j \leq n, i \neq j} \frac{1}{(x_{n,i}-x_{n,j})^3}
\end{aligned}</math>


==Relations to other functions==
==Relations to other functions==
Line 397: Line 420:
  H_{2n+1}(x) &= (-1)^n \frac{(2n+1)!}{n!}\,2x \,_1F_1\big(-n, \tfrac32; x^2\big),
  H_{2n+1}(x) &= (-1)^n \frac{(2n+1)!}{n!}\,2x \,_1F_1\big(-n, \tfrac32; x^2\big),
\end{align}</math>
\end{align}</math>
where {{math|<sub>1</sub>''F''<sub>1</sub>(''a'', ''b''; ''z'') {{=}} ''M''(''a'', ''b''; ''z'')}} is [[confluent hypergeometric function|Kummer's confluent hypergeometric function]].
where {{math|<sub>1</sub>''F''<sub>1</sub>(''a'', ''b''; ''z'') {{=}} ''M''(''a'', ''b''; ''z'')}} is [[confluent hypergeometric function|Kummer's confluent hypergeometric function]].<math display="block">
\begin{align}
\mathrm{He}_{2n}(x)&=(-1)^n(2n-1)!!\;{}_1F_1\!\left(-n,\tfrac12;\tfrac{x^2}{2}\right),\\
\mathrm{He}_{2n+1}(x)&=(-1)^n(2n+1)!!\;x\;{}_1F_1\!\left(-n,\tfrac32;\tfrac{x^2}{2}\right).
\end{align}


There is also<ref>[https://dlmf.nist.gov/18.5#E13 DLMF Equation 18.5.13]</ref><math display="block">H_{n}\left(x\right)=(2x)^{n}{{}_{2}F_{0}}\left({-\tfrac{1}{2}n,-\tfrac{1}{2}n+\tfrac{1}{2}\atop-};-\frac{1}{x^{2}}\right).</math>
</math>There is also<ref>[https://dlmf.nist.gov/18.5#E13 DLMF Equation 18.5.13]</ref><math display="block">H_{n}\left(x\right)=(2x)^{n}{{}_{2}F_{0}}\left({-\tfrac{1}{2}n,-\tfrac{1}{2}n+\tfrac{1}{2}\atop-};-\frac{1}{x^{2}}\right).</math>


=== Limit relations ===
=== Limit relations ===
The Hermite polynomials can be obtained as the limit of various other polynomials.<ref>[https://dlmf.nist.gov/18.7#iii DLMF §18.7(iii) Limit Relations]</ref>
The Hermite polynomials can be obtained as the limit of various other polynomials.<ref>[https://dlmf.nist.gov/18.7#iii DLMF §18.7(iii) Limit Relations]</ref>


As a limit of Jacobi polynomials:<math display="block">\lim_{\alpha\to\infty}\alpha^{-\frac{1}{2}n}P^{(\alpha,\alpha)}_{n}\left(\alpha^{-\frac{1}{2}}x\right)=\frac{H_{n}\left(x\right)}{2^{n}n!}.</math>As a limit of ultraspherical polynomials:<math display="block">\lim_{\lambda\to\infty}\lambda^{-\frac{1}{2}n}C^{(\lambda)}_{n}\left(\lambda^{-\frac{1}{2}}x\right)=\frac{H_{n}\left(x\right)}{n!}.</math>As a limit of associated Laguerre polynomials:<math display="block">\lim_{\alpha\to\infty}\left(\frac{2}{\alpha}\right)^{\frac{1}{2}n}L^{(\alpha)}_{n}\left((2\alpha)^{\frac{1}{2}}x+\alpha\right)=\frac{(-1)^{n}}{n!}H_{n}\left(x\right).</math>
As a limit of [[Jacobi polynomials]]:<math display="block">\lim_{\alpha\to\infty}\alpha^{-\frac{1}{2}n}P^{(\alpha,\alpha)}_{n}\left(\alpha^{-\frac{1}{2}}x\right)=\frac{H_{n}\left(x\right)}{2^{n}n!}.</math> As a limit of ultraspherical polynomials:<math display="block">\lim_{\lambda\to\infty}\lambda^{-\frac{1}{2}n}C^{(\lambda)}_{n}\left(\lambda^{-\frac{1}{2}}x\right)=\frac{H_{n}\left(x\right)}{n!}.</math> As a limit of associated Laguerre polynomials:<math display="block">\lim_{\alpha\to\infty}\left(\frac{2}{\alpha}\right)^{\frac{1}{2}n}L^{(\alpha)}_{n}\left((2\alpha)^{\frac{1}{2}}x+\alpha\right)=\frac{(-1)^{n}}{n!}H_{n}\left(x\right).</math>


== Hermite polynomial expansion ==
== Hermite polynomial expansion ==
Similar to Taylor expansion, some functions are expressible as an infinite sum of Hermite polynomials. Specifically, if <math>\int e^{-x^2}f(x)^2 dx < \infty</math>, then it has an expansion in the physicist's Hermite polynomials.<ref>{{Cite web |title=MATHEMATICA tutorial, part 2.5: Hermite expansion |url=https://www.cfm.brown.edu/people/dobrush/am34/Mathematica/ch5/hermite.html |access-date=2023-12-24 |website=www.cfm.brown.edu}}</ref>
Similar to Taylor expansion, some functions are expressible as an infinite sum of Hermite polynomials. Specifically, if <math>\int e^{-x^2}f(x)^2 dx < \infty</math>, then it has an expansion in the physicist's Hermite polynomials.<ref>{{Cite web |title=MATHEMATICA tutorial, part 2.5: Hermite expansion |url=https://www.cfm.brown.edu/people/dobrush/am34/Mathematica/ch5/hermite.html |access-date=2023-12-24 |website=www.cfm.brown.edu}}</ref>
For <math>f</math> that does not grow too fast, it has Hermite expansion <math>f(x) = \sum_k \frac{\mathbb E_{X \sim\mathcal N(0, 1)}[f^{(k)}(X)]}{k!}\operatorname{He}_k(x)</math>.<ref>{{Cite journal |last=Davis |first=Tom P. |date=2024-02-01 |title=A General Expression for Hermite Expansions with Applications |url=https://scholarworks.umt.edu/tme/vol21/iss1/6 |journal=The Mathematics Enthusiast |language=en |volume=21 |issue=1–2 |pages=71–87 |doi=10.54870/1551-3440.1618 |issn=1551-3440}}</ref>


