Unitary matrix: Difference between revisions

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
imported>Tc14Hd
 
imported>Quantling
Use math font
 
(2 intermediate revisions by 2 users not shown)
Line 40: Line 40:


==Elementary constructions==
==Elementary constructions==
=== 2 × 2 unitary matrix ===
=== 2 × 2 unitary matrix ===
One general expression of a {{nobr|2 × 2}} unitary matrix is
One general expression of a {{math|{{times|2|2}}}} unitary matrix is
 
<math display=block>U = \begin{bmatrix}
<math display=block>U = \begin{bmatrix}
  a & b \\
  a & b \\
Line 51: Line 49:
\left| a \right|^2 + \left| b \right|^2 = 1\ ,</math>
\left| a \right|^2 + \left| b \right|^2 = 1\ ,</math>


which depends on 4&nbsp;real parameters (the phase of {{mvar|a}}, the phase of {{mvar|b}}, the relative magnitude between {{mvar|a}} and {{mvar|b}}, and the angle {{mvar|φ}}). The form is configured so the [[determinant]] of such a matrix is
which depends on 4&nbsp;real parameters (the phase of {{mvar|a}}, the phase of {{mvar|b}}, the relative magnitude between {{mvar|a}} and {{mvar|b}}, and the angle {{mvar|φ}}) and * is the [[complex conjugate]]. The form is configured so the [[determinant]] of such a matrix is
<math display=block> \det(U) = e^{i \varphi} ~. </math>
<math display=block> \det(U) = e^{i \varphi} ~. </math>


The sub-group of those elements <math>\ U\ </math> with <math>\ \det(U) = 1\ </math> is called the [[Special unitary group#The group SU(2)|special unitary group]] SU(2).
The sub-group of those elements <math>U</math> with <math>\det(U) = 1</math> is called the [[Special unitary group#The group SU(2)|special unitary group]] SU(2).


Among several alternative forms, the matrix {{mvar|U}} can be written in this form:
Among several alternative forms, the matrix {{mvar|U}} can be written in this form:
Line 62: Line 60:
\end{bmatrix}\ ,</math>
\end{bmatrix}\ ,</math>


where <math>\ e^{i\alpha} \cos \theta = a\ </math> and <math>\ e^{i\beta} \sin \theta = b\ ,</math> above, and the angles <math>\ \varphi, \alpha, \beta, \theta\ </math> can take any values.
where <math>e^{i\alpha} \cos \theta = a</math> and <math>e^{i\beta} \sin \theta = b,</math> above, and the angles <math>\varphi, \alpha, \beta, \theta</math> can take any values.


By introducing <math>\ \alpha = \psi + \delta\ </math> and <math>\ \beta = \psi - \delta\ ,</math> has the following factorization:
By introducing <math>\alpha = \psi + \delta</math> and <math>\beta = \psi - \delta,</math> has the following factorization:


<math display=block> U = e^{i\varphi /2} \begin{bmatrix}
<math display=block> U = e^{i\varphi /2} \begin{bmatrix}
Line 80: Line 78:
</math>
</math>


This expression highlights the relation between {{nobr|2 × 2}} unitary matrices and {{nobr|2 × 2}} [[Orthogonal matrix|orthogonal matrices]] of angle {{mvar|θ}}.
This expression highlights the relation between {{math|{{times|2|2}}}} unitary matrices and {{math|{{times|2|2}}}} [[Orthogonal matrix|orthogonal matrices]] of angle {{mvar|θ}}.


