Instructions per second: Difference between revisions

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
imported>RastaKins
imported>Guy Harris
Fix magazine citations. Fix author parameters. Get rid of 68030 citation that doesn't mention 68030 MIPS, and use the 50 MHz value, which is what the other citation gives. Replace ARM citation that doesn't mention MIPS with a citation that does. Mark a dead link as such. Consistently use a hyphen between "Cortex" and the core identifier. Just link to the pages for individual Cortex- cores when possible.
 
(One intermediate revision by one other user not shown)
Line 8: Line 8:


==Computing==
==Computing==
IPS can be calculated using this equation:<ref name="en.community.dell.com">{{cite web|url=http://en.community.dell.com/techcenter/high-performance-computing/w/wiki/2329.aspx|title=Technical Resources migrated from TechCenter - Dell US|first=Dell|last=US|website=en.community.dell.com|access-date=17 October 2016|archive-date=28 May 2014|archive-url=https://web.archive.org/web/20140528065702/http://en.community.dell.com/techcenter/high-performance-computing/w/wiki/2329.aspx|url-status=live}}</ref>
IPS can be calculated using this equation:<ref name="en.community.dell.com">{{cite web |url=http://en.community.dell.com/techcenter/high-performance-computing/w/wiki/2329.aspx |title=Technical Resources migrated from TechCenter - Dell US |website=en.community.dell.com |access-date=17 October 2016 |archive-date=28 May 2014 |archive-url=https://web.archive.org/web/20140528065702/http://en.community.dell.com/techcenter/high-performance-computing/w/wiki/2329.aspx |url-status=live}}</ref>


:<math>\text{IPS} = \text{sockets} \times \frac{\text{cores}}{\text{socket}} \times \text{clock} \times \frac{\text{Is}}{\text{cycle}}</math>
:<math>\text{IPS} = \text{sockets} \times \frac{\text{cores}}{\text{chip}} \times \text{clock} \times \frac{\text{Is}}{\text{cycle}}</math>


However, the instructions/cycle measurement depends on the instruction sequence, the data and external factors.
However, the instructions/cycle measurement depends on the instruction sequence, the data and external factors.
Line 53: Line 53:
}}</ref>
}}</ref>


Gibson divided computer instructions into 12 classes, based on the [[IBM 704]] architecture, adding a 13th class to account for indexing time. Weights were primarily based on analysis of seven scientific programs run on the 704, with a small contribution from some [[IBM 650]] programs. The overall score was then the weighted sum of the average execution speed for instructions in each class.<ref>{{cite book|url=https://ir.library.oregonstate.edu/downloads/t148fm257|title=Computer Performance and Evaluation Utilizating the Resource Planing and Management System, Masters Thesis|first=Jimmie Lynn|last=Elliot|date=June 5, 1975|publisher=Oregon State University|access-date=March 21, 2021|chapter=Appendix E, The Gibson Mix by Jack C. Gibson|pages=88–92|archive-date=12 April 2022|archive-url=https://web.archive.org/web/20220412011114/https://ir.library.oregonstate.edu/downloads/t148fm257|url-status=live}}</ref>
Gibson divided computer instructions into 12 classes, based on the [[IBM 704]] architecture, adding a 13th class to account for indexing time. Weights were primarily based on analysis of seven scientific programs run on the 704, with a small contribution from some [[IBM 650]] programs. The overall score was then the weighted sum of the average execution speed for instructions in each class.<ref>{{cite book|url=https://ir.library.oregonstate.edu/downloads/t148fm257|title=Computer Performance and Evaluation Utilizing the Resource Planning and Management System, Masters Thesis|first=Jimmie Lynn|last=Elliot|date=June 5, 1975|publisher=Oregon State University|access-date=March 21, 2021|chapter=Appendix E, The Gibson Mix by Jack C. Gibson|pages=88–92|archive-date=12 April 2022|archive-url=https://web.archive.org/web/20220412011114/https://ir.library.oregonstate.edu/downloads/t148fm257|url-status=live}}</ref>


{| class="wikitable collapsible collapsed sortable"
{| class="wikitable collapsible collapsed sortable"
Line 94: Line 94:


