Universality class: Difference between revisions

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
imported>Stepwise Continuous Dysfunction
External links: this is more of a "Further reading" section than just a list of websites, so let's treat it with a smidge of dignity
imported>Sylvain Ribault
Lead section: style
 
Line 1: Line 1:
{{Short description|Collection of models with the same renormalization group flow limit}}
{{Short description|Collection of models with the same renormalization group flow limit}}
{{More references|date=December 2017}}
{{More references|date=December 2017}}
In [[statistical mechanics]], a '''universality class''' is a collection of [[mathematical model]]s which share a single [[scale invariance|scale-invariant]] limit under the process of [[renormalization group]] flow. While the models within a class may differ dramatically at finite scales, their behavior will become increasingly similar as the limit scale is approached. In particular, [[asymptotic]] phenomena such as [[critical exponent]]s will be the same for all models in the class.
In [[statistical mechanics]], a '''universality class''' is a set of [[mathematical model]]s which share a [[scale invariance|scale-invariant]] limit under [[renormalization group]] flow. While the models within a class may differ at finite scales, their behavior become increasingly similar as the limit scale is approached. In particular, [[asymptotic]] phenomena such as [[critical exponent]]s are the same for all models in the class.


Some well-studied universality classes are the ones containing the [[Ising model]] or the [[percolation theory]] at their respective [[phase transition]] points; these are both families of classes, one for each lattice dimension. Typically, a family of universality classes will have a lower and upper [[critical dimension]]: below the lower critical dimension, the universality class becomes degenerate (this dimension is 2d for the Ising model, or for directed percolation, but 1d for undirected percolation), and above the upper critical dimension the critical exponents stabilize and can be calculated by an analog of [[mean-field theory]] (this dimension is 4d for Ising or for directed percolation, and 6d for undirected percolation).
Well-studied examples include the universality classes of the [[Ising model]] or the [[percolation theory]] at their respective [[phase transition]] points; these are both families of classes, one for each lattice dimension. Typically, a family of universality classes has a lower and upper [[critical dimension]]: below the lower critical dimension, the universality class becomes degenerate (this dimension is 2 for the Ising model, or for directed percolation, but 1 for undirected percolation), and above the upper critical dimension the critical exponents stabilize and can be calculated by an analog of [[mean-field theory]] (this dimension is 4 for Ising or for directed percolation, and 6 for undirected percolation).


==List of critical exponents==
==List of critical exponents==
Line 13: Line 13:
*The exponent <math>\delta</math> relates the order parameter to the source field at the critical temperature, where this relationship becomes nonlinear. We have <math>J = \Psi^\delta</math> (hence <math>\Psi = J^{1/\delta}</math>), with the same meanings as before.
*The exponent <math>\delta</math> relates the order parameter to the source field at the critical temperature, where this relationship becomes nonlinear. We have <math>J = \Psi^\delta</math> (hence <math>\Psi = J^{1/\delta}</math>), with the same meanings as before.
*The exponent <math>\nu</math> relates the size of correlations (i.e. patches of the ordered phase) to the temperature; away from the critical point these are characterized by a [[correlation length]] <math>\xi</math>. We have <math>\xi = \tau^{-\nu}</math>.
*The exponent <math>\nu</math> relates the size of correlations (i.e. patches of the ordered phase) to the temperature; away from the critical point these are characterized by a [[correlation length]] <math>\xi</math>. We have <math>\xi = \tau^{-\nu}</math>.
*The exponent <math>\eta</math> measures the size of correlations at the critical temperature. It is defined so that the [[correlation function]] scales as <math>r^{-d+2-\eta}</math>.
*The exponent <math>\eta</math> measures the size of correlations at the critical temperature. It is defined so that the [[correlation function]] of the [[order parameter]] scales as <math>r^{-d+2-\eta}</math>.
*The exponent <math>\sigma</math>, used in [[percolation theory]], measures the size of the largest clusters (roughly, the largest ordered blocks) at 'temperatures' (connection probabilities) below the critical point. So <math>s_{\max} \sim (p_c - p)^{-1/\sigma}</math>.
*The exponent <math>\sigma</math>, used in [[percolation theory]], measures the size of the largest clusters (roughly, the largest ordered blocks) at 'temperatures' (connection probabilities) below the critical point. So <math>s_{\max} \sim (p_c - p)^{-1/\sigma}</math>.
*The exponent <math>\tau</math>, also from [[percolation theory]], measures the number of size ''s'' clusters far from <math>s_{\max}</math> (or the number of clusters at criticality): <math>n_s \sim s^{-\tau} f(s/s_{\max})</math>, with the <math>f</math> factor removed at critical probability.
*The exponent <math>\tau</math>, also from [[percolation theory]], measures the number of size ''s'' clusters far from <math>s_{\max}</math> (or the number of clusters at criticality): <math>n_s \sim s^{-\tau} f(s/s_{\max})</math>, with the <math>f</math> factor removed at critical probability.