Given such <math>f</math>, the partial sums of the Hermite expansion of <math>f</math> converges to in the <math>L^p</math> norm if and only if <math>4 / 3<p<4</math>.<ref>{{Cite journal |last1=Askey |first1=Richard |last2=Wainger |first2=Stephen |date=1965 |title=Mean Convergence of Expansions in Laguerre and Hermite Series |url=https://www.jstor.org/stable/2373069 |journal=American Journal of Mathematics |volume=87 |issue=3 |pages=695–708 |doi=10.2307/2373069 |jstor=2373069 |issn=0002-9327|url-access=subscription }}</ref><math display="block">x^n = \frac{n!}{2^n} \,\sum_{k= 0}^{\left\lfloor n/2 \right\rfloor} \frac{1}{k! \,(n-2k)!} \, H_{n-2k} (x) = n! \sum_{k= 0}^{\left\lfloor n/2 \right\rfloor} \frac{1}{k! \,2^k \,(n-2k)!} \, \operatorname{He}_{n-2k} (x) , \qquad n \in \mathbb{Z}_{+} .
Given such <math>f</math>, the partial sums of the Hermite expansion of <math>f</math> converges to in the <math>L^p</math> norm if and only if <math>4 / 3<p<4</math>.<ref>{{Cite journal |last1=Askey |first1=Richard |last2=Wainger |first2=Stephen |date=1965 |title=Mean Convergence of Expansions in Laguerre and Hermite Series |url=https://www.jstor.org/stable/2373069 |journal=American Journal of Mathematics |volume=87 |issue=3 |pages=695–708 |doi=10.2307/2373069 |jstor=2373069 |issn=0002-9327|url-access=subscription }}</ref><math display="block">x^n = \frac{n!}{2^n} \,\sum_{k= 0}^{\left\lfloor n/2 \right\rfloor} \frac{1}{k! \,(n-2k)!} \, H_{n-2k} (x) = n! \sum_{k= 0}^{\left\lfloor n/2 \right\rfloor} \frac{1}{k! \,2^k \,(n-2k)!} \, \operatorname{He}_{n-2k} (x) , \qquad n \in \mathbb{Z}_{+} .
</math><math display="block">e^{ax} = e^{a^2 /4} \sum_{n\ge 0} \frac{a^n}{n! \,2^n} \, H_n (x) , \qquad a\in \mathbb{C}, \quad x\in \mathbb{R} .</math><math display="block">e^{-a^2 x^2} = \sum_{n\ge 0} \frac{(-1)^n a^{2n}}{n! \left( 1 + a^2 \right)^{n + 1/2} 2^{2n}}\, H_{2n} (x) .</math><math display="block">\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} ~dt=\frac{1}{\sqrt{2 \pi}} \sum_{k \geq 0} \frac{(-1)^k}{k !(2 k+1) 2^{3 k}} H_{2 k}(x) .</math><math display="block">\cosh (2x) = e \sum_{k\ge 0} \frac{1}{(2k)!}\, H_{2k} (x) , \qquad \sinh (2x) = e \sum_{k\ge 0} \frac{1}{(2k+1)!} \, H_{2k+1} (x) .</math><math display="block">\cos (x) = e^{-1/4} \,\sum_{k\ge 0} \frac{(-1)^k}{2^{2k} \, (2k)!} \, H_{2k} (x)  
</math><math display="block">e^{ax} = e^{a^2 /4} \sum_{n\ge 0} \frac{a^n}{n! \,2^n} \, H_n (x) , \qquad a\in \mathbb{C}, \quad x\in \mathbb{R} .</math><math display="block">e^{-a^2 x^2} = \sum_{n\ge 0} \frac{(-1)^n a^{2n}}{n! \left( 1 + a^2 \right)^{n + 1/2} 2^{2n}}\, H_{2n} (x) .</math><math display="block">\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} ~dt=\frac{1}{\sqrt{2 \pi}} \sum_{k \geq 0} \frac{(-1)^k}{k !(2 k+1) 2^{3 k}} H_{2k+1}(x) .</math><math display="block">\cosh(ax)=e^{a^{2}/2}\sum_{m=0}^{\infty}\frac{a^{2m}}{(2m)!}\,\mathrm{He}_{2m}(x), \quad
\quad \sin (x) = e^{-1/4} \,\sum_{k\ge 0} \frac{(-1)^k}{2^{2k+1} \, (2k+1)!} \, H_{2k+1} (x) </math>
\sinh(ax)=e^{a^{2}/2}\sum_{m=0}^{\infty}\frac{a^{2m+1}}{(2m+1)!}\,\mathrm{He}_{2m+1}(x)
</math><math display="block">\cos(ax)=e^{-a^{2}/2}\sum_{m=0}^{\infty}\frac{(-1)^m a^{2m}}{(2m)!}\,\mathrm{He}_{2m}(x), \quad \sin(ax)=e^{-a^{2}/2}\sum_{m=0}^{\infty}\frac{(-1)^m a^{2m+1}}{(2m+1)!}\,\mathrm{He}_{2m+1}(x)
</math><math display="block">\delta = \frac{1}{\sqrt{2\pi}}\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!! } \operatorname{He}_{2k}
</math><math display="block">1_{x > 0} = \frac 12 \operatorname{He}_0 + \frac{1}{\sqrt{2\pi}}\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!!(2k+1) } \operatorname{He}_{2 k+1}
</math>The probabilist's Hermite expansion for the power functions are the same as the power expansions for the probabilist's Hermite polynomials, except with positive signs. For example:<math display="block">\operatorname{He}_3(x) = x^3 - 3x, \quad x^3 = \operatorname{He}_3(x) + 3 \operatorname{He}_1(x)</math>


==Differential-operator representation==
==Differential-operator representation==
Line 425: Line 459:


==Generalizations==
==Generalizations==
The probabilist's Hermite polynomials defined above are orthogonal with respect to the standard normal probability distribution, whose density function is
 
=== Variance ===
{{Anchor|Variance}}The probabilist's Hermite polynomials defined above are orthogonal with respect to the standard normal probability distribution, whose density function is
<math display="block">\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}},</math>
<math display="block">\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}},</math>
which has expected value 0 and variance 1.
which has expected value 0 and variance 1.
Line 498: Line 534:
This formula can be used in connection with the recurrence relations for {{math|''He<sub>n</sub>''}} and {{math|''ψ''<sub>''n''</sub>}} to calculate any derivative of the Hermite functions efficiently.
This formula can be used in connection with the recurrence relations for {{math|''He<sub>n</sub>''}} and {{math|''ψ''<sub>''n''</sub>}} to calculate any derivative of the Hermite functions efficiently.
===Cramér's inequality===
===Cramér's inequality===
For real {{mvar|x}}, the Hermite functions satisfy the following bound due to [[Harald Cramér]]<ref>{{harvnb|Erdélyi|Magnus|Oberhettinger|Tricomi|1955|p=207}}.</ref><ref>{{harvnb|Szegő|1955}}.</ref> and Jack Indritz:<ref name="indritz">{{citation
For real {{mvar|x}}, the Hermite functions satisfy the following bound due to [[Harald Cramér]]<ref>{{harvnb|Erdélyi|Magnus|Oberhettinger|Tricomi|1955|p=207}}.</ref><ref>{{harvnb|Szegő|1975}}.</ref> and Jack Indritz:<ref name="indritz">{{citation
  | last1 = Indritz | first1 = Jack
  | last1 = Indritz | first1 = Jack
  | doi = 10.1090/S0002-9939-1961-0132852-2
  | doi = 10.1090/S0002-9939-1961-0132852-2
Line 511: Line 547:
<math display="block"> \bigl|\psi_n(x)\bigr| \le \pi^{-\frac14}.</math>
<math display="block"> \bigl|\psi_n(x)\bigr| \le \pi^{-\frac14}.</math>