=== Two flavors of VAX MIPS ===
=== Two flavors of VAX MIPS ===
The VAX-11/780 was released in 1977. It was marketed as being able to execute the equivalant of 1 million System/370 instructions per second, the first minicomputer to achieve such a speed. VAX-11/780 would quickly become a unit of reference for MIPS measurements, in two separate benchmarks:
The VAX-11/780 was released in 1977. It was marketed as being able to execute the equivalent of 1 million System/370 instructions per second, the first minicomputer to achieve such a speed. VAX-11/780 would quickly become a unit of reference for MIPS measurements, in two separate benchmarks:
* The [[Whetstone benchmark]] of 1972 was modified in 1980 to combine three of its integer-operation speed measures into a "VAX MIPS". It originally included a mix of 42 statements written in ALGOL 60 (124 instructions on the KDF9 compiler), though by 1980 it had been rewritten in Fortran.
* The [[Whetstone benchmark]] of 1972 was modified in 1980 to combine three of its integer-operation speed measures into a "VAX MIPS". It originally included a mix of 42 statements written in ALGOL 60 (124 instructions on the KDF9 compiler), though by 1980 it had been rewritten in Fortran.
* The integer-and-string-heavy [[Dhrystone]] benchmark of 1984 inherited the idea of using VAX as a MIPS reference. Its results were reported in "DMIPS", for Dhrystone MIPS. Each Dhrystone MIPS was defined as the ability to run the Dhrystone main loop 1757 times per second, the score VAX-11/780 received on this benchmark.
* The integer-and-string-heavy [[Dhrystone]] benchmark of 1984 inherited the idea of using VAX as a MIPS reference. Its results were reported in "DMIPS", for Dhrystone MIPS. Each Dhrystone MIPS was defined as the ability to run the Dhrystone main loop 1757 times per second, the score VAX-11/780 received on this benchmark.
Line 151: Line 151:
|-
|-
|[[MOS Technology 6502]]||0.430&nbsp;MIPS at 1.000&nbsp;MHz||0.43||0.43||1975||<ref name=retro>{{cite web|url=http://www.drolez.com/retro/|title=Lud's Open Source Corner|first=Ludovic|last=Drolez|access-date=16 September 2014|archive-date=9 March 2020|archive-url=https://web.archive.org/web/20200309132442/https://drolez.com/retro/|url-status=live}}</ref>
|[[MOS Technology 6502]]||0.430&nbsp;MIPS at 1.000&nbsp;MHz||0.43||0.43||1975||<ref name=retro>{{cite web|url=http://www.drolez.com/retro/|title=Lud's Open Source Corner|first=Ludovic|last=Drolez|access-date=16 September 2014|archive-date=9 March 2020|archive-url=https://web.archive.org/web/20200309132442/https://drolez.com/retro/|url-status=live}}</ref>
|-
|[[MCP-1600]]||2.25&nbsp;MIPS at 3.3&nbsp;MHz, 4 ϕ||0.75||0.75||1975||<ref>{{cite book |title=MCP-1600 Microprocessor Users Manual |date=1975 |publisher=Western Digital |url=http://bitsavers.trailing-edge.com/pdf/westernDigital/MCP-1600/MCP-1600_Users_Manual_Oct77.pdf |access-date=28 April 2022}}</ref>
|-
|-
|[[Intel 8085]]||0.435&nbsp;MIPS at 3.000&nbsp;MHz<br />(Not Dhrystone)
|[[Intel 8085]]||0.435&nbsp;MIPS at 3.000&nbsp;MHz<br />(Not Dhrystone)
Line 216: Line 218:
|[[ARM architecture family#ARM2|ARM2]]||4&nbsp;MIPS at 8&nbsp;MHz||0.5||0.5||1986||<ref>{{cite web |url=https://en.wikichip.org/wiki/acorn/microarchitectures/arm2 |title=ARM2 – Microarchitectures – Acorn |website=Wikichip.org |access-date=17 October 2018 |archive-date=12 April 2022 |archive-url=https://web.archive.org/web/20220412010950/https://en.wikichip.org/wiki/acorn/microarchitectures/arm2 |url-status=live }}</ref>
|[[ARM architecture family#ARM2|ARM2]]||4&nbsp;MIPS at 8&nbsp;MHz||0.5||0.5||1986||<ref>{{cite web |url=https://en.wikichip.org/wiki/acorn/microarchitectures/arm2 |title=ARM2 – Microarchitectures – Acorn |website=Wikichip.org |access-date=17 October 2018 |archive-date=12 April 2022 |archive-url=https://web.archive.org/web/20220412010950/https://en.wikichip.org/wiki/acorn/microarchitectures/arm2 |url-status=live }}</ref>
|-
|-
|[[R2000 microprocessor|Stanford MIPS R2000 / R2000A]]||8 / 9.8&nbsp;MIPS at 12.5&nbsp;MHz||0.64 - 0.78||0.64 - 0.78||1986 / 1988||<ref>{{Cite web |date=1988 |title=Personal IRIS - 4D-20 One-sheet |url=https://forums.sgi.sh/index.php?attachments/personal-iris-4d-20-one-sheet-pdf.2441/}}</ref><ref>{{Cite web |title=DECstation 2100 |url=http://john.ccac.rwth-aachen.de:8000/alf/ds2100/ |access-date=2024-08-20 |archive-date=3 June 2023 |archive-url=https://web.archive.org/web/20230603121330/http://john.ccac.rwth-aachen.de:8000/alf/ds2100/ |url-status=bot: unknown }}</ref>
|[[R2000 microprocessor|Stanford MIPS R2000 / R2000A]]||8 / 9.8&nbsp;MIPS at 12.5&nbsp;MHz||0.64 - 0.78||0.64 - 0.78||1986 / 1988||<ref>{{Cite web |date=1988 |title=Personal IRIS - 4D-20 One-sheet |url=https://tech-pubs.net/misc/personal_iris_4d-20_onesheet.pdf}}</ref><ref>{{Cite web |title=DECstation 2100 |url=http://john.ccac.rwth-aachen.de:8000/alf/ds2100/ |access-date=2024-08-20 |archive-date=3 June 2023 |archive-url=https://web.archive.org/web/20230603121330/http://john.ccac.rwth-aachen.de:8000/alf/ds2100/ |url-status=bot: unknown }}</ref>
|-
|-
|[[MB86900|Sun SPARC / Fujitsu MB86900]]||10&nbsp;MIPS at 16.6&nbsp;MHz||0.6||0.6||1986||<ref>{{Cite book |last=Namjoo |first=M. |date=October 1988 |title=First 32-bit SPARC-based processors implemented in high-speed CMOS |url=https://ieeexplore.ieee.org/document/25726 |website=IEEE Explore|pages=374–376 |doi=10.1109/ICCD.1988.25726 |isbn=0-8186-0872-2 }}</ref>
|[[MB86900|Sun SPARC / Fujitsu MB86900]]||10&nbsp;MIPS at 16.6&nbsp;MHz||0.6||0.6||1986||<ref>{{Cite book |last=Namjoo |first=M. |title=Proceedings 1988 IEEE International Conference on Computer Design: VLSI |date=October 1988 |chapter=First 32-bit SPARC-based processors implemented in high-speed CMOS |pages=374–376 |doi=10.1109/ICCD.1988.25726 |isbn=0-8186-0872-2 }}</ref>
|-
|-
|[[TMS34010|Texas Instruments TMS34010]]||6&nbsp;MIPS at 50&nbsp;MHz||0.12||0.12||1986||<ref>{{cite web|url=https://books.google.com/books?id=KzoEAAAAMBAJ|title=InfoWorld|date=23 January 1989|publisher=InfoWorld Media Group, Inc.|via=Google Books}}</ref>
|[[TMS34010|Texas Instruments TMS34010]]||6&nbsp;MIPS at 50&nbsp;MHz||0.12||0.12||1986||<ref>{{cite magazine |url=https://books.google.com/books?id=KzoEAAAAMBAJ&pg=PT22 |title=Lundy's Graphics Display Speeds Screen Redraws |magazine=InfoWorld |volume=11 |issue=4 |page=23 |date=23 January 1989 |publisher=InfoWorld Media Group, Inc. |via=Google Books}}</ref>
|-
|-
|[[NEC V70]]||6.6&nbsp;MIPS at 20&nbsp;MHz||0.33||0.33||1987||<ref name=ipsj>{{cite web| url=http://ipsj.ixsq.nii.ac.jp/ej/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=59745&item_no=1&page_id=13&block_id=8| title=情報学広場:情報処理学会電子図書館| trans-title=Overview of 32-bit V-Series Microprocessor| author1=Yasuhiko Komoto| author2=Tatsuya Saito| author3=Kazumasa Mine| publisher=Advanced Products Department Microcomputer Division NEC Corporation| access-date=17 September 2014| archive-date=9 October 2014| archive-url=https://web.archive.org/web/20141009110356/https://ipsj.ixsq.nii.ac.jp/ej/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=59745&item_no=1&page_id=13&block_id=8| url-status=live}}</ref>