For symmetries, the group listed gives the symmetry of the order parameter. The group <math>\mathrm{Dih}_n</math> is the [[dihedral group]], the symmetry group of the ''n''-gon, <math>S_n</math> is the ''n''-element [[symmetric group]], <math>\mathrm{Oct}</math> is the [[octahedral group]], and <math>O(n)</math> is the [[orthogonal group]] in ''n'' dimensions. '''1''' is the [[trivial group]].
===Ising model===
 
{| class="wikitable"
|-
!class
! dimension !! Symmetry !!<math>\alpha</math> !! <math>\beta</math> !! <math>\gamma</math> !! <math>\delta</math> !!<math>\nu</math> !! <math>\eta</math>
|-  align="center"
|3-state [[Potts model|Potts]]
| 2 ||<math>S_3</math>||{{sfrac|1|3}} || {{sfrac|1|9}} || {{sfrac|13|9}}|| 14 || {{sfrac|5|6}} ||  {{sfrac|4|15}}
|-  align="center"
|Ashkin–Teller (4-state Potts)
| 2 ||<math>S
_4</math>||{{sfrac|2|3}} || {{sfrac|1|12}} || {{sfrac|7|6}} || 15 || {{sfrac|2|3}} || {{sfrac|1|4}}
|-  align="center"
| rowspan="6" |[[Percolation critical exponents|Ordinary percolation]]
| 1 || 1 || 1 || 0 || 1 || <math>\infty</math> || 1 || 1
|-  align="center"
| 2 || 1 || &minus;{{sfrac|2|3}} || {{sfrac|5|36}} || {{sfrac|43|18}} || {{sfrac|91|5}} || {{sfrac|4|3}} || {{sfrac|5|24}} <!-- || [[Percolation critical exponents|Ordinary percolation]] -->
|-  align="center"
| 3 || 1 || &minus;0.625(3) || 0.4181(8) || 1.793(3) || 5.29(6) || 0.87619(12) || 0.46(8) or 0.59(9) <!-- || [[Percolation critical exponents|Ordinary percolation]] -->
|-  align="center"
| 4 || 1 || &minus;0.756(40) || 0.657(9) || 1.422(16) || 3.9 or 3.198(6) || 0.689(10) || &minus;0.0944(28) <!-- || [[Percolation critical exponents|Ordinary percolation]] -->
|-  align="center"
| 5 || 1 || ≈ &minus;0.85 || 0.830(10) || 1.185(5) || 3.0 || 0.569(5) || &minus;0.075(20) or &minus;0.0565 <!-- || [[Percolation critical exponents|Ordinary percolation]] -->
|-  align="center"
| 6{{sup|+}} || 1 || &minus;1 || 1 || 1 || 2 || {{sfrac|1|2}} || 0 <!-- || [[Percolation critical exponents|Ordinary percolation]] -->
|-  align="center"
| rowspan="4" |[[Directed percolation]]
| 1 || 1 || 0.159464(6) || 0.276486(8) || 2.277730(5) || 0.159464(6) || 1.096854(4) || 0.313686(8)
|-  align="center"
| 2 || 1 || 0.451 || 0.536(3) || 1.60 || 0.451 || 0.733(8) || 0.230 <!-- || [[Directed percolation]] -->
|-  align="center"
| 3 || 1 || 0.73 || 0.813(9) || 1.25 || 0.73 || 0.584(5) || 0.12 <!-- || [[Directed percolation]] -->
|-  align="center"
| 4{{sup|+}} || 1 || &minus;1 || 1 || 1 || 2 || {{sfrac|1|2}} || 0 <!-- || [[Directed percolation]] -->
|- align="center"
| rowspan="4" | [[Conserved directed percolation]] (Manna, or "local linear interface")
| 1 || 1 ||  || 0.28(1) ||  || 0.14(1) || 1.11(2)<ref name="Fajardo">{{cite book |last1=Fajardo |first1=Juan A. B. |title=Universality in Self-Organized Criticality |date=2008 |location=Granada |url=http://hera.ugr.es/tesisugr/17706312.pdf}}</ref> || 0.34(2)<ref name="Fajardo"/> <!-- || Conserved directed percolation -->
|-  align="center"
| 2 || 1 ||  || 0.64(1) || 1.59(3) || 0.50(5) || 1.29(8) || 0.29(5) <!-- || Conserved directed percolation -->
|-  align="center"
| 3 || 1 ||  || 0.84(2) || 1.23(4) || 0.90(3) || 1.12(8) || 0.16(5) <!-- || Conserved directed percolation -->
|-  align="center"
| 4{{sup|+}} || 1 ||  || 1 || 1 || 1 || 1 || 0 <!-- || Conserved directed percolation -->
|- align="center"