Another factorization is<ref>{{cite journal |last1=Führ |first1=Hartmut |last2=Rzeszotnik |first2=Ziemowit |year=2018 |title=A note on factoring unitary matrices |journal=Linear Algebra and Its Applications |volume=547 |pages=32–44 |doi=10.1016/j.laa.2018.02.017 |s2cid=125455174 |issn=0024-3795|doi-access=free }}</ref>
Another factorization is<ref>{{cite journal |last1=Führ |first1=Hartmut |last2=Rzeszotnik |first2=Ziemowit |year=2018 |title=A note on factoring unitary matrices |journal=Linear Algebra and Its Applications |volume=547 |pages=32–44 |doi=10.1016/j.laa.2018.02.017 |s2cid=125455174 |issn=0024-3795|doi-access=free }}</ref>
Line 98: Line 96:
</math>
</math>


Many other factorizations of a unitary matrix in basic matrices are possible.<ref>{{cite book |last=Williams |first=Colin P. |year=2011 |section=Quantum gates |title=Explorations in Quantum Computing |pages=82 |editor-last=Williams |editor-first=Colin P. |series=Texts in Computer Science |place=London, UK |publisher=Springer |lang=en |doi=10.1007/978-1-84628-887-6_2 |isbn=978-1-84628-887-6}}</ref><ref>{{cite book |last1=Nielsen |first1=M.A. |author1-link=Michael Nielsen |last2=Chuang |first2=Isaac |author2-link=Isaac Chuang |year=2010 |title=Quantum Computation and Quantum Information |publisher=[[Cambridge University Press]] |isbn=978-1-10700-217-3 |place=Cambridge, UK |oclc=43641333 |url=https://www.cambridge.org/9781107002173 |page=20}}</ref><ref name=Barenco>{{cite journal | last1=Barenco | first1=Adriano | last2=Bennett | first2=Charles H. | last3=Cleve | first3=Richard | last4=DiVincenzo | first4=David P. | last5=Margolus | first5=Norman | last6=Shor | first6=Peter | last7=Sleator | first7=Tycho | last8=Smolin | first8=John A. | last9=Weinfurter | first9=Harald | display-authors=6 | date=1995-11-01 | df=dmy-all | title=Elementary gates for quantum computation | journal=[[Physical Review A]] | publisher=American Physical Society (APS) | volume=52 | issue=5 | issn=1050-2947 | doi=10.1103/physreva.52.3457 | pages=3457–3467, esp.p. 3465 | pmid=9912645 | arxiv=quant-ph/9503016 | bibcode=1995PhRvA..52.3457B | s2cid=8764584 }}</ref><ref>{{cite journal |last=Marvian |first=Iman |date=2022-01-10 |df=dmy-all  |title=Restrictions on realizable unitary operations imposed by symmetry and locality  |journal=Nature Physics |volume=18 |issue=3 |pages=283–289 |arxiv=2003.05524 |doi=10.1038/s41567-021-01464-0 |bibcode=2022NatPh..18..283M |s2cid=245840243 |issn=1745-2481 |lang=en |url=https://www.nature.com/articles/s41567-021-01464-0}}</ref><ref>{{cite journal |last=Jarlskog |first = Cecilia |date=2006 |title=Recursive parameterisation and invariant phases of unitary matrices |journal = Journal of Mathematical Physics |volume = 47 |issue = 1 |page = 013507 |doi = 10.1063/1.2159069 |arxiv=math-ph/0510034|bibcode = 2006JMP....47a3507J }}</ref><ref>{{cite journal |author=Alhambra, Álvaro M. |date=10 January 2022 |title=Forbidden by symmetry |journal=[[Nature (journal)|Nature Physics]] |volume=18 |issue=3 |pages=235–236 |issn=1745-2481 |doi=10.1038/s41567-021-01483-x |bibcode=2022NatPh..18..235A |s2cid=256745894 |department=News & Views |url=https://www.nature.com/articles/s41567-021-01483-x.epdf?sharing_token=cb9JltmO0c_GuA_zyl_Hn9RgN0jAjWel9jnR3ZoTv0N2eMl-wQgGXVDdGkt0dHblV7Y2XiScmBn7eBbLkk2wN8fTlUuAcjP8wOfRS37lCMALVlmwQ72SNethITLikGw1OaeWVi_dwhQkvNW-wS5wsbz_fc5pIxAQO3XEghzc25Y%3D |quote=The physics of large systems is often understood as the outcome of the local operations among its components. Now, it is shown that this picture may be incomplete in quantum systems whose interactions are constrained by symmetries.}}</ref>