|[[NEC V70]]||6.6&nbsp;MIPS at 20&nbsp;MHz||0.33||0.33||1987||<ref name=ipsj>{{cite journal| url=http://ipsj.ixsq.nii.ac.jp/ej/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=59745&item_no=1&page_id=13&block_id=8| title=情報学広場:情報処理学会電子図書館| trans-title=Overview of 32-bit V-Series Microprocessor| author1=Yasuhiko Komoto| author2=Tatsuya Saito| author3=Kazumasa Mine| journal=Journal of Information Processing| date=25 August 1990| volume=13| issue=2| pages=110–122| publisher=Advanced Products Department Microcomputer Division NEC Corporation| access-date=17 September 2014| archive-date=9 October 2014| archive-url=https://web.archive.org/web/20141009110356/https://ipsj.ixsq.nii.ac.jp/ej/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=59745&item_no=1&page_id=13&block_id=8| url-status=live}}</ref>
|-
|-
|[[Motorola 68030]]||9&nbsp;MIPS at 25&nbsp;MHz||0.36||0.36||1987||<ref>{{cite web|url=https://books.google.com/books?id=KU7dCBpP7fsC|title=PC Mag|date=24 November 1987|publisher=Ziff Davis, Inc.|via=Google Books}}</ref><ref name=mc68030>{{cite web|url=http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC68030|title=Enhanced 32-Bit Processor-NXP|access-date=18 April 2013|archive-date=6 October 2014|archive-url=https://web.archive.org/web/20141006204732/http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC68030|url-status=live}}</ref>
|[[Motorola 68030]]||18&nbsp;MIPS at 50&nbsp;MHz||0.36||0.36||1987||<ref name=mc68030>{{cite web|url=http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC68030|title=Enhanced 32-Bit Processor-NXP|access-date=18 April 2013|archive-date=6 October 2014|archive-url=https://web.archive.org/web/20141006204732/http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC68030|url-status=dead}}</ref>
|-
|-
|[[TRON project|Gmicro/200]]||10&nbsp;MIPS at 20&nbsp;MHz||0.5||0.5||1987||<ref>{{Cite web|url=http://tronweb.super-nova.co.jp/tronvlsicpu.html|title=TRON VLSI CPU Introduction|website=tronweb.super-nova.co.jp|accessdate=29 June 2023|archive-date=17 February 2023|archive-url=https://web.archive.org/web/20230217152616/http://tronweb.super-nova.co.jp/tronvlsicpu.html|url-status=live}}</ref>
|[[TRON project|Gmicro/200]]||10&nbsp;MIPS at 20&nbsp;MHz||0.5||0.5||1987||<ref>{{Cite web|url=http://tronweb.super-nova.co.jp/tronvlsicpu.html|title=TRON VLSI CPU Introduction|website=tronweb.super-nova.co.jp|accessdate=29 June 2023|archive-date=17 February 2023|archive-url=https://web.archive.org/web/20230217152616/http://tronweb.super-nova.co.jp/tronvlsicpu.html|url-status=live}}</ref>
Line 230: Line 232:
|[[Texas Instruments TMS320|Texas Instruments TMS320C20]]||12.5&nbsp;MIPS at 25&nbsp;MHz||0.5||0.5||1987||<ref name=racing>{{cite web|url=http://historyofracinggames.files.wordpress.com/2007/06/060-1987-drivers-eyes-1989-winning-run.pdf|title=060 1987 Drivers Eyes + 1989 Winning Run|work=The history of racing games|date=June 2007|access-date=16 September 2014|archive-date=1 October 2014|archive-url=https://web.archive.org/web/20141001164723/http://historyofracinggames.files.wordpress.com/2007/06/060-1987-drivers-eyes-1989-winning-run.pdf|url-status=live}}</ref>
|[[Texas Instruments TMS320|Texas Instruments TMS320C20]]||12.5&nbsp;MIPS at 25&nbsp;MHz||0.5||0.5||1987||<ref name=racing>{{cite web|url=http://historyofracinggames.files.wordpress.com/2007/06/060-1987-drivers-eyes-1989-winning-run.pdf|title=060 1987 Drivers Eyes + 1989 Winning Run|work=The history of racing games|date=June 2007|access-date=16 September 2014|archive-date=1 October 2014|archive-url=https://web.archive.org/web/20141001164723/http://historyofracinggames.files.wordpress.com/2007/06/060-1987-drivers-eyes-1989-winning-run.pdf|url-status=live}}</ref>
|-
|-
|[[Analog Devices]] [[Digital signal processor|ADSP-2100]]||12.5&nbsp;MIPS at 12.5&nbsp;MHz||1||1||1987||<ref>{{Cite web|url=https://www.datasheetcatalog.com/info_redirect/datasheet/analogdevices/ADSP-2100KG.pdf.shtml|title=Analog Devices ADSP-2100KG datasheet pdf|website=www.datasheetcatalog.com|accessdate=29 June 2023}}</ref>
|[[Analog Devices]] [[Digital signal processor|ADSP-2100]]||12.5&nbsp;MIPS at 12.5&nbsp;MHz||1||1||1987||<ref>{{Cite web|url=https://www.datasheetcatalog.com/info_redirect/datasheet/analogdevices/ADSP-2100KG.pdf.shtml|title=Analog Devices ADSP-2100KG datasheet pdf|website=www.datasheetcatalog.com|accessdate=29 June 2023|archive-date=29 June 2023|archive-url=https://web.archive.org/web/20230629094110/https://www.datasheetcatalog.com/info_redirect/datasheet/analogdevices/ADSP-2100KG.pdf.shtml|url-status=dead}}</ref>
|-
|-
|[[Texas Instruments TMS320|Texas Instruments TMS320C25]]||25&nbsp;MIPS at 50&nbsp;MHz||0.5||0.5||1987||<ref name=racing/>
|[[Texas Instruments TMS320|Texas Instruments TMS320C25]]||25&nbsp;MIPS at 50&nbsp;MHz||0.5||0.5||1987||<ref name=racing/>
Line 244: Line 246:
|[[Motorola 68040]]||44&nbsp;MIPS at 40&nbsp;MHz||1.1||1.1||1990||<ref>{{cite web|url=http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC68040|title=(Including EC, LC, and V)-NXP|access-date=18 December 2010|archive-date=4 March 2012|archive-url=https://web.archive.org/web/20120304011635/http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC68040|url-status=live}}</ref>
|[[Motorola 68040]]||44&nbsp;MIPS at 40&nbsp;MHz||1.1||1.1||1990||<ref>{{cite web|url=http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC68040|title=(Including EC, LC, and V)-NXP|access-date=18 December 2010|archive-date=4 March 2012|archive-url=https://web.archive.org/web/20120304011635/http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC68040|url-status=live}}</ref>
|-
|-
|[[Advanced Micro Devices|AMD]] [[Am386]]||9&nbsp;MIPS at 40&nbsp;MHz||0.225||0.225||1991||<ref>{{cite web|url=https://books.google.com/books?id=sc0wyeolS8cC|title=Computerworld|first=I. D. G.|last=Enterprise|date=25 March 1991|publisher=IDG Enterprise|via=Google Books}}</ref>
|[[Advanced Micro Devices|AMD]] [[Am386]]||9&nbsp;MIPS at 40&nbsp;MHz||0.225||0.225||1991||<ref>{{cite magazine |url=https://books.google.com/books?id=sc0wyeolS8cC&pg=PA97 |title=AMD's 386 clone ready, but will it sell? |magazine=Computerworld |volume=XXV |issue=12 |page=97 |first=Richard |last=Pastore |date=25 March 1991 |publisher=IDG Enterprise |via=Google Books}}</ref>
|-
|-
|[[i486|Intel i486DX]]||11.1&nbsp;MIPS at 33&nbsp;MHz||0.336||0.336||1991||<ref name=jcmit/>
|[[i486|Intel i486DX]]||11.1&nbsp;MIPS at 33&nbsp;MHz||0.336||0.336||1991||<ref name=jcmit/>
Line 294: Line 296:
|[[ZISC|Silicon Recognition ZISC 78]]||8,600&nbsp;MIPS at 33&nbsp;MHz||260.6||260.6||2000||<ref>{{Cite web|url=https://www.datasheetarchive.com/ZISC78-datasheet.html|title=ZISC78 datasheet & application notes – Datasheet Archive|website=www.datasheetarchive.com|accessdate=29 June 2023}}</ref>
|[[ZISC|Silicon Recognition ZISC 78]]||8,600&nbsp;MIPS at 33&nbsp;MHz||260.6||260.6||2000||<ref>{{Cite web|url=https://www.datasheetarchive.com/ZISC78-datasheet.html|title=ZISC78 datasheet & application notes – Datasheet Archive|website=www.datasheetarchive.com|accessdate=29 June 2023}}</ref>
|-
|-
|[[ARM11]]||515&nbsp;MIPS at 412&nbsp;MHz||1.25||1.25||2002||<ref name="anandtech.com">{{cite web|url=http://www.anandtech.com/show/4991/arms-cortex-a7-bringing-cheaper-dualcore-more-power-efficient-highend-devices|title=ARM's Cortex A7: Bringing Cheaper Dual-Core & More Power Efficient High-End Devices|first=Anand Lal|last=Shimpi|access-date=19 October 2011|archive-date=5 November 2012|archive-url=https://web.archive.org/web/20121105142208/http://www.anandtech.com/show/4991/arms-cortex-a7-bringing-cheaper-dualcore-more-power-efficient-highend-devices|url-status=live}}</ref>