| rowspan="2" |[[Protected percolation]]
| 2 || 1 ||  || 5/41<ref name=":0">{{Cite journal|last1=Fayfar|first1=Sean|last2=Bretaña|first2=Alex|last3=Montfrooij|first3=Wouter|date=2021-01-15|title=Protected percolation: a new universality class pertaining to heavily-doped quantum critical systems|journal=Journal of Physics Communications|volume=5|issue=1|pages=015008|doi=10.1088/2399-6528/abd8e9|arxiv=2008.08258 |bibcode=2021JPhCo...5a5008F |issn=2399-6528|doi-access=free}}</ref>|| 86/41<ref name=":0" />|| ||  ||
|- align="center"
| 3 || 1 ||  || 0.28871(15)<ref name=":0" />|| 1.3066(19)<ref name=":0" />|| ||  ||
|- align="center"
| rowspan="2" |[[Ising critical exponents|Ising]]
| 2 ||<math>\mathbb{Z}_2</math>|| 0 ||{{sfrac|1|8}}||{{sfrac|7|4}}|| 15 || 1 ||{{sfrac|1|4}}
|- align="center"
| 3 ||<math>\mathbb{Z}_2</math>|| 0.11008(1) || 0.326419(3) || 1.237075(10) || 4.78984(1) || 0.629971(4) || 0.036298(2)
|- align="center"
|[[XY model|XY]]
| 3 ||<math>O(2)</math>||-0.01526(30) || 0.34869(7) || 1.3179(2) || 4.77937(25) ||0.67175(10) || 0.038176(44)
|- align="center"
|[[Heisenberg model (classical)|Heisenberg]]
| 3 ||<math>O(3)</math>||&minus;0.12(1) || 0.366(2) || 1.395(5) ||  || 0.707(3) || 0.035(2)
|-  align="center"
|[[Mean-field theory|Mean field]]
| all || any || 0 || {{sfrac|1|2}}  || 1  || 3 || {{sfrac|1|2}} || 0
|- align="center"
|[[Molecular beam epitaxy]]<ref>{{cite journal |last1=Luis |first1=Edwin |last2=de Assis |first2=Thiago |last3=Ferreira |first3=Silvio |last4=Andrade |first4=Roberto |title=Local roughness exponent in the nonlinear molecular-beam-epitaxy universality class in one-dimension |journal=Physical Review E |year=2019 |volume=99 |issue=2 |page=022801 |doi=10.1103/PhysRevE.99.022801 |pmid=30934348 |arxiv=1812.03114 |bibcode=2019PhRvE..99b2801L |s2cid=91187266 }}</ref>
|  ||  ||  ||  ||  ||  ||  ||
|- align="center"
|[[Gaussian free field]]
|  ||  ||  ||  ||  ||  ||  ||
|}
 
==Ising model==
This section lists the critical exponents of the ferromagnetic transition in the Ising model. In statistical physics, the Ising model is the simplest system exhibiting a continuous phase transition with a scalar [[order parameter]] and <math>\mathbb{Z}_2</math> symmetry. The critical exponents of the transition are universal values and characterize the singular properties of physical quantities. The ferromagnetic transition of the Ising model establishes an important universality class, which contains a variety of phase transitions as different as [[ferromagnetism]] close to the [[Curie temperature|Curie point]] and [[critical opalescence]] of liquid near its [[critical point (thermodynamics)|critical point]].
This section lists the critical exponents of the ferromagnetic transition in the Ising model. In statistical physics, the Ising model is the simplest system exhibiting a continuous phase transition with a scalar [[order parameter]] and <math>\mathbb{Z}_2</math> symmetry. The critical exponents of the transition are universal values and characterize the singular properties of physical quantities. The ferromagnetic transition of the Ising model establishes an important universality class, which contains a variety of phase transitions as different as [[ferromagnetism]] close to the [[Curie temperature|Curie point]] and [[critical opalescence]] of liquid near its [[critical point (thermodynamics)|critical point]].