Many other factorizations of a unitary matrix in basic matrices are possible.<ref>{{cite book |last=Williams |first=Colin P. |year=2011 |section=Quantum gates |title=Explorations in Quantum Computing |pages=82 |editor-last=Williams |editor-first=Colin P. |series=Texts in Computer Science |place=London, UK |publisher=Springer |lang=en |doi=10.1007/978-1-84628-887-6_2 |isbn=978-1-84628-887-6}}</ref><ref>{{cite book |last1=Nielsen |first1=M.A. |author1-link=Michael Nielsen |last2=Chuang |first2=Isaac |author2-link=Isaac Chuang |year=2010 |title=Quantum Computation and Quantum Information |publisher=[[Cambridge University Press]] |isbn=978-1-10700-217-3 |place=Cambridge, UK |oclc=43641333 |url=https://www.cambridge.org/9781107002173 |page=20}}</ref><ref name=Barenco>{{cite journal | last1=Barenco | first1=Adriano | last2=Bennett | first2=Charles H. | last3=Cleve | first3=Richard | last4=DiVincenzo | first4=David P. | last5=Margolus | first5=Norman | last6=Shor | first6=Peter | last7=Sleator | first7=Tycho | last8=Smolin | first8=John A. | last9=Weinfurter | first9=Harald | display-authors=6 | date=1995-11-01 | df=dmy-all | title=Elementary gates for quantum computation | journal=[[Physical Review A]] | publisher=American Physical Society (APS) | volume=52 | issue=5 | issn=1050-2947 | doi=10.1103/physreva.52.3457 | pages=3457–3467, esp.p. 3465 | pmid=9912645 | arxiv=quant-ph/9503016 | bibcode=1995PhRvA..52.3457B | s2cid=8764584 }}</ref><ref>{{cite journal |last=Marvian |first=Iman |date=2022-01-10 |df=dmy-all  |title=Restrictions on realizable unitary operations imposed by symmetry and locality  |journal=Nature Physics |volume=18 |issue=3 |pages=283–289 |arxiv=2003.05524 |doi=10.1038/s41567-021-01464-0 |bibcode=2022NatPh..18..283M |s2cid=245840243 |issn=1745-2481 |lang=en |url=https://www.nature.com/articles/s41567-021-01464-0}}</ref><ref>{{cite journal |last=Jarlskog |first = Cecilia |date=2006 |title=Recursive parameterisation and invariant phases of unitary matrices |journal = Journal of Mathematical Physics |volume = 47 |issue = 1 |page = 013507 |doi = 10.1063/1.2159069 |arxiv=math-ph/0510034|bibcode = 2006JMP....47a3507J }}</ref><ref>{{cite journal |author=Alhambra, Álvaro M. |date=10 January 2022 |title=Forbidden by symmetry |journal=[[Nature (journal)|Nature Physics]] |volume=18 |issue=3 |pages=235–236 |issn=1745-2481 |doi=10.1038/s41567-021-01483-x |bibcode=2022NatPh..18..235A |s2cid=256745894 |department=News & Views |url=https://www.nature.com/articles/s41567-021-01483-x.epdf?sharing_token=cb9JltmO0c_GuA_zyl_Hn9RgN0jAjWel9jnR3ZoTv0N2eMl-wQgGXVDdGkt0dHblV7Y2XiScmBn7eBbLkk2wN8fTlUuAcjP8wOfRS37lCMALVlmwQ72SNethITLikGw1OaeWVi_dwhQkvNW-wS5wsbz_fc5pIxAQO3XEghzc25Y%3D |quote=The physics of large systems is often understood as the outcome of the local operations among its components. Now, it is shown that this picture may be incomplete in quantum systems whose interactions are constrained by symmetries.|url-access=subscription }}</ref>


==See also==
==See also==

Latest revision as of 00:16, 25 September 2025

Template:Short description Template:For multi

In linear algebra, an invertible complex square matrix Template:Mvar is unitary if its matrix inverse Template:Math equals its conjugate transpose Template:Math, that is, if

U*U=UU*=I,

where Template:Mvar is the identity matrix.