|[[ARM11]]||515&nbsp;MIPS at 412&nbsp;MHz||1.25||1.25||2002||<ref name="anandtech.com">{{cite web|url=http://www.anandtech.com/show/4991/arms-cortex-a7-bringing-cheaper-dualcore-more-power-efficient-highend-devices|title=ARM's Cortex A7: Bringing Cheaper Dual-Core & More Power Efficient High-End Devices|first=Anand Lal|last=Shimpi|access-date=19 October 2011|archive-date=5 November 2012|archive-url=https://web.archive.org/web/20121105142208/http://www.anandtech.com/show/4991/arms-cortex-a7-bringing-cheaper-dualcore-more-power-efficient-highend-devices|url-status=dead}}</ref>
|-
|-
|[[AMD Athlon XP|AMD Athlon XP 2500+]]||7,527&nbsp;MIPS at 1.83&nbsp;GHz||4.1||4.1||2003||<ref name="autogenerated0" />
|[[AMD Athlon XP|AMD Athlon XP 2500+]]||7,527&nbsp;MIPS at 1.83&nbsp;GHz||4.1||4.1||2003||<ref name="autogenerated0" />
|-
|-
|[[Pentium 4|Pentium 4 Extreme Edition]]||9,726&nbsp;MIPS at 3.2&nbsp;GHz||3.0||3.0||2003||
|[[Pentium 4|Intel Pentium 4 Extreme Edition]]||9,726&nbsp;MIPS at 3.2&nbsp;GHz||3.0||3.0||2003||
|-
|-
|[[PIC microcontroller|Microchip PIC10F]]||1&nbsp;MIPS at 4&nbsp;MHz||0.25||0.25||2004||<ref>{{Cite web|url=http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en019863|title=PIC10F200 – 8-bit PIC Microcontrollers|accessdate=29 June 2023|archive-date=10 December 2015|archive-url=https://web.archive.org/web/20151210234721/http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en019863|url-status=live}}</ref><ref>{{cite web|url=http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2018&mcparam=en020144|title=Microchip Redirect|url-status=dead|archive-url=https://web.archive.org/web/20141006121958/http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2018&mcparam=en020144|archive-date=2014-10-06}}</ref>
|[[PIC microcontroller|Microchip PIC10F]]||1&nbsp;MIPS at 4&nbsp;MHz||0.25||0.25||2004||<ref>{{Cite web|url=http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en019863|title=PIC10F200 – 8-bit PIC Microcontrollers|accessdate=29 June 2023|archive-date=10 December 2015|archive-url=https://web.archive.org/web/20151210234721/http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en019863|url-status=live}}</ref><ref>{{cite web|url=http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2018&mcparam=en020144|title=Microchip Redirect|url-status=dead|archive-url=https://web.archive.org/web/20141006121958/http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2018&mcparam=en020144|archive-date=2014-10-06}}</ref>
Line 310: Line 312:
|[[VIA C7]]||1,799&nbsp;MIPS at 1.3&nbsp;GHz||1.4||1.4||2005||<ref>{{Cite web|url=https://www.mini-itx.com/reviews/pico-itx/?page=6|title=mini-itx.com – epia px 10000 review|website=www.mini-itx.com|accessdate=29 June 2023|archive-date=29 June 2023|archive-url=https://web.archive.org/web/20230629094110/https://www.mini-itx.com/reviews/pico-itx/?page=6|url-status=live}}</ref>
|[[VIA C7]]||1,799&nbsp;MIPS at 1.3&nbsp;GHz||1.4||1.4||2005||<ref>{{Cite web|url=https://www.mini-itx.com/reviews/pico-itx/?page=6|title=mini-itx.com – epia px 10000 review|website=www.mini-itx.com|accessdate=29 June 2023|archive-date=29 June 2023|archive-url=https://web.archive.org/web/20230629094110/https://www.mini-itx.com/reviews/pico-itx/?page=6|url-status=live}}</ref>
|-
|-
|[[ARM architecture family|ARM Cortex-A8]]||2,000&nbsp;MIPS at 1.0&nbsp;GHz||2.0||2.0||2005||<ref name="ARM_Cortex-A_Comparison">{{Cite web|url=https://www.arm.com/products/silicon-ip-cpu|title=Microprocessor Cores and Processor Technology – Arm®|first=Arm|last=Ltd|website=Arm &#124; The Architecture for the Digital World|accessdate=29 June 2023|archive-date=29 June 2023|archive-url=https://web.archive.org/web/20230629094113/https://www.arm.com/products/silicon-ip-cpu|url-status=live}}</ref>
|[[ARM Cortex-A8]]||2,000&nbsp;MIPS at 1.0&nbsp;GHz||2.0||2.0||2005||<ref name="forlinx-embedded">{{Cite web |url=https://www.forlinx.net/industrial-news/arm-cortex-a-series-processor-performance-344.html |title=A Comparison of ARM Cortex-A Series Processor Performance Classifications |website=Forlinx Embedded |access-date=6 November 2025}}</ref>
|-
|-
|[[Athlon 64|AMD Athlon FX-57]]||12,000&nbsp;MIPS at 2.8&nbsp;GHz||4.3||4.3||2005||
|[[Athlon 64|AMD Athlon FX-57]]||12,000&nbsp;MIPS at 2.8&nbsp;GHz||4.3||4.3||2005||
Line 336: Line 338:
|[[PWRficient|P.A. Semi PA6T-1682M]]||8,800&nbsp;MIPS at 1.8&nbsp;GHz||4.4||4.4||2007||<ref>{{cite web |url=http://www.eetimes.com/electronics-news/4069313/Startup-takes-PowerPC-to-25-W |archive-url=https://archive.today/20130121231507/http://www.eetimes.com/electronics-news/4069313/Startup-takes-PowerPC-to-25-W |url-status=dead |archive-date=21 January 2013 |title=Startup takes PowerPC to 25 W |author=Merritt, Rick |publisher=[[UBM plc|UBM Tech]] |work=[[EE Times]] |date=5 February 2007 |access-date=20 November 2012 }}</ref>
|[[PWRficient|P.A. Semi PA6T-1682M]]||8,800&nbsp;MIPS at 1.8&nbsp;GHz||4.4||4.4||2007||<ref>{{cite web |url=http://www.eetimes.com/electronics-news/4069313/Startup-takes-PowerPC-to-25-W |archive-url=https://archive.today/20130121231507/http://www.eetimes.com/electronics-news/4069313/Startup-takes-PowerPC-to-25-W |url-status=dead |archive-date=21 January 2013 |title=Startup takes PowerPC to 25 W |author=Merritt, Rick |publisher=[[UBM plc|UBM Tech]] |work=[[EE Times]] |date=5 February 2007 |access-date=20 November 2012 }}</ref>
|-
|-
|[[Qualcomm Snapdragon|Qualcomm Scorpion (Cortex A8-like)]]||2,100&nbsp;MIPS at 1&nbsp;GHz||2.1||2.1||2008||<ref name="anandtech.com" />
|[[Qualcomm Snapdragon|Qualcomm Scorpion (Cortex-A8-like)]]||2,100&nbsp;MIPS at 1&nbsp;GHz||2.1||2.1||2008||<ref name="anandtech.com" />
|-
|-
|[[Intel Atom|Intel Atom N270]]||3,846&nbsp;MIPS at 1.6&nbsp;GHz||2.4||2.4||2008||<ref>{{Cite web|url=http://www.ocworkbench.com/2008/ecs/ECS_945GCT-D_Atom_board/b1.htm|title=Benchmarks of ECS 945GCT-D with Intel Atom 1.6GHz|website=www.ocworkbench.com|accessdate=29 June 2023|archive-date=5 October 2022|archive-url=https://web.archive.org/web/20221005085304/http://www.ocworkbench.com/2008/ecs/ECS_945GCT-D_Atom_board/b1.htm|url-status=live}}</ref>
|[[Intel Atom|Intel Atom N270]]||3,846&nbsp;MIPS at 1.6&nbsp;GHz||2.4||2.4||2008||<ref>{{Cite web|url=http://www.ocworkbench.com/2008/ecs/ECS_945GCT-D_Atom_board/b1.htm|title=Benchmarks of ECS 945GCT-D with Intel Atom 1.6GHz|website=www.ocworkbench.com|accessdate=29 June 2023|archive-date=5 October 2022|archive-url=https://web.archive.org/web/20221005085304/http://www.ocworkbench.com/2008/ecs/ECS_945GCT-D_Atom_board/b1.htm|url-status=live}}</ref>
Line 346: Line 348:
|[[ARM Cortex-M0]]||45&nbsp;MIPS at 50&nbsp;MHz||0.9||0.9||2009||<ref>{{Cite web|url=https://developer.arm.com/Processors/Cortex-M0|title=Cortex-M0|website=developer.arm.com|accessdate=29 June 2023|archive-date=11 July 2023|archive-url=https://web.archive.org/web/20230711074754/https://developer.arm.com/Processors/Cortex-M0|url-status=live}}</ref>
|[[ARM Cortex-M0]]||45&nbsp;MIPS at 50&nbsp;MHz||0.9||0.9||2009||<ref>{{Cite web|url=https://developer.arm.com/Processors/Cortex-M0|title=Cortex-M0|website=developer.arm.com|accessdate=29 June 2023|archive-date=11 July 2023|archive-url=https://web.archive.org/web/20230711074754/https://developer.arm.com/Processors/Cortex-M0|url-status=live}}</ref>
|-
|-
|[[ARM Cortex|ARM Cortex-A9]] (2-core)||7,500&nbsp;MIPS at 1.5&nbsp;GHz||5.0||2.5||2009||<ref>{{cite web|url=http://www.eeejournal.com/2009/12/arm11-vs-cortex-a8-vs-cortex-a9.html|title=EEE Journal: ARM11 vs Cortex A8 vs Cortex A9 – Netbooks processors EEE PC, MSI Wind, HP, Acer Aspire, ARM Cortex vs Intel Atom|url-status=dead|archive-url=https://web.archive.org/web/20110719103301/http://www.eeejournal.com/2009/12/arm11-vs-cortex-a8-vs-cortex-a9.html|archive-date=2011-07-19}}</ref>