Line 179: Line 108:
   | url-status = usurped
   | url-status = usurped
   }}</ref> These are the values reported in the tables. [[Renormalization group]] methods,<ref name="Pelissetto02">{{cite journal |last=Pelissetto |first=Andrea |author2=Vicari, Ettore |year=2002 |title=Critical phenomena and renormalization-group theory |journal=Physics Reports |volume=368 |pages=549–727 |arxiv=cond-mat/0012164 |bibcode=2002PhR...368..549P |doi=10.1016/S0370-1573(02)00219-3 |s2cid=119081563 |number=6}}</ref><ref>[[Hagen Kleinert|Kleinert, H.]], [http://www.physik.fu-berlin.de/~kleinert/279/279.pdf "Critical exponents from seven-loop strong-coupling φ4 theory in three dimensions".] ''[[Physical Review]]''<span> D 60, 085001 (1999)</span></ref><ref name="balog">{{cite journal |last=Balog |first=Ivan |author2=Chate, Hugues |author3=Delamotte, Bertrand |author4=Marohnic, Maroje |author5=Wschebor, Nicolas |year=2019 |title=Convergence of Non-Perturbative Approximations to the Renormalization Group |journal=Phys. Rev. Lett. |volume=123 |issue=24 |pages=240604 |doi=10.1103/PhysRevLett.123.240604 |pmid=31922817 |arxiv=1907.01829 |bibcode= 2019PhRvL.123x0604B|s2cid=}}</ref><ref name="DePolsi">{{cite journal |last=De Polsi |first=Gonzalo |author2=Balog, Ivan |author3=Tissier, Matthieu |author4=Wschebor, Nicolas |year=2020 |title=Precision calculation of critical exponents in the O(N) universality classes with the nonperturbative renormalization group |journal=Phys. Rev. E |volume=101 |issue=24 |pages=042113 |doi=10.1103/PhysRevLett.123.240604 |pmid=31922817 |arxiv=1907.01829 |bibcode= 2019PhRvL.123x0604B|s2cid=}}</ref> [[Metropolis–Hastings algorithm|Monte-Carlo simulations]],<ref>{{Cite journal |last=Hasenbusch |first=Martin |date=2010 |title=Finite size scaling study of lattice models in the three-dimensional Ising universality class |url=https://journals.aps.org/prb/abstract/10.1103/PhysRevB.82.174433 |journal=Physical Review B |volume=82 |issue=17 |page=174433 |doi=10.1103/PhysRevB.82.174433|arxiv=1004.4486 |bibcode=2010PhRvB..82q4433H }}</ref> and the fuzzy sphere regulator<ref>{{Cite journal |last=Zhu |first=Wei |date=2023 |title=Uncovering Conformal Symmetry in the 3D Ising Transition: State-Operator Correspondence from a Quantum Fuzzy Sphere Regularization |url=https://journals.aps.org/prx/abstract/10.1103/PhysRevX.13.021009 |journal=Physical Review X |volume=13 |issue=2 |page=021009 |doi=10.1103/PhysRevX.13.021009|arxiv=2210.13482 |bibcode=2023PhRvX..13b1009Z }}</ref> give results in agreement with the conformal bootstrap, but are several orders of magnitude less accurate.
   }}</ref> These are the values reported in the tables. [[Renormalization group]] methods,<ref name="Pelissetto02">{{cite journal |last=Pelissetto |first=Andrea |author2=Vicari, Ettore |year=2002 |title=Critical phenomena and renormalization-group theory |journal=Physics Reports |volume=368 |pages=549–727 |arxiv=cond-mat/0012164 |bibcode=2002PhR...368..549P |doi=10.1016/S0370-1573(02)00219-3 |s2cid=119081563 |number=6}}</ref><ref>[[Hagen Kleinert|Kleinert, H.]], [http://www.physik.fu-berlin.de/~kleinert/279/279.pdf "Critical exponents from seven-loop strong-coupling φ4 theory in three dimensions".] ''[[Physical Review]]''<span> D 60, 085001 (1999)</span></ref><ref name="balog">{{cite journal |last=Balog |first=Ivan |author2=Chate, Hugues |author3=Delamotte, Bertrand |author4=Marohnic, Maroje |author5=Wschebor, Nicolas |year=2019 |title=Convergence of Non-Perturbative Approximations to the Renormalization Group |journal=Phys. Rev. Lett. |volume=123 |issue=24 |pages=240604 |doi=10.1103/PhysRevLett.123.240604 |pmid=31922817 |arxiv=1907.01829 |bibcode= 2019PhRvL.123x0604B|s2cid=}}</ref><ref name="DePolsi">{{cite journal |last=De Polsi |first=Gonzalo |author2=Balog, Ivan |author3=Tissier, Matthieu |author4=Wschebor, Nicolas |year=2020 |title=Precision calculation of critical exponents in the O(N) universality classes with the nonperturbative renormalization group |journal=Phys. Rev. E |volume=101 |issue=24 |pages=042113 |doi=10.1103/PhysRevLett.123.240604 |pmid=31922817 |arxiv=1907.01829 |bibcode= 2019PhRvL.123x0604B|s2cid=}}</ref> [[Metropolis–Hastings algorithm|Monte-Carlo simulations]],<ref>{{Cite journal |last=Hasenbusch |first=Martin |date=2010 |title=Finite size scaling study of lattice models in the three-dimensional Ising universality class |url=https://journals.aps.org/prb/abstract/10.1103/PhysRevB.82.174433 |journal=Physical Review B |volume=82 |issue=17 |page=174433 |doi=10.1103/PhysRevB.82.174433|arxiv=1004.4486 |bibcode=2010PhRvB..82q4433H }}</ref> and the fuzzy sphere regulator<ref>{{Cite journal |last=Zhu |first=Wei |date=2023 |title=Uncovering Conformal Symmetry in the 3D Ising Transition: State-Operator Correspondence from a Quantum Fuzzy Sphere Regularization |url=https://journals.aps.org/prx/abstract/10.1103/PhysRevX.13.021009 |journal=Physical Review X |volume=13 |issue=2 |page=021009 |doi=10.1103/PhysRevX.13.021009|arxiv=2210.13482 |bibcode=2023PhRvX..13b1009Z }}</ref> give results in agreement with the conformal bootstrap, but are several orders of magnitude less accurate.
===Others===
For symmetries, the group listed gives the symmetry of the order parameter. The group <math>\mathrm{Dih}_n</math> is the [[dihedral group]], the symmetry group of the ''n''-gon, <math>S_n</math> is the ''n''-element [[symmetric group]], <math>\mathrm{Oct}</math> is the [[octahedral group]], and <math>O(n)</math> is the [[orthogonal group]] in ''n'' dimensions. '''1''' is the [[trivial group]].
{| class="wikitable"
|-
!class
! dimension !! Symmetry !!<math>\alpha</math> !! <math>\beta</math> !! <math>\gamma</math> !! <math>\delta</math> !!<math>\nu</math> !! <math>\eta</math>
|-  align="center"
|3-state [[Potts model|Potts]]
| 2 ||<math>S_3</math>||{{sfrac|1|3}} || {{sfrac|1|9}} || {{sfrac|13|9}}|| 14 || {{sfrac|5|6}} ||  {{sfrac|4|15}}
|-  align="center"
|Ashkin–Teller (4-state Potts)
| 2 ||<math>S
_4</math>||{{sfrac|2|3}} || {{sfrac|1|12}} || {{sfrac|7|6}} || 15 || {{sfrac|2|3}} || {{sfrac|1|4}}
|-  align="center"
| rowspan="6" |[[Percolation critical exponents|Ordinary percolation]]
| 1 || 1 || 1 || 0 || 1 || <math>\infty</math> || 1 || 1
|-  align="center"
| 2 || 1 || &minus;{{sfrac|2|3}} || {{sfrac|5|36}} || {{sfrac|43|18}} || {{sfrac|91|5}} || {{sfrac|4|3}} || {{sfrac|5|24}} <!-- || [[Percolation critical exponents|Ordinary percolation]] -->
|-  align="center"
| 3 || 1 || &minus;0.625(3) || 0.4181(8) || 1.793(3) || 5.29(6) || 0.87619(12) || 0.46(8) or 0.59(9) <!-- || [[Percolation critical exponents|Ordinary percolation]] -->
|-  align="center"
| 4 || 1 || &minus;0.756(40) || 0.657(9) || 1.422(16) || 3.9 or 3.198(6) || 0.689(10) || &minus;0.0944(28) <!-- || [[Percolation critical exponents|Ordinary percolation]] -->