===Hermite functions as eigenfunctions of the Fourier transform===
===As eigenfunctions of the Fourier transform===
The Hermite functions {{math|''ψ''<sub>''n''</sub>(''x'')}} are a set of [[eigenfunction]]s of the [[continuous Fourier transform]] {{mathcal|F}}. To see this, take the physicist's version of the generating function and multiply by {{math|''e''<sup>−{{sfrac|1|2}}''x''<sup>2</sup></sup>}}. This gives
The Hermite functions {{math|''ψ''<sub>''n''</sub>(''x'')}} are a set of [[eigenfunction]]s of the [[continuous Fourier transform]] {{mathcal|F}}. To see this, take the physicist's version of the generating function and multiply by {{math|''e''<sup>−{{sfrac|1|2}}''x''<sup>2</sup></sup>}}. This gives
<math display="block">e^{-\frac12 x^2 + 2xt - t^2} = \sum_{n=0}^\infty e^{-\frac12 x^2} H_n(x) \frac{t^n}{n!}.</math>
<math display="block">e^{-\frac12 x^2 + 2xt - t^2} = \sum_{n=0}^\infty e^{-\frac12 x^2} H_n(x) \frac{t^n}{n!}.</math>
Line 531: Line 567:
The Hermite functions {{math|''ψ<sub>n</sub>''(''x'')}} are thus an orthonormal basis of {{math|''L''<sup>2</sup>('''R''')}}, which ''diagonalizes the Fourier transform operator''.<ref>In this case, we used the unitary version of the Fourier transform, so the [[eigenvalue]]s are {{math|(−''i'')<sup>''n''</sup>}}. The ensuing resolution of the identity then serves to define powers, including fractional ones, of the Fourier transform, to wit a [[Fractional Fourier transform]] generalization, in effect a [[Mehler kernel]].</ref> In short, we have:<math display="block">\frac{1}{\sqrt{2\pi}} \int e^{-ikx} \psi_n(x) dx = (-i)^n \psi_n(k), \quad \frac{1}{\sqrt{2\pi}} \int e^{+ikx} \psi_n(k) dk = i^n \psi_n(x)</math>
The Hermite functions {{math|''ψ<sub>n</sub>''(''x'')}} are thus an orthonormal basis of {{math|''L''<sup>2</sup>('''R''')}}, which ''diagonalizes the Fourier transform operator''.<ref>In this case, we used the unitary version of the Fourier transform, so the [[eigenvalue]]s are {{math|(−''i'')<sup>''n''</sup>}}. The ensuing resolution of the identity then serves to define powers, including fractional ones, of the Fourier transform, to wit a [[Fractional Fourier transform]] generalization, in effect a [[Mehler kernel]].</ref> In short, we have:<math display="block">\frac{1}{\sqrt{2\pi}} \int e^{-ikx} \psi_n(x) dx = (-i)^n \psi_n(k), \quad \frac{1}{\sqrt{2\pi}} \int e^{+ikx} \psi_n(k) dk = i^n \psi_n(x)</math>


===Wigner distributions of Hermite functions===
===Wigner distribution functions===
The [[Wigner distribution function]] of the {{mvar|n}}th-order Hermite function is related to the {{mvar|n}}th-order [[Laguerre polynomial]]. The Laguerre polynomials are  
The [[Wigner distribution function]] of the {{mvar|n}}th-order Hermite function is related to the {{mvar|n}}th-order [[Laguerre polynomial]]. The Laguerre polynomials are  
<math display="block">L_n(x) := \sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{k!}x^k,</math>
<math display="block">L_n(x) := \sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{k!}x^k,</math>
leading to the oscillator Laguerre functions
leading to the oscillator Laguerre functions
<math display="block">l_n (x) := e^{-\frac{x}{2}} L_n(x).</math>
<math display="block">l_n (x) := e^{-\frac{x}{2}} L_n(x).</math>
For all natural integers {{mvar|n}}, it is straightforward to see<ref>{{Citation |author-link=Gerald Folland |first=G. B. |last=Folland |title=Harmonic Analysis in Phase Space | series=Annals of Mathematics Studies |volume=122 |publisher=Princeton University Press |date=1989 |isbn=978-0-691-08528-9}}</ref> that
For all natural integers {{mvar|n}}, one can prove that<ref>{{Citation |author-link=Gerald Folland |first=G. B. |last=Folland |title=Harmonic Analysis in Phase Space | series=Annals of Mathematics Studies |volume=122 |publisher=Princeton University Press |date=1989 |isbn=978-0-691-08528-9}}</ref> that
<math display="block">W_{\psi_n}(t,f) = (-1)^n l_n \big(4\pi (t^2 + f^2) \big),</math>
<math display="block">W_{\psi_n}(t,f) = 2\,(-1)^n\, l_n\big(4\pi (t^2 + f^2) \big),</math>
where the Wigner distribution of a function {{math|''x'' ∈ ''L''<sup>2</sup>('''R''', '''C''')}} is defined as
where the Wigner distribution of a function {{math|''ψ'' ∈ ''L''<sup>2</sup>('''R''', '''C''')}} is defined as
<math display="block"> W_x(t,f) = \int_{-\infty}^\infty x\left(t + \frac{\tau}{2}\right) \, x\left(t - \frac{\tau}{2}\right)^* \, e^{-2\pi i\tau f} \,d\tau.</math>
<math display="block"> W_\psi(t,f) = \int_{-\infty}^\infty \psi\left(t + \frac{\tau}{2}\right) \, \psi\left(t - \frac{\tau}{2}\right)^* \, e^{-2\pi i\tau f} \,d\tau.</math>
This is a fundamental result for the [[quantum harmonic oscillator]] discovered by [[Hilbrand J. Groenewold|Hip Groenewold]] in 1946 in his PhD thesis.<ref name="Groenewold1946">{{cite journal | last1 = Groenewold | first1 = H. J. | year = 1946 | title = On the Principles of elementary quantum mechanics | journal = Physica | volume = 12 | issue = 7| pages = 405–460 | doi = 10.1016/S0031-8914(46)80059-4 | bibcode=1946Phy....12..405G}}</ref> It is the standard paradigm of [[Phase-space formulation#Simple harmonic oscillator|quantum mechanics in phase space]].
This is a fundamental result for the [[quantum harmonic oscillator]] discovered by [[Hilbrand J. Groenewold|Hip Groenewold]] in 1946 in his PhD thesis.<ref name="Groenewold1946">{{cite journal | last1 = Groenewold | first1 = H. J. | year = 1946 | title = On the Principles of elementary quantum mechanics | journal = Physica | volume = 12 | issue = 7| pages = 405–460 | doi = 10.1016/S0031-8914(46)80059-4 | bibcode=1946Phy....12..405G}}</ref> It is the standard paradigm of [[Phase-space formulation#Simple harmonic oscillator|quantum mechanics in phase space]].


There are [[Laguerre function#Relation to Hermite polynomials|further relations]] between the two families of polynomials.
There are [[Laguerre function#Relation to Hermite polynomials|further relations]] between the two families of polynomials.