|[[ARM Cortex-A9]] (2-core)||7,500&nbsp;MIPS at 1.5&nbsp;GHz||5.0||2.5||2009||<ref>{{cite web|url=http://www.eeejournal.com/2009/12/arm11-vs-cortex-a8-vs-cortex-a9.html|title=EEE Journal: ARM11 vs Cortex A8 vs Cortex A9 – Netbooks processors EEE PC, MSI Wind, HP, Acer Aspire, ARM Cortex vs Intel Atom|url-status=dead|archive-url=https://web.archive.org/web/20110719103301/http://www.eeejournal.com/2009/12/arm11-vs-cortex-a8-vs-cortex-a9.html|archive-date=2011-07-19}}</ref>
|-
|-
|[[Phenom (processor)|AMD Phenom II X4 940 Black Edition]]||42,820&nbsp;MIPS at 3.0&nbsp;GHz||14.3||3.5||2009||<ref>{{cite web|url=http://www.xtremesystems.org/forums/showpost.php?p=3579940&postcount=513|title=The Phenom II List of Overclocks – Page 21|access-date=2009-01-15|archive-date=2009-04-04|archive-url=https://web.archive.org/web/20090404020052/http://www.xtremesystems.org/forums/showpost.php?p=3579940&postcount=513|url-status=dead}}</ref>
|[[Phenom (processor)|AMD Phenom II X4 940 Black Edition]]||42,820&nbsp;MIPS at 3.0&nbsp;GHz||14.3||3.5||2009||<ref>{{cite web|url=http://www.xtremesystems.org/forums/showpost.php?p=3579940&postcount=513|title=The Phenom II List of Overclocks – Page 21|access-date=2009-01-15|archive-date=2009-04-04|archive-url=https://web.archive.org/web/20090404020052/http://www.xtremesystems.org/forums/showpost.php?p=3579940&postcount=513|url-status=dead}}</ref>
Line 358: Line 360:
|[[Gulftown (microprocessor)|Intel Core i7 Extreme Edition 980X]] (6-core)||147,600&nbsp;MIPS at 3.33&nbsp;GHz||44.7||7.46||2010||<ref>{{cite web|url=http://www.overclock3d.net/reviews/cpu_mainboard/intel_980x_gulftown/4|title=OC3D :: Review :: Intel 980x Gulftown :: Synthetic Benchmarks|date=12 March 2010|access-date=16 March 2010|archive-date=20 July 2011|archive-url=https://web.archive.org/web/20110720062355/http://www.overclock3d.net/reviews/cpu_mainboard/intel_980x_gulftown/4|url-status=dead}}</ref>
|[[Gulftown (microprocessor)|Intel Core i7 Extreme Edition 980X]] (6-core)||147,600&nbsp;MIPS at 3.33&nbsp;GHz||44.7||7.46||2010||<ref>{{cite web|url=http://www.overclock3d.net/reviews/cpu_mainboard/intel_980x_gulftown/4|title=OC3D :: Review :: Intel 980x Gulftown :: Synthetic Benchmarks|date=12 March 2010|access-date=16 March 2010|archive-date=20 July 2011|archive-url=https://web.archive.org/web/20110720062355/http://www.overclock3d.net/reviews/cpu_mainboard/intel_980x_gulftown/4|url-status=dead}}</ref>
|-
|-
|[[List of ARM microprocessor cores|ARM Cortex A5]]||1,256&nbsp;MIPS at 800&nbsp;MHz||1.57||1.57||2011||<ref name="ARM_Cortex-A_Comparison" />
|[[ARM Cortex-A5]]||1,256&nbsp;MIPS at 800&nbsp;MHz||1.57||1.57||2011||<ref name="forlinx-embedded" />
|-
|-
|[[List of ARM microprocessor cores|ARM Cortex A7]]||2,850&nbsp;MIPS at 1.5&nbsp;GHz||1.9||1.9||2011||<ref name="anandtech.com" />
|[[ARM Cortex-A7]]||2,850&nbsp;MIPS at 1.5&nbsp;GHz||1.9||1.9||2011||<ref name="anandtech.com" />
|-
|-
|[[Qualcomm Snapdragon|Qualcomm Krait (Cortex A15-like, 2-core)]]||9,900&nbsp;MIPS at 1.5&nbsp;GHz||6.6||3.3||2011||<ref name="anandtech.com" />
|[[Qualcomm Snapdragon|Qualcomm Krait (Cortex-A15-like, 2-core)]]||9,900&nbsp;MIPS at 1.5&nbsp;GHz||6.6||3.3||2011||<ref name="anandtech.com" />
|-
|-
|[[AMD E-350]] (2-core)||10,000&nbsp;MIPS at 1.6&nbsp;GHz||6.25||3.125||2011||<ref>{{cite web|url=http://www.tomshardware.com/reviews/asrock-e350m1-amd-brazos-zacate-apu,2840-10.html|title=Benchmark Results: Sandra 2011 – ASRock's E350M1: AMD's Brazos Platform Hits The Desktop First|date=14 January 2011|access-date=11 October 2011|archive-date=6 September 2011|archive-url=https://web.archive.org/web/20110906034927/http://www.tomshardware.com/reviews/asrock-e350m1-amd-brazos-zacate-apu,2840-10.html|url-status=live}}</ref>
|[[AMD E-350]] (2-core)||10,000&nbsp;MIPS at 1.6&nbsp;GHz||6.25||3.125||2011||<ref>{{cite web|url=http://www.tomshardware.com/reviews/asrock-e350m1-amd-brazos-zacate-apu,2840-10.html|title=Benchmark Results: Sandra 2011 – ASRock's E350M1: AMD's Brazos Platform Hits The Desktop First|date=14 January 2011|access-date=11 October 2011|archive-date=6 September 2011|archive-url=https://web.archive.org/web/20110906034927/http://www.tomshardware.com/reviews/asrock-e350m1-amd-brazos-zacate-apu,2840-10.html|url-status=live}}</ref>
Line 392: Line 394:
|[[Broadwell (microarchitecture)|Intel Core i7 6950X (10-core)]]||320,440&nbsp;MIPS at 3.5&nbsp;GHz||91.55||9.16||2016||<ref>{{cite web|url=https://www.overclockersclub.com/reviews/intel_core_i7_extreme_edition_broadwell_e_cpu/5.htm|title=Intel Core I7 6950X Extreme Edition Broadwell-E CPU Review|date=May 30, 2016|author=ccokeman|access-date=22 March 2020|archive-date=22 March 2020|archive-url=https://web.archive.org/web/20200322031017/https://www.overclockersclub.com/reviews/intel_core_i7_extreme_edition_broadwell_e_cpu/5.htm|url-status=live}}</ref>
|[[Broadwell (microarchitecture)|Intel Core i7 6950X (10-core)]]||320,440&nbsp;MIPS at 3.5&nbsp;GHz||91.55||9.16||2016||<ref>{{cite web|url=https://www.overclockersclub.com/reviews/intel_core_i7_extreme_edition_broadwell_e_cpu/5.htm|title=Intel Core I7 6950X Extreme Edition Broadwell-E CPU Review|date=May 30, 2016|author=ccokeman|access-date=22 March 2020|archive-date=22 March 2020|archive-url=https://web.archive.org/web/20200322031017/https://www.overclockersclub.com/reviews/intel_core_i7_extreme_edition_broadwell_e_cpu/5.htm|url-status=live}}</ref>
|-
|-
|[[ARM Cortex-A73|ARM Cortex A73]] (4-core)
|[[ARM Cortex-A73]] (4-core)
|71,120 MIPS at 2.8&nbsp;GHz
|71,120 MIPS at 2.8&nbsp;GHz
|25.4
|25.4
Line 399: Line 401:
|
|
|-
|-
|[[ARM Cortex-A75|ARM Cortex A75]]
|[[ARM Cortex-A75]]
|{{dunno}}
|{{dunno}}
|{{dunno}}
|{{dunno}}
Line 406: Line 408:
|<ref name=":0">{{cite web|url=http://users.nik.uni-obuda.hu/sima/letoltes/Processor_families_Knowledge_Base_2019/ARM_processors_lecture_2018_12_02.pdf|title=ARM's processor lines|date=November 2018|website=uni-obuda.hu|author=Dezső Sima|access-date=29 June 2023|archive-date=10 May 2023|archive-url=https://web.archive.org/web/20230510175913/https://users.nik.uni-obuda.hu/sima/letoltes/Processor_families_Knowledge_Base_2019/ARM_processors_lecture_2018_12_02.pdf|url-status=live}}</ref>
|<ref name=":0">{{cite web|url=http://users.nik.uni-obuda.hu/sima/letoltes/Processor_families_Knowledge_Base_2019/ARM_processors_lecture_2018_12_02.pdf|title=ARM's processor lines|date=November 2018|website=uni-obuda.hu|author=Dezső Sima|access-date=29 June 2023|archive-date=10 May 2023|archive-url=https://web.archive.org/web/20230510175913/https://users.nik.uni-obuda.hu/sima/letoltes/Processor_families_Knowledge_Base_2019/ARM_processors_lecture_2018_12_02.pdf|url-status=live}}</ref>
|-
|-
|[[ARM Cortex-A76|ARM Cortex A76]]
|[[ARM Cortex-A76]]
|{{dunno}}
|{{dunno}}
|{{dunno}}
|{{dunno}}
Line 413: Line 415:
|<ref name=":0" />
|<ref name=":0" />
|-
|-
|[[ARM Cortex-A53|ARM Cortex A53]]
|[[ARM Cortex-A53]]
|2,300 MIPS at 1&nbsp;GHz
|2,300 MIPS at 1&nbsp;GHz
|2.3
|2.3
Line 420: Line 422:
|<ref name="elearning.unicampania.it">{{cite web|url=https://elearning.unicampania.it/pluginfile.php/65623/mod_folder/content/0/ARM_organization_part2.pdf|title=Overview of ARM's Cortex-A series|website=elearning.unicampania.it|access-date=29 June 2023|archive-date=24 December 2022|archive-url=https://web.archive.org/web/20221224024851/https://elearning.unicampania.it/pluginfile.php/65623/mod_folder/content/0/ARM_organization_part2.pdf|url-status=live}}</ref>