|-  align="center"
| 5 || 1 || ≈ &minus;0.85 || 0.830(10) || 1.185(5) || 3.0 || 0.569(5) || &minus;0.075(20) or &minus;0.0565 <!-- || [[Percolation critical exponents|Ordinary percolation]] -->
|-  align="center"
| 6{{sup|+}} || 1 || &minus;1 || 1 || 1 || 2 || {{sfrac|1|2}} || 0 <!-- || [[Percolation critical exponents|Ordinary percolation]] -->
|-  align="center"
| rowspan="4" |[[Directed percolation]]
| 1 || 1 || 0.159464(6) || 0.276486(8) || 2.277730(5) || 0.159464(6) || 1.096854(4) || 0.313686(8)
|-  align="center"
| 2 || 1 || 0.451 || 0.536(3) || 1.60 || 0.451 || 0.733(8) || 0.230 <!-- || [[Directed percolation]] -->
|-  align="center"
| 3 || 1 || 0.73 || 0.813(9) || 1.25 || 0.73 || 0.584(5) || 0.12 <!-- || [[Directed percolation]] -->
|-  align="center"
| 4{{sup|+}} || 1 || &minus;1 || 1 || 1 || 2 || {{sfrac|1|2}} || 0 <!-- || [[Directed percolation]] -->
|- align="center"
| rowspan="4" | [[Conserved directed percolation]] (Manna, or "local linear interface")
| 1 || 1 ||  || 0.28(1) ||  || 0.14(1) || 1.11(2)<ref name="Fajardo">{{cite book |last1=Fajardo |first1=Juan A. B. |title=Universality in Self-Organized Criticality |date=2008 |location=Granada |url=http://hera.ugr.es/tesisugr/17706312.pdf}}</ref> || 0.34(2)<ref name="Fajardo"/> <!-- || Conserved directed percolation -->
|-  align="center"
| 2 || 1 ||  || 0.64(1) || 1.59(3) || 0.50(5) || 1.29(8) || 0.29(5) <!-- || Conserved directed percolation -->
|-  align="center"
| 3 || 1 ||  || 0.84(2) || 1.23(4) || 0.90(3) || 1.12(8) || 0.16(5) <!-- || Conserved directed percolation -->
|-  align="center"
| 4{{sup|+}} || 1 ||  || 1 || 1 || 1 || 1 || 0 <!-- || Conserved directed percolation -->
|- align="center"
| rowspan="2" |[[Protected percolation]]
| 2 || 1 ||  || 5/41<ref name=":0">{{Cite journal|last1=Fayfar|first1=Sean|last2=Bretaña|first2=Alex|last3=Montfrooij|first3=Wouter|date=2021-01-15|title=Protected percolation: a new universality class pertaining to heavily-doped quantum critical systems|journal=Journal of Physics Communications|volume=5|issue=1|pages=015008|doi=10.1088/2399-6528/abd8e9|arxiv=2008.08258 |bibcode=2021JPhCo...5a5008F |issn=2399-6528|doi-access=free}}</ref>|| 86/41<ref name=":0" />|| ||  ||
|- align="center"
| 3 || 1 ||  || 0.28871(15)<ref name=":0" />|| 1.3066(19)<ref name=":0" />|| ||  ||
|- align="center"
|[[XY model|XY]]
| 3 ||<math>O(2)</math>||-0.01526(30) || 0.34869(7) || 1.3179(2) || 4.77937(25) ||0.67175(10) || 0.038176(44)
|- align="center"
|[[Heisenberg model (classical)|Heisenberg]]
| 3 ||<math>O(3)</math>||&minus;0.12(1) || 0.366(2) || 1.395(5) ||  || 0.707(3) || 0.035(2)
|-  align="center"
|[[Mean-field theory|Mean field]]
| all || any || 0 || {{sfrac|1|2}}  || 1  || 3 || {{sfrac|1|2}} || 0
|- align="center"
|[[Molecular beam epitaxy]]<ref>{{cite journal |last1=Luis |first1=Edwin |last2=de Assis |first2=Thiago |last3=Ferreira |first3=Silvio |last4=Andrade |first4=Roberto |title=Local roughness exponent in the nonlinear molecular-beam-epitaxy universality class in one-dimension |journal=Physical Review E |year=2019 |volume=99 |issue=2 |page=022801 |doi=10.1103/PhysRevE.99.022801 |pmid=30934348 |arxiv=1812.03114 |bibcode=2019PhRvE..99b2801L |s2cid=91187266 }}</ref>
|  ||  ||  ||  ||  ||  ||  ||
|- align="center"
|[[Gaussian free field]]
|  ||  ||  ||  ||  ||  ||  ||
|}