===Partial Overlap Integrals===
===Partial overlap integrals===
It can be shown<ref>{{cite arXiv |last=Mawby|first=Clement|title=Tests of Macrorealism in Discrete and Continuous Variable Systems |date=2024 |class=quant-ph |eprint=2402.16537}}</ref><ref>{{cite arXiv |last=Moriconi|first=Marco|title=Nodes of Wavefunctions |date=2007 |eprint=quant-ph/0702260}}</ref> that the overlap between two different Hermite functions (<math> k\neq \ell </math>) over a given interval has the exact result:
It can be shown<ref>{{cite arXiv |last=Mawby|first=Clement|title=Tests of Macrorealism in Discrete and Continuous Variable Systems |date=2024 |class=quant-ph |eprint=2402.16537}}</ref><ref>{{cite arXiv |last=Moriconi|first=Marco|title=Nodes of Wavefunctions |date=2007 |eprint=quant-ph/0702260 }}</ref> that the overlap between two different Hermite functions (<math> k\neq \ell </math>) over a given interval has the exact result:
<math display="block">\int_{x_1}^{x_2}\psi_{k}(x) \psi_{\ell}(x)\,dx =\frac{1}{2(\ell - k)}\left(\psi_k'(x_2)\psi_\ell(x_2)-\psi_\ell'(x_2)\psi_k(x_2)-\psi_k'(x_1)\psi_\ell(x_1)+\psi_\ell'(x_1)\psi_k(x_1)\right).
<math display="block">\int_{x_1}^{x_2}\psi_{k}(x) \psi_{\ell}(x)\,dx =\frac{1}{2(\ell - k)}\left(\psi_k'(x_2)\psi_\ell(x_2)-\psi_\ell'(x_2)\psi_k(x_2)-\psi_k'(x_1)\psi_\ell(x_1)+\psi_\ell'(x_1)\psi_k(x_1)\right).
</math>
</math>
Line 627: Line 663:
*{{Citation |last1=Shohat |first1=J.A.|last2=Hille |first2=Einar|last3=Walsh |first3=Joseph L. |title=A bibliography on orthogonal polynomials |series=Bulletin of the National Research Council |number=103 |publisher=National Academy of Sciences |location=Washington D.C. |date=1940}} - 2000 references of Bibliography on Hermite polynomials.
*{{Citation |last1=Shohat |first1=J.A.|last2=Hille |first2=Einar|last3=Walsh |first3=Joseph L. |title=A bibliography on orthogonal polynomials |series=Bulletin of the National Research Council |number=103 |publisher=National Academy of Sciences |location=Washington D.C. |date=1940}} - 2000 references of Bibliography on Hermite polynomials.
*{{eom|title=Hermite polynomials|first=P. K. |last=Suetin}}
*{{eom|title=Hermite polynomials|first=P. K. |last=Suetin}}
*{{citation |last=Szegő |first=Gábor |author-link=Gábor Szegő |title=Orthogonal Polynomials |series=Colloquium Publications |volume=23 |publisher=American Mathematical Society |edition=4th |orig-year=1939 |year=1955 |isbn=978-0-8218-1023-1}}
*{{citation |last=Szegő |first=Gábor |author-link=Gábor Szegő |title=Orthogonal Polynomials |series=Colloquium Publications |volume=23 |publisher=American Mathematical Society |edition=4th |orig-year=1939 |year=1975 |isbn=978-0-8218-1023-1}}
*{{Citation|last=Temme |first=Nico |title=Special Functions: An Introduction to the Classical Functions of Mathematical Physics |publisher=Wiley |location=New York |date=1996 |isbn=978-0-471-11313-3}}
*{{Citation|last=Temme |first=Nico |title=Special Functions: An Introduction to the Classical Functions of Mathematical Physics |publisher=Wiley |location=New York |date=1996 |isbn=978-0-471-11313-3}}
*{{citation |last=Wiener |first=Norbert |author-link=Norbert Wiener |title=The Fourier Integral and Certain of its Applications |orig-year=1933 |edition=revised |year=1958 |publisher=Dover Publications |location=New York |isbn=0-486-60272-9}}
*{{citation |last=Wiener |first=Norbert |author-link=Norbert Wiener |title=The Fourier Integral and Certain of its Applications |orig-year=1933 |edition=revised |year=1958 |publisher=Dover Publications |location=New York |isbn=0-486-60272-9}}
*{{Citation |last1=Whittaker |first1=E. T. |author-link1=E. T. Whittaker |last2=Watson |first2=G. N.|author-link2=G. N. Watson |title=[[A Course of Modern Analysis]] |orig-year=1927 |year=1996 |publisher=Cambridge University Press |location=London |edition=4th |isbn=978-0-521-58807-2}}
*{{Citation |last1=Whittaker |first1=E. T. |author-link1=E. T. Whittaker |last2=Watson |first2=G. N.|author-link2=G. N. Watson |title=[[A Course of Modern Analysis]] |orig-year=1927 |year=1996 |publisher=Cambridge University Press |location=London |edition=4th |isbn=978-0-521-58807-2}}
{{refend}}
{{refend}}


==External links==
==External links==

Latest revision as of 11:47, 12 November 2025

Template:Short description Script error: No such module "about". Template:Use American English

In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence.

The polynomials arise in:

Hermite polynomials were defined by Pierre-Simon Laplace in 1810,[1][2] though in scarcely recognizable form, and studied in detail by Pafnuty Chebyshev in 1859.[3] Chebyshev's work was overlooked, and they were named later after Charles Hermite, who wrote on the polynomials in 1864, describing them as new.[4] They were consequently not new, although Hermite was the first to define the multidimensional polynomials.

Definition

Like the other classical orthogonal polynomials, the Hermite polynomials can be defined from several different starting points. Noting from the outset that there are two different standardizations in common use, one convenient method is as follows:

  • The "probabilist's Hermite polynomials" are given by Hen(x)=(1)nex22dndxnex22,
  • while the "physicist's Hermite polynomials" are given by Hn(x)=(1)nex2dndxnex2.

These equations have the form of a Rodrigues' formula and can also be written as, Hen(x)=(xddx)n1,Hn(x)=(2xddx)n1.

The two definitions are not exactly identical; each is a rescaling of the other: Hn(x)=2n2Hen(2x),Hen(x)=2n2Hn(x2).

These are Hermite polynomial sequences of different variances; see the material on variances below.

The notation He and H is that used in the standard references.[5] The polynomials Hen are sometimes denoted by Hn, especially in probability theory, because 12πex22 is the probability density function for the normal distribution with expected value 0 and standard deviation 1. The probabilist's Hermite polynomials are also called the monic Hermite polynomials, because they are monic.

  • The first eleven probabilist's Hermite polynomials are: He0(x)=1,He1(x)=x,He2(x)=x21,He3(x)=x33x,He4(x)=x46x2+3,He5(x)=x510x3+15x,He6(x)=x615x4+45x215,He7(x)=x721x5+105x3105x,He8(x)=x828x6+210x4420x2+105,He9(x)=x936x7+378x51260x3+945x,He10(x)=x1045x8+630x63150x4+4725x2945.
  • The first eleven physicist's Hermite polynomials are: H0(x)=1,H1(x)=2x,H2(x)=4x22,H3(x)=8x312x,H4(x)=16x448x2+12,H5(x)=32x5160x3+120x,H6(x)=64x6480x4+720x2120,H7(x)=128x71344x5+3360x31680x,H8(x)=256x83584x6+13440x413440x2+1680,H9(x)=512x99216x7+48384x580640x3+30240x,H10(x)=1024x1023040x8+161280x6403200x4+302400x230240.
Quick reference table
physicist's probabilist's
symbol Hn Hen
head coefficient 2n 1
differential operator (1)nex2dndxnex2 (1)nex22dndxnex22
orthogonal to ex2 e12x2
inner product Hm(x)Hn(x)ex2πdx=2nn!δmn Hem(x)Hen(x)ex222πdx=n!δnm
generating function e2xtt2=n=0Hn(x)tnn! ext12t2=n=0Hen(x)tnn!
Rodrigues' formula (2xddx)n1 (xddx)n1
recurrence relation Hn+1(x)=2xHn(x)2nHn1(x) Hen+1(x)=xHen(x)nHen1(x)

Properties

The Template:Mvarth-order Hermite polynomial is a polynomial of degree Template:Mvar. The probabilist's version Template:Mvar has leading coefficient 1, while the physicist's version Template:Mvar has leading coefficient Template:Math.

Symmetry

From the Rodrigues formulae given above, we can see that Template:Math and Template:Math are even or odd functions, with the same parity as Template:Mvar: Hn(x)=(1)nHn(x),Hen(x)=(1)nHen(x).

Orthogonality

Template:Math and Template:Math are Template:Mvarth-degree polynomials for Template:Math. These polynomials are orthogonal with respect to the weight function (measure) w(x)=ex22(for He) or w(x)=ex2(for H), i.e., we have Hm(x)Hn(x)w(x)dx=0for all mn.

Furthermore, Hm(x)Hn(x)ex2dx=π2nn!δnm, and Hem(x)Hen(x)ex22dx=2πn!δnm, where δnm is the Kronecker delta.

The probabilist polynomials are thus orthogonal with respect to the standard normal probability density function.

Completeness

The Hermite polynomials (probabilist's or physicist's) form an orthogonal basis of the Hilbert space of functions satisfying |f(x)|2w(x)dx<, in which the inner product is given by the integral f,g=f(x)g(x)w(x)dx including the Gaussian weight function Template:Math defined in the preceding section.

An orthogonal basis for Template:Math is a complete orthogonal system. For an orthogonal system, completeness is equivalent to the fact that the 0 function is the only function Template:Math orthogonal to all functions in the system.

Since the linear span of Hermite polynomials is the space of all polynomials, one has to show (in physicist case) that if Template:Mvar satisfies f(x)xnex2dx=0 for every Template:Math, then Template:Math.