In physics, especially in quantum mechanics, the conjugate transpose is referred to as the Hermitian adjoint of a matrix and is denoted by a dagger (Template:Tmath), so the equation above is written

UU=UU=I.

A complex matrix Template:Mvar is special unitary if it is unitary and its matrix determinant equals Template:Math.

For real numbers, the analogue of a unitary matrix is an orthogonal matrix. Unitary matrices have significant importance in quantum mechanics because they preserve norms, and thus, probability amplitudes.

Properties

For any unitary matrix Template:Mvar of finite size, the following hold:

For any nonnegative integer Template:Math, the set of all Template:Math unitary matrices with matrix multiplication forms a group, called the unitary group Template:Math.

Every square matrix with unit Euclidean norm is the average of two unitary matrices.[1]

Equivalent conditions

If U is a square, complex matrix, then the following conditions are equivalent:[2]

  1. U is unitary.
  2. U* is unitary.
  3. U is invertible with U1=U*.
  4. The columns of U form an orthonormal basis of n with respect to the usual inner product. In other words, U*U=I.
  5. The rows of U form an orthonormal basis of n with respect to the usual inner product. In other words, UU*=I.
  6. U is an isometry with respect to the usual norm. That is, Ux2=x2 for all xn, where x2=i=1n|xi|2.
  7. U is a normal matrix (equivalently, there is an orthonormal basis formed by eigenvectors of U) with eigenvalues lying on the unit circle.

Elementary constructions

2 × 2 unitary matrix

One general expression of a Template:Math unitary matrix is U=[abeiφb*eiφa*],|a|2+|b|2=1 ,

which depends on 4 real parameters (the phase of Template:Mvar, the phase of Template:Mvar, the relative magnitude between Template:Mvar and Template:Mvar, and the angle Template:Mvar) and * is the complex conjugate. The form is configured so the determinant of such a matrix is det(U)=eiφ.

The sub-group of those elements U with det(U)=1 is called the special unitary group SU(2).

Among several alternative forms, the matrix Template:Mvar can be written in this form:  U=eiφ/2[eiαcosθeiβsinθeiβsinθeiαcosθ] ,

where eiαcosθ=a and eiβsinθ=b, above, and the angles φ,α,β,θ can take any values.

By introducing α=ψ+δ and β=ψδ, has the following factorization:

U=eiφ/2[eiψ00eiψ][cosθsinθsinθcosθ][eiδ00eiδ].

This expression highlights the relation between Template:Math unitary matrices and Template:Math orthogonal matrices of angle Template:Mvar.

Another factorization is[3]

U=[cosρsinρsinρcosρ][eiξ00eiζ][cosσsinσsinσcosσ].

Many other factorizations of a unitary matrix in basic matrices are possible.[4][5][6][7][8][9]

See also

Template:Div col begin

Template:Div col end

References

Template:Reflist

External links

  • Script error: No such module "Template wrapper".
  • Script error: No such module "Template wrapper".Template:Main other
  • Script error: No such module "citation/CS1".

Template:Matrix classes

  1. Script error: No such module "Citation/CS1".
  2. Script error: No such module "citation/CS1".
  3. Script error: No such module "Citation/CS1".
  4. Script error: No such module "citation/CS1".
  5. Script error: No such module "citation/CS1".
  6. Script error: No such module "Citation/CS1".
  7. Script error: No such module "Citation/CS1".
  8. Script error: No such module "Citation/CS1".
  9. Script error: No such module "Citation/CS1".