==References==
==References==

Latest revision as of 11:24, 23 June 2025

Template:Short description Template:More references In statistical mechanics, a universality class is a set of mathematical models which share a scale-invariant limit under renormalization group flow. While the models within a class may differ at finite scales, their behavior become increasingly similar as the limit scale is approached. In particular, asymptotic phenomena such as critical exponents are the same for all models in the class.

Well-studied examples include the universality classes of the Ising model or the percolation theory at their respective phase transition points; these are both families of classes, one for each lattice dimension. Typically, a family of universality classes has a lower and upper critical dimension: below the lower critical dimension, the universality class becomes degenerate (this dimension is 2 for the Ising model, or for directed percolation, but 1 for undirected percolation), and above the upper critical dimension the critical exponents stabilize and can be calculated by an analog of mean-field theory (this dimension is 4 for Ising or for directed percolation, and 6 for undirected percolation).

List of critical exponents

Critical exponents are defined in terms of the variation of certain physical properties of the system near its phase transition point. These physical properties will include its reduced temperature τ, its order parameter measuring how much of the system is in the "ordered" phase, the specific heat, and so on.

  • The exponent α is the exponent relating the specific heat C to the reduced temperature: we have C=τα. The specific heat will usually be singular at the critical point, but the minus sign in the definition of α allows it to remain positive.
  • The exponent β relates the order parameter Ψ to the temperature. Unlike most critical exponents it is assumed positive, since the order parameter will usually be zero at the critical point. So we have Ψ=|τ|β.
  • The exponent γ relates the temperature with the system's response to an external driving force, or source field. We have dΨ/dJ=τγ, with J the driving force.
  • The exponent δ relates the order parameter to the source field at the critical temperature, where this relationship becomes nonlinear. We have J=Ψδ (hence Ψ=J1/δ), with the same meanings as before.
  • The exponent ν relates the size of correlations (i.e. patches of the ordered phase) to the temperature; away from the critical point these are characterized by a correlation length ξ. We have ξ=τν.
  • The exponent η measures the size of correlations at the critical temperature. It is defined so that the correlation function of the order parameter scales as rd+2η.
  • The exponent σ, used in percolation theory, measures the size of the largest clusters (roughly, the largest ordered blocks) at 'temperatures' (connection probabilities) below the critical point. So smax(pcp)1/σ.
  • The exponent τ, also from percolation theory, measures the number of size s clusters far from smax (or the number of clusters at criticality): nssτf(s/smax), with the f factor removed at critical probability.

Ising model

This section lists the critical exponents of the ferromagnetic transition in the Ising model. In statistical physics, the Ising model is the simplest system exhibiting a continuous phase transition with a scalar order parameter and 2 symmetry. The critical exponents of the transition are universal values and characterize the singular properties of physical quantities. The ferromagnetic transition of the Ising model establishes an important universality class, which contains a variety of phase transitions as different as ferromagnetism close to the Curie point and critical opalescence of liquid near its critical point.

Template:Math Template:Math Template:Math general expression
Template:Math 0 0.11008708(35) 0 2d/(dΔϵ)
Template:Math 1/8 0.32641871(75) 1/2 Δσ/(dΔϵ)
Template:Math 7/4 1.23707551(26) 1 (d2Δσ)/(dΔϵ)
Template:Math 15 4.78984254(27) 3 (dΔσ)/Δσ
Template:Math 1/4 0.036297612(48) 0 2Δσd+2
Template:Math 1 0.62997097(12) 1/2 1/(dΔϵ)
Template:Math 2 0.82966(9) 0 Δϵd

From the quantum field theory point of view, the critical exponents can be expressed in terms of scaling dimensions of the local operators σ,ϵ,ϵ of the conformal field theory describing the phase transition[1] (In the Ginzburg–Landau description, these are the operators normally called ϕ,ϕ2,ϕ4.) These expressions are given in the last column of the above table, and were used to calculate the values of the critical exponents using the operator dimensions values from the following table:

d=2 d=3 d=4
Δσ 1/8 0.518148806(24) [2] 1
Δϵ 1 1.41262528(29) [2] 2
Δϵ 4 3.82966(9) [3][4] 4

In d=2, the two-dimensional critical Ising model's critical exponents can be computed exactly using the minimal model M3,4. In d=4, it is the free massless scalar theory (also referred to as mean field theory). These two theories are exactly solved, and the exact solutions give values reported in the table.