One possible way to do this is to appreciate that the entire function F(z)=f(x)ezxx2dx=n=0znn!f(x)xnex2dx=0 vanishes identically. The fact then that Template:Math for every real Template:Mvar means that the Fourier transform of Template:Math is 0, hence Template:Mvar is 0 almost everywhere. Variants of the above completeness proof apply to other weights with exponential decay.

In the Hermite case, it is also possible to prove an explicit identity that implies completeness (see section on the Completeness relation below).

An equivalent formulation of the fact that Hermite polynomials are an orthogonal basis for Template:Math consists in introducing Hermite functions (see below), and in saying that the Hermite functions are an orthonormal basis for Template:Math.

Hermite's differential equation

The probabilist's Hermite polynomials are solutions of the Sturm–Liouville differential equation (e12x2u)+λe12x2u=0, where Template:Mvar is a constant. Imposing the boundary condition that Template:Mvar should be polynomially bounded at infinity, the equation has solutions only if Template:Mvar is a non-negative integer, and the solution is uniquely given by u(x)=C1Heλ(x), where C1 denotes a constant.

Rewriting the differential equation as an eigenvalue problem L[u]=uxu=λu, the Hermite polynomials Heλ(x) may be understood as eigenfunctions of the differential operator L[u] . This eigenvalue problem is called the Hermite equation, although the term is also used for the closely related equation u2xu=2λu. whose solution is uniquely given in terms of physicist's Hermite polynomials in the form u(x)=C1Hλ(x), where C1 denotes a constant, after imposing the boundary condition that Template:Mvar should be polynomially bounded at infinity.

The general solutions to the above second-order differential equations are in fact linear combinations of both Hermite polynomials and confluent hypergeometric functions of the first kind. For example, for the physicist's Hermite equation u2xu+2λu=0, the general solution takes the form u(x)=C1Hλ(x)+C2hλ(x), where C1 and C2 are constants, Hλ(x) are physicist's Hermite polynomials (of the first kind), and hλ(x) are physicist's Hermite functions (of the second kind). The latter functions are compactly represented as hλ(x)=1F1(λ2;12;x2) where 1F1(a;b;z) are Confluent hypergeometric functions of the first kind. The conventional Hermite polynomials may also be expressed in terms of confluent hypergeometric functions, see below.

With more general boundary conditions, the Hermite polynomials can be generalized to obtain more general analytic functions for complex-valued Template:Mvar. An explicit formula of Hermite polynomials in terms of contour integrals Script error: No such module "Footnotes". is also possible.

Recurrence relation

The sequence of probabilist's Hermite polynomials also satisfies the recurrence relation Hen+1(x)=xHen(x)Hen(x). Individual coefficients are related by the following recursion formula: an+1,k={(k+1)an,k+1k=0,an,k1(k+1)an,k+1k>0, and Template:Math, Template:Math, Template:Math.

For the physicist's polynomials, assuming Hn(x)=k=0nan,kxk, we have Hn+1(x)=2xHn(x)Hn(x). Individual coefficients are related by the following recursion formula: an+1,k={an,k+1k=0,2an,k1(k+1)an,k+1k>0, and Template:Math, Template:Math, Template:Math.

The Hermite polynomials constitute an Appell sequence, i.e., they are a polynomial sequence satisfying the identity Hen(x)=nHen1(x),Hn(x)=2nHn1(x).

An integral recurrence that is deduced and demonstrated in [6] is as follows: Hen+1(x)=(n+1)0xHen(t)dtHe'n(0),

Hn+1(x)=2(n+1)0xHn(t)dtH'n(0).

Equivalently, by Taylor-expanding, Hen(x+y)=k=0n(nk)xnkHek(y)=2n2k=0n(nk)Henk(x2)Hek(y2),Hn(x+y)=k=0n(nk)Hk(x)(2y)nk=2n2k=0n(nk)Hnk(x2)Hk(y2). These umbral identities are self-evident and included in the differential operator representation detailed below, Hen(x)=eD22xn,Hn(x)=2neD24xn.

In consequence, for the Template:Mvarth derivatives the following relations hold: Hen(m)(x)=n!(nm)!Henm(x)=m!(nm)Henm(x),Hn(m)(x)=2mn!(nm)!Hnm(x)=2mm!(nm)Hnm(x).

It follows that the Hermite polynomials also satisfy the recurrence relation Hen+1(x)=xHen(x)nHen1(x),Hn+1(x)=2xHn(x)2nHn1(x).

These last relations, together with the initial polynomials Template:Math and Template:Math, can be used in practice to compute the polynomials quickly.

Turán's inequalities are Hn(x)2Hn1(x)Hn+1(x)=(n1)!i=0n12nii!Hi(x)2>0.

Moreover, the following multiplication theorem holds: Hn(γx)=i=0n2γn2i(γ21)i(n2i)(2i)!i!Hn2i(x),Hen(γx)=i=0n2γn2i(γ21)i(n2i)(2i)!i!2iHen2i(x).

Explicit expression

The physicist's Hermite polynomials can be written explicitly as Hn(x)={n!l=0n2(1)n2l(2l)!(n2l)!(2x)2lfor even n,n!l=0n12(1)n12l(2l+1)!(n12l)!(2x)2l+1for odd n.

These two equations may be combined into one using the floor function: Hn(x)=n!m=0n2(1)mm!(n2m)!(2x)n2m.

The probabilist's Hermite polynomials Template:Mvar have similar formulas, which may be obtained from these by replacing the power of Template:Math with the corresponding power of Template:Math and multiplying the entire sum by Template:Math: Hen(x)=n!m=0n2(1)mm!(n2m)!xn2m2m.

Inverse explicit expression

The inverse of the above explicit expressions, that is, those for monomials in terms of probabilist's Hermite polynomials Template:Mvar are xn=n!m=0n212mm!(n2m)!Hen2m(x).

The corresponding expressions for the physicist's Hermite polynomials Template:Mvar follow directly by properly scaling this:[7] xn=n!2nm=0n21m!(n2m)!Hn2m(x).

Generating function

The Hermite polynomials are given by the exponential generating function ext12t2=n=0Hen(x)tnn!,e2xtt2=n=0Hn(x)tnn!.

This equality is valid for all complex values of Template:Mvar and Template:Mvar, and can be obtained by writing the Taylor expansion at Template:Mvar of the entire function Template:Math (in the physicist's case). One can also derive the (physicist's) generating function by using Cauchy's integral formula to write the Hermite polynomials as Hn(x)=(1)nex2dndxnex2=(1)nex2n!2πiγez2(zx)n+1dz.

Using this in the sum n=0Hn(x)tnn!, one can evaluate the remaining integral using the calculus of residues and arrive at the desired generating function.

A slight generalization states[8]e2xtt2Hk(xt)=n=0Hn+k(x)tnn!

Expected values

If Template:Mvar is a random variable with a normal distribution with standard deviation 1 and expected value Template:Mvar, then 𝔼[Hen(X)]=μn.

The moments of the standard normal (with expected value zero) may be read off directly from the relation for even indices: 𝔼[X2n]=(1)nHe2n(0)=(2n1)!!, where Template:Math is the double factorial. Note that the above expression is a special case of the representation of the probabilist's Hermite polynomials as moments: Hen(x)=12π(x+iy)ney22dy.

Integral representations

From the generating-function representation above, we see that the Hermite polynomials have a representation in terms of a contour integral, as Hen(x)=n!2πiCetxt22tn+1dt,Hn(x)=n!2πiCe2txt2tn+1dt, with the contour encircling the origin.

Using the Fourier transform of the gaussian ex2=1πet2+2ixtdt, we haveHn(x)=(1)nex2dndxnex2=(2i)nex2πtnet2+2ixtdtHen(x)=(i)nex2/22πtnet2/2+ixtdt.