|<ref name="elearning.unicampania.it">{{cite web|url=https://elearning.unicampania.it/pluginfile.php/65623/mod_folder/content/0/ARM_organization_part2.pdf|title=Overview of ARM's Cortex-A series|website=elearning.unicampania.it|access-date=29 June 2023|archive-date=24 December 2022|archive-url=https://web.archive.org/web/20221224024851/https://elearning.unicampania.it/pluginfile.php/65623/mod_folder/content/0/ARM_organization_part2.pdf|url-status=live}}</ref>
|-
|-
|[[ARM Cortex-A35|ARM Cortex A35]]
|[[ARM Cortex-A35]]
|2,100 MIPS at 1&nbsp;GHz
|2,100 MIPS at 1&nbsp;GHz
|2.1
|2.1
Line 427: Line 429:
|<ref name="elearning.unicampania.it"/>
|<ref name="elearning.unicampania.it"/>
|-
|-
|[[ARM Cortex-A72|ARM Cortex A72]]
|[[ARM Cortex-A72]]
|15,750 to 18,375 at 2.5&nbsp;GHz
|15,750 to 18,375 at 2.5&nbsp;GHz
|6.3 to 7.35
|6.3 to 7.35
Line 434: Line 436:
|<ref name="elearning.unicampania.it"/>
|<ref name="elearning.unicampania.it"/>
|-
|-
|[[ARM Cortex-A57|ARM Cortex A57]]
|[[ARM Cortex-A57]]
|10,250 to 11,750 at 2.5&nbsp;GHz
|10,250 to 11,750 at 2.5&nbsp;GHz
|4.1 to 4.7
|4.1 to 4.7
Line 441: Line 443:
|<ref name="elearning.unicampania.it"/>
|<ref name="elearning.unicampania.it"/>
|-
|-
|[[Texas Instruments Sitara AM64x|Sitara AM64x ARM Cortex A53]] (2-core)
|[[Texas Instruments Sitara AM64x|Sitara AM64x ARM Cortex-A53]] (2-core)
|5,992 MIPS at 1&nbsp;GHz
|5,992 MIPS at 1&nbsp;GHz
|6
|6
Line 456: Line 458:
|[[Ryzen|AMD Ryzen 9 3950X (16-core)]]||749,070&nbsp;MIPS at 4.6&nbsp;GHz|| 162.84 || 10.18 ||2019||<ref name="HotHardware_Ryzen3950X">{{cite web|author1=Marco Chiappetta|title=AMD Ryzen 9 3950X Review: A 16-Core Zen 2 Powerhouse|url=https://hothardware.com/reviews/amd-ryzen-9-3950x-zen-2-review?page=2|publisher=HotHardware|date=14 November 2019|access-date=22 March 2020|archive-url=https://web.archive.org/web/20200306103204/https://hothardware.com/reviews/amd-ryzen-9-3950x-zen-2-review?page=2|archive-date=6 March 2020|url-status=dead}}</ref>
|[[Ryzen|AMD Ryzen 9 3950X (16-core)]]||749,070&nbsp;MIPS at 4.6&nbsp;GHz|| 162.84 || 10.18 ||2019||<ref name="HotHardware_Ryzen3950X">{{cite web|author1=Marco Chiappetta|title=AMD Ryzen 9 3950X Review: A 16-Core Zen 2 Powerhouse|url=https://hothardware.com/reviews/amd-ryzen-9-3950x-zen-2-review?page=2|publisher=HotHardware|date=14 November 2019|access-date=22 March 2020|archive-url=https://web.archive.org/web/20200306103204/https://hothardware.com/reviews/amd-ryzen-9-3950x-zen-2-review?page=2|archive-date=6 March 2020|url-status=dead}}</ref>
|-
|-
|[[Ryzen|AMD Ryzen Threadripper 3990X (64 core)]]||2,356,230&nbsp;MIPS at 4.35&nbsp;GHz|| 541.66 || 8.46 ||2020||<ref>{{cite web|author1=Marco Chiappetta|title=AMD Threadripper 3990X Review: A 64-Core Multithreaded Beast Unleashed|url=https://hothardware.com/reviews/amd-ryzen-threadripper-3990x-cpu-review?page=3|publisher=HotHardware|date=7 February 2020|access-date=22 March 2020|archive-url=https://web.archive.org/web/20200318200417/https://hothardware.com/reviews/amd-ryzen-threadripper-3990x-cpu-review?page=3|archive-date=18 March 2020|url-status=dead}}</ref>
|[[Threadripper|AMD Ryzen Threadripper 3990X (64 core)]]||2,356,230&nbsp;MIPS at 4.35&nbsp;GHz|| 541.66 || 8.46 ||2020||<ref>{{cite web|author1=Marco Chiappetta|title=AMD Threadripper 3990X Review: A 64-Core Multithreaded Beast Unleashed|url=https://hothardware.com/reviews/amd-ryzen-threadripper-3990x-cpu-review?page=3|publisher=HotHardware|date=7 February 2020|access-date=22 March 2020|archive-url=https://web.archive.org/web/20200318200417/https://hothardware.com/reviews/amd-ryzen-threadripper-3990x-cpu-review?page=3|archive-date=18 March 2020|url-status=dead}}</ref>
|-
|-
|[[Rocket Lake|Intel Core i5-11600K]] (6-core) ||346,350&nbsp;MIPS at 4.92&nbsp;GHz|| 57.72 || 11.73||2021||<ref>{{cite web|title=Intel Core i9-11900K And i5-11600K Review: Rocket Lake-S Liftoff|first=Marco|last=Chiappetta|publisher=HotHardware|date=2021-03-30|url=https://hothardware.com/reviews/intel-core-i9-11900k-core-i5-11600k-rocket-lake-s-review?page=2|access-date=13 June 2023|archive-date=13 June 2023|archive-url=https://web.archive.org/web/20230613001224/https://hothardware.com/reviews/intel-core-i9-11900k-core-i5-11600k-rocket-lake-s-review?page=2|url-status=live}}</ref>
|[[Rocket Lake|Intel Core i5-11600K]] (6-core) ||346,350&nbsp;MIPS at 4.92&nbsp;GHz|| 57.72 || 11.73||2021||<ref>{{cite web|title=Intel Core i9-11900K And i5-11600K Review: Rocket Lake-S Liftoff|first=Marco|last=Chiappetta|publisher=HotHardware|date=2021-03-30|url=https://hothardware.com/reviews/intel-core-i9-11900k-core-i5-11600k-rocket-lake-s-review?page=2|access-date=13 June 2023|archive-date=13 June 2023|archive-url=https://web.archive.org/web/20230613001224/https://hothardware.com/reviews/intel-core-i9-11900k-core-i5-11600k-rocket-lake-s-review?page=2|url-status=live}}</ref>
Line 484: Line 486:
|[[Namco System 21]] (10-processor)||73.927&nbsp;MIPS at 25&nbsp;MHz||2.957||0.296||1988||<ref>Namco System 21 hardware: 5× Texas Instruments TMS320C20 @ 25 MHz (62.5&nbsp;MIPS [http://historyofracinggames.files.wordpress.com/2007/06/060-1987-drivers-eyes-1989-winning-run.pdf] {{Webarchive|url=https://web.archive.org/web/20141001164723/http://historyofracinggames.files.wordpress.com/2007/06/060-1987-drivers-eyes-1989-winning-run.pdf|date=1 October 2014}}), 2× Motorola 68000 @ 12.288 MHz [http://www.system16.com/hardware.php?id=536] {{Webarchive|url=https://web.archive.org/web/20150518005344/http://system16.com/hardware.php?id=536|date=18 May 2015}} (4.301&nbsp;MIPS [http://www.drolez.com/retro/] {{Webarchive|url=https://web.archive.org/web/20200309132442/https://drolez.com/retro/|date=9 March 2020}}), Motorola 68020 [http://www.system16.com/hardware.php?id=536]  @ 12.5 MHz (3.788&nbsp;MIPS [http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC68020] {{Webarchive|url=https://web.archive.org/web/20121101104152/http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC68020|date=1 November 2012}}), Hitachi HD63705 @ 2.048 MHz [https://archive.today/20141121115057/https://github.com/mamedev/mame/tree/master/src/mame/drivers/namcos21.c] (2.048&nbsp;MIPS [https://web.archive.org/web/20140918053051/http://www.datasheetarchive.com/dlmain/Datasheets-13/DSA-246134.pdf]), Motorola 6809 @ 3.072 MHz [https://archive.today/20141121115057/https://github.com/mamedev/mame/tree/master/src/mame/drivers/namcos21.c] (1.29&nbsp;MIPS [http://www.drolez.com/retro/] )</ref>
|[[Namco System 21]] (10-processor)||73.927&nbsp;MIPS at 25&nbsp;MHz||2.957||0.296||1988||<ref>Namco System 21 hardware: 5× Texas Instruments TMS320C20 @ 25 MHz (62.5&nbsp;MIPS [http://historyofracinggames.files.wordpress.com/2007/06/060-1987-drivers-eyes-1989-winning-run.pdf] {{Webarchive|url=https://web.archive.org/web/20141001164723/http://historyofracinggames.files.wordpress.com/2007/06/060-1987-drivers-eyes-1989-winning-run.pdf|date=1 October 2014}}), 2× Motorola 68000 @ 12.288 MHz [http://www.system16.com/hardware.php?id=536] {{Webarchive|url=https://web.archive.org/web/20150518005344/http://system16.com/hardware.php?id=536|date=18 May 2015}} (4.301&nbsp;MIPS [http://www.drolez.com/retro/] {{Webarchive|url=https://web.archive.org/web/20200309132442/https://drolez.com/retro/|date=9 March 2020}}), Motorola 68020 [http://www.system16.com/hardware.php?id=536]  @ 12.5 MHz (3.788&nbsp;MIPS [http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC68020] {{Webarchive|url=https://web.archive.org/web/20121101104152/http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC68020|date=1 November 2012}}), Hitachi HD63705 @ 2.048 MHz [https://archive.today/20141121115057/https://github.com/mamedev/mame/tree/master/src/mame/drivers/namcos21.c] (2.048&nbsp;MIPS [https://web.archive.org/web/20140918053051/http://www.datasheetarchive.com/dlmain/Datasheets-13/DSA-246134.pdf]), Motorola 6809 @ 3.072 MHz [https://archive.today/20141121115057/https://github.com/mamedev/mame/tree/master/src/mame/drivers/namcos21.c] (1.29&nbsp;MIPS [http://www.drolez.com/retro/] )</ref>