The d=3 theory is not yet exactly solved. The most accurate results come from the conformal bootstrap.[2][3][4][5][6][7][8] These are the values reported in the tables. Renormalization group methods,[9][10][11][12] Monte-Carlo simulations,[13] and the fuzzy sphere regulator[14] give results in agreement with the conformal bootstrap, but are several orders of magnitude less accurate.

Others

For symmetries, the group listed gives the symmetry of the order parameter. The group Dihn is the dihedral group, the symmetry group of the n-gon, Sn is the n-element symmetric group, Oct is the octahedral group, and O(n) is the orthogonal group in n dimensions. 1 is the trivial group.

class dimension Symmetry α β γ δ ν η
3-state Potts 2 S3 Template:Sfrac Template:Sfrac Template:Sfrac 14 Template:Sfrac Template:Sfrac
Ashkin–Teller (4-state Potts) 2 S4 Template:Sfrac Template:Sfrac Template:Sfrac 15 Template:Sfrac Template:Sfrac
Ordinary percolation 1 1 1 0 1 1 1
2 1 Template:Sfrac Template:Sfrac Template:Sfrac Template:Sfrac Template:Sfrac Template:Sfrac
3 1 −0.625(3) 0.4181(8) 1.793(3) 5.29(6) 0.87619(12) 0.46(8) or 0.59(9)
4 1 −0.756(40) 0.657(9) 1.422(16) 3.9 or 3.198(6) 0.689(10) −0.0944(28)
5 1 ≈ −0.85 0.830(10) 1.185(5) 3.0 0.569(5) −0.075(20) or −0.0565
6+ 1 −1 1 1 2 Template:Sfrac 0
Directed percolation 1 1 0.159464(6) 0.276486(8) 2.277730(5) 0.159464(6) 1.096854(4) 0.313686(8)
2 1 0.451 0.536(3) 1.60 0.451 0.733(8) 0.230
3 1 0.73 0.813(9) 1.25 0.73 0.584(5) 0.12
4+ 1 −1 1 1 2 Template:Sfrac 0
Conserved directed percolation (Manna, or "local linear interface") 1 1 0.28(1) 0.14(1) 1.11(2)[15] 0.34(2)[15]
2 1 0.64(1) 1.59(3) 0.50(5) 1.29(8) 0.29(5)
3 1 0.84(2) 1.23(4) 0.90(3) 1.12(8) 0.16(5)
4+ 1 1 1 1 1 0
Protected percolation 2 1 5/41[16] 86/41[16]
3 1 0.28871(15)[16] 1.3066(19)[16]
XY 3 O(2) -0.01526(30) 0.34869(7) 1.3179(2) 4.77937(25) 0.67175(10) 0.038176(44)
Heisenberg 3 O(3) −0.12(1) 0.366(2) 1.395(5) 0.707(3) 0.035(2)
Mean field all any 0 Template:Sfrac 1 3 Template:Sfrac 0
Molecular beam epitaxy[17]
Gaussian free field

References

Template:Reflist

Further reading

  • Universality classes from Sklogwiki
  • Script error: No such module "Citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "Citation/CS1".
  • Script error: No such module "citation/CS1".
  1. Script error: No such module "citation/CS1".
  2. a b c Script error: No such module "Citation/CS1".
  3. a b Script error: No such module "Citation/CS1".
  4. a b Script error: No such module "Citation/CS1".
  5. Script error: No such module "Citation/CS1".
  6. Script error: No such module "Citation/CS1".
  7. Script error: No such module "Citation/CS1".
  8. Script error: No such module "citation/CS1".
  9. Script error: No such module "Citation/CS1".
  10. Kleinert, H., "Critical exponents from seven-loop strong-coupling φ4 theory in three dimensions". Physical Review D 60, 085001 (1999)
  11. Script error: No such module "Citation/CS1".
  12. Script error: No such module "Citation/CS1".
  13. Script error: No such module "Citation/CS1".
  14. Script error: No such module "Citation/CS1".
  15. a b Script error: No such module "citation/CS1".
  16. a b c d Script error: No such module "Citation/CS1".
  17. Script error: No such module "Citation/CS1".