Other properties

The discriminant is expressed as a hyperfactorial:[9]

Disc(Hn)=232n(n1)j=1njjDisc(Hen)=j=1njj

The addition theorem, or the summation theorem, states that[10][11]Template:Pg(k=1rak2)n2n!Hn(k=1rakxkk=1rak2)=m1+m2++mr=n,mi0k=1r{akmkmk!Hmk(xk)}for any nonzero vector a1:r.

The multiplication theorem states that[10]Hn(λx)=λn=0n/2(n)2!(1λ2)Hn2(x)for any nonzero λ.

Feldheim formula[12]Template:Pg1aπ+ex2aHm(x+yλ)Hn(x+zμ)dx=(1aλ2)m2(1aμ2)n2r=0min(m,n)r!(mr)(nr)(2a(λ2a)(μ2a))rHmr(yλ2a)Hnr(zμ2a)where a has a positive real part. As a special case,[12]Template:Pg1π+et2Hm(tsinθ+vcosθ)Hn(tcosθvsinθ)dt=(1)ncosmθsinnθHm+n(v)

Asymptotics

As Template:Math,[13] ex22Hn(x)2nπΓ(n+12)cos(x2nnπ2)For certain cases concerning a wider range of evaluation, it is necessary to include a factor for changing amplitude: ex22Hn(x)2nπΓ(n+12)cos(x2nnπ2)(1x22n+1)14=Γ(n+1)Γ(n2+1)cos(x2nnπ2)(1x22n+1)14, which, using Stirling's approximation, can be further simplified, in the limit, to ex22Hn(x)(2ne)n22cos(x2nnπ2)(1x22n+1)14.This expansion is needed to resolve the wavefunction of a quantum harmonic oscillator such that it agrees with the classical approximation in the limit of the correspondence principle. The term (1x22n+1)12 corresponds to the probability of finding a classical particle in a potential well of shape V(x)=12x2 at location x, if its total energy is n+12. This is a general method in semiclassical analysis. The semiclassical approximation breaks down near ±2n+1, the location where the classical particle would be turned back. This is a fold catastrophe, at which point the Airy function is needed.[14]

A better approximation, which accounts for the variation in frequency, is given by ex22Hn(x)(2ne)n22cos(x2n+1x23nπ2)(1x22n+1)14.

The Plancherel–Rotach asymptotics method, applied to Hermite polynomials, takes into account the uneven spacing of the zeros near the edges.[15] It makes use of the substitution x=2n+1cos(φ),0<εφπε, with which one has the uniform approximation ex22Hn(x)=2n2+14n!(πn)14(sinφ)12(sin(3π4+(n2+14)(sin2φ2φ))+O(n1)).

Similar approximations hold for the monotonic and transition regions. Specifically, if x=2n+1cosh(φ),0<εφω<, then ex22Hn(x)=2n234n!(πn)14(sinhφ)12e(n2+14)(2φsinh2φ)(1+O(n1)), while for x=2n+1+t with Template:Mvar complex and bounded, the approximation is ex22Hn(x)=π142n2+14n!n112(Ai(212n16t)+O(n23)), where Template:Math is the Airy function of the first kind.

Special values

The physicist's Hermite polynomials evaluated at zero argument Template:Math are called Hermite numbers.

Hn(0)={0for odd n,(2)n2(n1)!!for even n, which satisfy the recursion relation Template:Math. Equivalently, H2n(0)=(2)n(2n1)!!.

In terms of the probabilist's polynomials this translates to Hen(0)={0for odd n,(1)n2(n1)!!for even n.

Kibble–Slepian formula

Let M be a real n×n symmetric matrix, then the Kibble–Slepian formula states thatdet(I+M)12exTM(I+M)1x=K[1ijn(Mij/2)kijkij!]2tr(K)Hk1(x1)Hkn(xn) where K is the n(n+1)2-fold summation over all n×n symmetric matrices with non-negative integer entries, tr(K) is the trace of K, and ki is defined as kii+j=1nkij. This gives Mehler's formula when M=[0uu0].

Equivalently stated, if T is a positive semidefinite matrix, then set M=T(I+T)1, we have M(I+M)1=T, so exTTx=det(I+T)12K[1ijn(Mij/2)kijkij!]2tr(K)Hk1(x1)Hkn(xn)Equivalently stated in a form closer to the boson quantum mechanics of the harmonic oscillator:[16]πn/4det(I+M)12e12xT(IM)(I+M)1x=K[1ijnMijkij/kij!][1inki!]1/22trKψk1(x1)ψkn(xn). where each ψn(x) is the n-th eigenfunction of the harmonic oscillator, defined as ψn(x):=12nn!(1π)14e12x2Hn(x)The Kibble–Slepian formula was proposed by Kibble in 1945[17] and proven by Slepian in 1972 using Fourier analysis.[18] Foata gave a combinatorial proof[19] while Louck gave a proof via boson quantum mechanics.[16] It has a generalization for complex-argument Hermite polynomials.[20][21]

Zeroes

Let xn,1>>xn,n be the roots of Hn in descending order. Let am be the m-th zero of the Airy function Ai(x) in descending order: 0>a1>a2>. By the symmetry of Hn, we need only consider the positive half of its roots.

We have[9](2n+1)12>xn,1>xn,2>>xn,n/2>0. For each m, asymptotically at n,[9]xn,m=(2n+1)12+213(2n+1)16am+ϵn,m, where ϵn,m=O(n56), and ϵn,m<0.

See also,[22] and the formulas involving the zeroes of Laguerre polynomials.

Let Fn(t):=1n#{i:xn,it} be the cumulative distribution function for the roots of Hn, then we have the semicircle law[23]limnFn(2nt)=2π1t1s2dst(1,+1) The Stieltjes relation states that[24][25]xn,i+1jn,ij1xn,ixn,j=0 and can be physically interpreted as the equilibrium position of n particles on a line, such that each particle i is attracted to the origin by a linear force xn,i, and repelled by each other particle j by a reciprocal force 1xn,ixn,j. This can be constructed by confining n positively charged particles in 2 to the real line, and connecting each particle to the origin by a spring. This is also called the electrostatic model, and relates to the Coulomb gas interpretation of the eigenvalues of gaussian ensembles.

As the zeroes specify the polynomial up to scaling, the Stieltjes relation provides an alternative way to uniquely characterize the Hermite polynomials.

Similarly, we have[26]ixn,i2=1inn1jn,ij1(xn,ixn,j)2xn,i=1jn,ij1xn,ixn,j2n2xn,i23=1jn,ij1(xn,ixn,j)212xn,i=1jn,ij1(xn,ixn,j)3

Relations to other functions

Laguerre polynomials

The Hermite polynomials can be expressed as a special case of the Laguerre polynomials: H2n(x)=(4)nn!Ln(12)(x2)=4nn!k=0n(1)nk(n12nk)x2kk!,H2n+1(x)=2(4)nn!xLn(12)(x2)=24nn!k=0n(1)nk(n+12nk)x2k+1k!.

Hypergeometric functions

The physicist's Hermite polynomials can be expressed as a special case of the parabolic cylinder functions: Hn(x)=2nU(12n,12,x2) in the right half-plane, where Template:Math is Tricomi's confluent hypergeometric function. Similarly, H2n(x)=(1)n(2n)!n!1F1(n,12;x2),H2n+1(x)=(1)n(2n+1)!n!2x1F1(n,32;x2), where Template:Math is Kummer's confluent hypergeometric function.He2n(x)=(1)n(2n1)!!1F1(n,12;x22),He2n+1(x)=(1)n(2n+1)!!x1F1(n,32;x22).There is also[27]Hn(x)=(2x)n2F0(12n,12n+12;1x2).

Limit relations

The Hermite polynomials can be obtained as the limit of various other polynomials.[28]

As a limit of Jacobi polynomials:limαα12nPn(α,α)(α12x)=Hn(x)2nn!. As a limit of ultraspherical polynomials:limλλ12nCn(λ)(λ12x)=Hn(x)n!. As a limit of associated Laguerre polynomials:limα(2α)12nLn(α)((2α)12x+α)=(1)nn!Hn(x).