|-
|-
|[[Hard Drivin'|Atari Hard Drivin']] (7-processor)||33.573&nbsp;MIPS at 50&nbsp;MHz||0.671||0.0959||1989||<ref>Atari Hard Drivin' hardware: [http://www.system16.com/hardware.php?id=770] {{Webarchive|url=https://web.archive.org/web/20140929015919/http://www.system16.com/hardware.php?id=770|date=29 September 2014}} Motorola 68000 @ 7 MHz (1.225&nbsp;MIPS [http://www.drolez.com/retro/] {{Webarchive|url=https://web.archive.org/web/20200309132442/https://drolez.com/retro/|date=9 March 2020}}), Motorola 68010 @ 7 MHz (1.348&nbsp;MIPS [http://www.cpu-world.com/CPUs/68010/] {{Webarchive|url=https://web.archive.org/web/20141006154021/http://www.cpu-world.com/CPUs/68010/|date=6 October 2014}}), 3× Texas Instruments TMS34010 @ 50 MHz (18&nbsp;MIPS [https://books.google.com/books?id=KzoEAAAAMBAJ&pg=PT22]), Analog Devices ADSP-2100 @ 8 MHz (8&nbsp;MIPS [http://pdf.datasheetcatalog.com/datasheet/analogdevices/ADSP-2100KG.pdf]), Texas Instruments TMS32010 @ 20 MHz (5&nbsp;MIPS {{cite web |title=TMS320C1x Digital Signal Processors |url=http://www.ti.com/lit/ds/symlink/tms320ss16.pdf |url-status=dead |archive-url=https://web.archive.org/web/20141006111247/http://www.ti.com/lit/ds/symlink/tms320ss16.pdf |archive-date=2014-10-06 |access-date=2014-09-17}})</ref>
|[[Hard Drivin'|Atari Hard Drivin']] (7-processor)||33.573&nbsp;MIPS at 50&nbsp;MHz||0.671||0.0959||1989||<ref>Atari Hard Drivin' hardware: [http://www.system16.com/hardware.php?id=770] {{Webarchive|url=https://web.archive.org/web/20140929015919/http://www.system16.com/hardware.php?id=770|date=29 September 2014}} Motorola 68000 @ 7 MHz (1.225&nbsp;MIPS [http://www.drolez.com/retro/] {{Webarchive|url=https://web.archive.org/web/20200309132442/https://drolez.com/retro/|date=9 March 2020}}), Motorola 68010 @ 7 MHz (1.348&nbsp;MIPS [http://www.cpu-world.com/CPUs/68010/] {{Webarchive|url=https://web.archive.org/web/20141006154021/http://www.cpu-world.com/CPUs/68010/|date=6 October 2014}}), 3× Texas Instruments TMS34010 @ 50 MHz (18&nbsp;MIPS [https://books.google.com/books?id=KzoEAAAAMBAJ&pg=PT22]), Analog Devices ADSP-2100 @ 8 MHz (8&nbsp;MIPS [http://pdf.datasheetcatalog.com/datasheet/analogdevices/ADSP-2100KG.pdf] {{Webarchive|url=https://web.archive.org/web/20141006082923/http://pdf.datasheetcatalog.com/datasheet/analogdevices/ADSP-2100KG.pdf|date=6 October 2014}}), Texas Instruments TMS32010 @ 20 MHz (5&nbsp;MIPS {{cite web |title=TMS320C1x Digital Signal Processors |url=http://www.ti.com/lit/ds/symlink/tms320ss16.pdf |url-status=dead |archive-url=https://web.archive.org/web/20141006111247/http://www.ti.com/lit/ds/symlink/tms320ss16.pdf |archive-date=2014-10-06 |access-date=2014-09-17}})</ref>
|-
|-
|[[SX-3 supercomputer|NEC SX-3]] (4-processor)||680&nbsp;MIPS at 400&nbsp;MHz||1.7||0.425||1989||<ref>{{cite journal|url=http://www.degruyter.com/dg/viewarticle/j$002fpiko.1990.13.issue-4$002fpiko.1990.13.4.205$002fpiko.1990.13.4.205.xml;jsessionid=2928071D864D5E4F9045C8A209E7AA94|title=Supercomputer|journal=Pik – Praxis der Informationsverarbeitung und Kommunikation|volume=13|issue=4|doi=10.1515/piko.1990.13.4.205|year=1990|access-date=2014-09-29|archive-date=2014-11-09|archive-url=https://web.archive.org/web/20141109011953/http://www.degruyter.com/dg/viewarticle/j$002fpiko.1990.13.issue-4$002fpiko.1990.13.4.205$002fpiko.1990.13.4.205.xml;jsessionid=2928071D864D5E4F9045C8A209E7AA94|url-status=dead|url-access=subscription}}</ref>
|[[SX-3 supercomputer|NEC SX-3]] (4-processor)||680&nbsp;MIPS at 400&nbsp;MHz||1.7||0.425||1989||<ref>{{cite journal|url=http://www.degruyter.com/dg/viewarticle/j$002fpiko.1990.13.issue-4$002fpiko.1990.13.4.205$002fpiko.1990.13.4.205.xml;jsessionid=2928071D864D5E4F9045C8A209E7AA94|title=Supercomputer|journal=Pik – Praxis der Informationsverarbeitung und Kommunikation|volume=13|issue=4|doi=10.1515/piko.1990.13.4.205|year=1990|access-date=2014-09-29|archive-date=2014-11-09|archive-url=https://web.archive.org/web/20141109011953/http://www.degruyter.com/dg/viewarticle/j$002fpiko.1990.13.issue-4$002fpiko.1990.13.4.205$002fpiko.1990.13.4.205.xml;jsessionid=2928071D864D5E4F9045C8A209E7AA94|url-status=dead|url-access=subscription}}</ref>
Line 496: Line 498:
|[[Sega Naomi|Sega Naomi Multiboard]] (32-processor)||6,400&nbsp;MIPS at 200&nbsp;MHz||32||1||1999||<ref>Sega Naomi Multiboard hardware: [http://www.system16.com/hardware.php?id=906] {{Webarchive|url=https://web.archive.org/web/20160303192948/http://www.system16.com/hardware.php?id=906|date=3 March 2016}} [http://segatech.com/arcade/naomi1/index.html] {{Webarchive|url=https://web.archive.org/web/20141006082352/http://segatech.com/arcade/naomi1/index.html|date=2014-10-06}} 16× Hitachi SH-4 at 200 MHz (5760&nbsp;MIPS [http://www.segatech.com/technical/cpu/] {{Webarchive|url=https://web.archive.org/web/20141211115813/http://www.segatech.com/technical/cpu/|date=2014-12-11}}), 16× [[ARM7]] at 45 MHz (640&nbsp;MIPS [https://web.archive.org/web/20030301001846/http://www.segatech.com/technical/saturnspecs/])</ref>
|[[Sega Naomi|Sega Naomi Multiboard]] (32-processor)||6,400&nbsp;MIPS at 200&nbsp;MHz||32||1||1999||<ref>Sega Naomi Multiboard hardware: [http://www.system16.com/hardware.php?id=906] {{Webarchive|url=https://web.archive.org/web/20160303192948/http://www.system16.com/hardware.php?id=906|date=3 March 2016}} [http://segatech.com/arcade/naomi1/index.html] {{Webarchive|url=https://web.archive.org/web/20141006082352/http://segatech.com/arcade/naomi1/index.html|date=2014-10-06}} 16× Hitachi SH-4 at 200 MHz (5760&nbsp;MIPS [http://www.segatech.com/technical/cpu/] {{Webarchive|url=https://web.archive.org/web/20141211115813/http://www.segatech.com/technical/cpu/|date=2014-12-11}}), 16× [[ARM7]] at 45 MHz (640&nbsp;MIPS [https://web.archive.org/web/20030301001846/http://www.segatech.com/technical/saturnspecs/])</ref>
|-
|-
|[[Raspberry Pi|Raspberry Pi 2 (quad-core ARM Cortex A7)]]||4,744 MIPS at 1.0&nbsp;GHz|| 4.744 || 1.186 ||2014||<ref>{{cite web|url=http://hackaday.com/2015/02/05/benchmarking-the-raspberry-pi-2/|title=Benchmarking The Raspberry Pi 2|last=By|publisher=hackaday.com|date=2015-02-05|access-date=1 May 2015|archive-date=11 May 2015|archive-url=https://web.archive.org/web/20150511003205/http://hackaday.com/2015/02/05/benchmarking-the-raspberry-pi-2/|url-status=live}}</ref>
|[[Raspberry Pi|Raspberry Pi 2 (quad-core ARM Cortex-A7)]]||4,744 MIPS at 1.0&nbsp;GHz|| 4.744 || 1.186 ||2014||<ref>{{cite web |url=http://hackaday.com/2015/02/05/benchmarking-the-raspberry-pi-2/ |title=Benchmarking The Raspberry Pi 2 |last=Benchoff |first=Brian |publisher=hackaday.com |date=2015-02-05 |access-date=1 May 2015 |archive-date=11 May 2015 |archive-url=https://web.archive.org/web/20150511003205/http://hackaday.com/2015/02/05/benchmarking-the-raspberry-pi-2/ |url-status=live}}</ref>
|-
|-
!Processor / System
!Processor / System