Hermite polynomial expansion

Similar to Taylor expansion, some functions are expressible as an infinite sum of Hermite polynomials. Specifically, if ex2f(x)2dx<, then it has an expansion in the physicist's Hermite polynomials.[29]

For f that does not grow too fast, it has Hermite expansion f(x)=k𝔼X𝒩(0,1)[f(k)(X)]k!Hek(x).[30]

Given such f, the partial sums of the Hermite expansion of f converges to in the Lp norm if and only if 4/3<p<4.[31]xn=n!2nk=0n/21k!(n2k)!Hn2k(x)=n!k=0n/21k!2k(n2k)!Hen2k(x),n+.eax=ea2/4n0ann!2nHn(x),a,x.ea2x2=n0(1)na2nn!(1+a2)n+1/222nH2n(x).erf(x)=2π0xet2dt=12πk0(1)kk!(2k+1)23kH2k+1(x).cosh(ax)=ea2/2m=0a2m(2m)!He2m(x),sinh(ax)=ea2/2m=0a2m+1(2m+1)!He2m+1(x)cos(ax)=ea2/2m=0(1)ma2m(2m)!He2m(x),sin(ax)=ea2/2m=0(1)ma2m+1(2m+1)!He2m+1(x)δ=12πk=0(1)k(2k)!!He2k1x>0=12He0+12πk=0(1)k(2k)!!(2k+1)He2k+1The probabilist's Hermite expansion for the power functions are the same as the power expansions for the probabilist's Hermite polynomials, except with positive signs. For example:He3(x)=x33x,x3=He3(x)+3He1(x)

Differential-operator representation

The probabilist's Hermite polynomials satisfy the identity[32] Hen(x)=eD22xn, where Template:Mvar represents differentiation with respect to Template:Mvar, and the exponential is interpreted by expanding it as a power series. There are no delicate questions of convergence of this series when it operates on polynomials, since all but finitely many terms vanish.

Since the power-series coefficients of the exponential are well known, and higher-order derivatives of the monomial Template:Math can be written down explicitly, this differential-operator representation gives rise to a concrete formula for the coefficients of Template:Math that can be used to quickly compute these polynomials.

Since the formal expression for the Weierstrass transform Template:Mvar is Template:Math, we see that the Weierstrass transform of Template:Math is Template:Math. Essentially the Weierstrass transform thus turns a series of Hermite polynomials into a corresponding Maclaurin series.

The existence of some formal power series Template:Math with nonzero constant coefficient, such that Template:Math, is another equivalent to the statement that these polynomials form an Appell sequence. Since they are an Appell sequence, they are a fortiori a Sheffer sequence.

Script error: No such module "labelled list hatnote".

Generalizations

Variance

Script error: No such module "anchor".The probabilist's Hermite polynomials defined above are orthogonal with respect to the standard normal probability distribution, whose density function is 12πex22, which has expected value 0 and variance 1.

Scaling, one may analogously speak of generalized Hermite polynomials[33] Hen[α](x) of variance Template:Mvar, where Template:Mvar is any positive number. These are then orthogonal with respect to the normal probability distribution whose density function is 12παex22α. They are given by Hen[α](x)=αn2Hen(xα)=(α2)n2Hn(x2α)=eαD22(xn).

Now, if Hen[α](x)=k=0nhn,k[α]xk, then the polynomial sequence whose Template:Mvarth term is (Hen[α]He[β])(x)k=0nhn,k[α]Hek[β](x) is called the umbral composition of the two polynomial sequences. It can be shown to satisfy the identities (Hen[α]He[β])(x)=Hen[α+β](x) and Hen[α+β](x+y)=k=0n(nk)Hek[α](x)Henk[β](y). The last identity is expressed by saying that this parameterized family of polynomial sequences is known as a cross-sequence. (See the above section on Appell sequences and on the differential-operator representation, which leads to a ready derivation of it. This binomial type identity, for Template:Math, has already been encountered in the above section on #Recursion relations.)

"Negative variance"

Since polynomial sequences form a group under the operation of umbral composition, one may denote by Hen[α](x) the sequence that is inverse to the one similarly denoted, but without the minus sign, and thus speak of Hermite polynomials of negative variance. For Template:Math, the coefficients of Hen[α](x) are just the absolute values of the corresponding coefficients of Hen[α](x).

These arise as moments of normal probability distributions: The Template:Mvarth moment of the normal distribution with expected value Template:Mvar and variance Template:Math is E[Xn]=Hen[σ2](μ), where Template:Mvar is a random variable with the specified normal distribution. A special case of the cross-sequence identity then says that k=0n(nk)Hek[α](x)Henk[α](y)=Hen[0](x+y)=(x+y)n.

Hermite functions

Definition

One can define the Hermite functions (often called Hermite-Gaussian functions) from the physicist's polynomials: ψn(x)=(2nn!π)12ex22Hn(x)=(1)n(2nn!π)12ex22dndxnex2. Thus, 2(n+1)ψn+1(x)=(xddx)ψn(x).

Since these functions contain the square root of the weight function and have been scaled appropriately, they are orthonormal: ψn(x)ψm(x)dx=δnm, and they form an orthonormal basis of Template:Math. This fact is equivalent to the corresponding statement for Hermite polynomials (see above).

The Hermite functions are closely related to the Whittaker function Script error: No such module "Footnotes". Template:Math: Dn(z)=(n!π)12ψn(z2)=(1)nez24dndznez22 and thereby to other parabolic cylinder functions.

The Hermite functions satisfy the differential equation ψn(x)+(2n+1x2)ψn(x)=0. This equation is equivalent to the Schrödinger equation for a harmonic oscillator in quantum mechanics, so these functions are the eigenfunctions.

File:Herm5.svg
Hermite functions: 0 (blue, solid), 1 (orange, dashed), 2 (green, dot-dashed), 3 (red, dotted), 4 (purple, solid), and 5 (brown, dashed)

ψ0(x)=π14e12x2,ψ1(x)=2π14xe12x2,ψ2(x)=(2π14)1(2x21)e12x2,ψ3(x)=(3π14)1(2x33x)e12x2,ψ4(x)=(26π14)1(4x412x2+3)e12x2,ψ5(x)=(215π14)1(4x520x3+15x)e12x2.

File:Herm50.svg
Hermite functions: 0 (blue, solid), 2 (orange, dashed), 4 (green, dot-dashed), and 50 (red, solid)

Recursion relation

Following recursion relations of Hermite polynomials, the Hermite functions obey ψn(x)=n2ψn1(x)n+12ψn+1(x) and xψn(x)=n2ψn1(x)+n+12ψn+1(x).

Extending the first relation to the arbitrary Template:Mvarth derivatives for any positive integer Template:Mvar leads to ψn(m)(x)=k=0m(mk)(1)k2mk2n!(nm+k)!ψnm+k(x)Hek(x).

This formula can be used in connection with the recurrence relations for Template:Math and Template:Math to calculate any derivative of the Hermite functions efficiently.

Cramér's inequality

For real Template:Mvar, the Hermite functions satisfy the following bound due to Harald Cramér[34][35] and Jack Indritz:[36] |ψn(x)|π14.

As eigenfunctions of the Fourier transform

The Hermite functions Template:Math are a set of eigenfunctions of the continuous Fourier transform Template:Mathcal. To see this, take the physicist's version of the generating function and multiply by Template:Math. This gives e12x2+2xtt2=n=0e12x2Hn(x)tnn!.

The Fourier transform of the left side is given by {e12x2+2xtt2}(k)=12πeixke12x2+2xtt2dx=e12k22kit+t2=n=0e12k2Hn(k)(it)nn!.

The Fourier transform of the right side is given by {n=0e12x2Hn(x)tnn!}=n=0{e12x2Hn(x)}tnn!.

Equating like powers of Template:Mvar in the transformed versions of the left and right sides finally yields {e12x2Hn(x)}=(i)ne12k2Hn(k).

The Hermite functions Template:Math are thus an orthonormal basis of Template:Math, which diagonalizes the Fourier transform operator.[37] In short, we have:12πeikxψn(x)dx=(i)nψn(k),12πe+ikxψn(k)dk=inψn(x)

Wigner distribution functions

The Wigner distribution function of the Template:Mvarth-order Hermite function is related to the Template:Mvarth-order Laguerre polynomial. The Laguerre polynomials are Ln(x):=k=0n(nk)(1)kk!xk, leading to the oscillator Laguerre functions ln(x):=ex2Ln(x). For all natural integers Template:Mvar, one can prove that[38] that Wψn(t,f)=2(1)nln(4π(t2+f2)), where the Wigner distribution of a function Template:Math is defined as Wψ(t,f)=ψ(t+τ2)ψ(tτ2)*e2πiτfdτ. This is a fundamental result for the quantum harmonic oscillator discovered by Hip Groenewold in 1946 in his PhD thesis.[39] It is the standard paradigm of quantum mechanics in phase space.

There are further relations between the two families of polynomials.

Partial overlap integrals

It can be shown[40][41] that the overlap between two different Hermite functions (k) over a given interval has the exact result: x1x2ψk(x)ψ(x)dx=12(k)(ψk(x2)ψ(x2)ψ(x2)ψk(x2)ψk(x1)ψ(x1)+ψ(x1)ψk(x1)).

Combinatorial interpretation of coefficients

In the Hermite polynomial Template:Math of variance 1, the absolute value of the coefficient of Template:Math is the number of (unordered) partitions of an Template:Mvar-element set into Template:Mvar singletons and Template:Math (unordered) pairs. Equivalently, it is the number of involutions of an Template:Mvar-element set with precisely Template:Mvar fixed points, or in other words, the number of matchings in the complete graph on Template:Mvar vertices that leave Template:Mvar vertices uncovered (indeed, the Hermite polynomials are the matching polynomials of these graphs). The sum of the absolute values of the coefficients gives the total number of partitions into singletons and pairs, the so-called telephone numbers

1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496,... (sequence A000085 in the OEIS).

This combinatorial interpretation can be related to complete exponential Bell polynomials as Hen(x)=Bn(x,1,0,,0), where Template:Math for all Template:Math.

These numbers may also be expressed as a special value of the Hermite polynomials:[42] T(n)=Hen(i)in.

Completeness relation

The Christoffel–Darboux formula for Hermite polynomials reads k=0nHk(x)Hk(y)k!2k=1n!2n+1Hn(y)Hn+1(x)Hn(x)Hn+1(y)xy.

Moreover, the following completeness identity for the above Hermite functions holds in the sense of distributions: n=0ψn(x)ψn(y)=δ(xy), where Template:Mvar is the Dirac delta function, Template:Math the Hermite functions, and Template:Math represents the Lebesgue measure on the line Template:Math in Template:Math, normalized so that its projection on the horizontal axis is the usual Lebesgue measure.

This distributional identity follows Template:Harvtxt by taking Template:Math in Mehler's formula, valid when Template:Math: E(x,y;u):=n=0unψn(x)ψn(y)=1π(1u2)exp(1u1+u(x+y)241+u1u(xy)24), which is often stated equivalently as a separable kernel,[43][44] n=0Hn(x)Hn(y)n!(u2)n=11u2e2u1+uxyu21u2(xy)2.

The function Template:Math is the bivariate Gaussian probability density on Template:Math, which is, when Template:Mvar is close to 1, very concentrated around the line Template:Math, and very spread out on that line. It follows that n=0unf,ψnψn,g=E(x,y;u)f(x)g(y)dxdyf(x)g(x)dx=f,g when Template:Math and Template:Math are continuous and compactly supported.

This yields that Template:Mvar can be expressed in Hermite functions as the sum of a series of vectors in Template:Math, namely, f=n=0f,ψnψn.

In order to prove the above equality for Template:Math, the Fourier transform of Gaussian functions is used repeatedly: ρπeρ2x24=eisxs2ρ2dsfor ρ>0.

The Hermite polynomial is then represented as Hn(x)=(1)nex2dndxn(12πeisxs24ds)=(1)nex212π(is)neisxs24ds.

With this representation for Template:Math and Template:Math, it is evident that E(x,y;u)=n=0un2nn!πHn(x)Hn(y)ex2+y22=ex2+y224ππ(n=012nn!(ust)n)eisx+itys24t24dsdt=ex2+y224ππeust2eisx+itys24t24dsdt, and this yields the desired resolution of the identity result, using again the Fourier transform of Gaussian kernels under the substitution s=σ+τ2,t=στ2.

See also

Template:Div col

Template:Div col end

Notes

Template:Reflist

References

Template:Refbegin

Template:Refend


External links

Template:Authority control

  1. Script error: No such module "Citation/CS1".
  2. Script error: No such module "citation/CS1". Collected in Œuvres complètes VII.
  3. Script error: No such module "Citation/CS1". Collected in Œuvres I, 501–508.
  4. Script error: No such module "Citation/CS1". Collected in Œuvres II, 293–308.
  5. Template:Harvs and Abramowitz & Stegun.
  6. Hurtado Benavides, Miguel Ángel. (2020). De las sumas de potencias a las sucesiones de Appell y su caracterización a través de funcionales. [Tesis de maestría]. Universidad Sergio Arboleda.
  7. Script error: No such module "citation/CS1".
  8. (Rainville 1971), p. 198
  9. a b c Script error: No such module "citation/CS1".
  10. a b Script error: No such module "citation/CS1".
  11. Script error: No such module "citation/CS1".
  12. a b Feldheim, Ervin. "Développements en série de polynômes d’Hermite et de Laguerrea l’aide des transformations de Gauss et de Hankel." Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 435 (1940). Part I, II, III
  13. Script error: No such module "Footnotes"., 13.6.38 and 13.5.16.
  14. Script error: No such module "Citation/CS1".
  15. Script error: No such module "Footnotes".
  16. a b Script error: No such module "Citation/CS1".
  17. Script error: No such module "Citation/CS1".
  18. Script error: No such module "Citation/CS1".
  19. Script error: No such module "Citation/CS1".
  20. Script error: No such module "Citation/CS1".
  21. Script error: No such module "Citation/CS1".
  22. Script error: No such module "Footnotes".
  23. Script error: No such module "Citation/CS1".
  24. Script error: No such module "Citation/CS1".
  25. Script error: No such module "Footnotes".
  26. Script error: No such module "Citation/CS1".
  27. DLMF Equation 18.5.13
  28. DLMF §18.7(iii) Limit Relations
  29. Script error: No such module "citation/CS1".
  30. Script error: No such module "Citation/CS1".
  31. Script error: No such module "Citation/CS1".
  32. Script error: No such module "citation/CS1".
  33. Script error: No such module "citation/CS1".
  34. Script error: No such module "Footnotes"..
  35. Script error: No such module "Footnotes"..
  36. Script error: No such module "citation/CS1".
  37. In this case, we used the unitary version of the Fourier transform, so the eigenvalues are Template:Math. The ensuing resolution of the identity then serves to define powers, including fractional ones, of the Fourier transform, to wit a Fractional Fourier transform generalization, in effect a Mehler kernel.
  38. Script error: No such module "citation/CS1".
  39. Script error: No such module "Citation/CS1".
  40. Script error: No such module "citation/CS1".
  41. Script error: No such module "citation/CS1".
  42. Script error: No such module "citation/CS1".
  43. Script error: No such module "citation/CS1".. See p. 174, eq. (18) and p. 173, eq. (13).
  44. Script error: No such module "Footnotes"., 10.13 (22).