Latest revision as of 21:24, 6 November 2025

Template:Short description Template:Use dmy dates

File:Computing efficiency, OWID.svg
Computer processing efficiency, measured as the power needed per million instructions per second (watts per MIPS)

Instructions per second (IPS) is a measure of a computer's processor speed. For complex instruction set computers (CISCs), different instructions take different amounts of time, so the value measured depends on the instruction mix; even for comparing processors in the same family the IPS measurement can be problematic. Many reported IPS values have represented "peak" execution rates on artificial instruction sequences with few branches and no cache contention, whereas realistic workloads typically lead to significantly lower IPS values. Memory hierarchy also greatly affects processor performance, an issue barely considered in IPS calculations. Because of these problems, synthetic benchmarks such as Dhrystone are now generally used to estimate computer performance in commonly used applications, and raw IPS has fallen into disuse.

The term is commonly used in association with a metric prefix (k, M, G, T, P, or E) to form kilo instructions per second (kIPS), mega instructions per second (MIPS), giga instructions per second (GIPS) and so on. Formerly TIPS was used occasionally for "thousand IPS".

Computing

IPS can be calculated using this equation:[1]

IPS=sockets×coreschip×clock×Iscycle

However, the instructions/cycle measurement depends on the instruction sequence, the data and external factors.

Scaling units

For the most early 8-bit and 16-bit microprocessors, performance was measured in thousand instructions per second, or kilo instructions per second (kIPS).

The term "mega instructions per second" became useful in the late 1970s. The IBM System/370 model 158–3 and the VAX-11/780 were considered roughly equivalent at 1 MIPS.

Types of instruction

The speed of a given CPU depends on many factors, such as the type of instructions being executed, the execution order and the presence of branch instructions (problematic in CPU pipelines). CPU instruction rates are different from clock frequencies, usually reported in Hz, as each instruction may require several clock cycles to complete or the processor may be capable of executing multiple independent instructions simultaneously. MIPS can be useful when comparing performance between processors made with similar architecture (e.g. PIC microcontrollers), but they are difficult to compare between differing CPU architectures, especially between RISC and CISC architectures.[2] This led to the term "Meaningless Indicator of Processor Speed,"[3] or less commonly, "Meaningless Indices of Performance," [4] being popular amongst technical people by the mid-1980s.

The Gibson Mix (1959)

Before standard benchmarks were available, average speed rating of computers was based on calculations for a mix of instructions with the results given in kilo instructions per second (kIPS). Among the first attempts at defining a specific collections of instructions to time was the Gibson Mix, produced by Jack Clark Gibson of IBM for scientific applications in 1959.[5]

Gibson divided computer instructions into 12 classes, based on the IBM 704 architecture, adding a 13th class to account for indexing time. Weights were primarily based on analysis of seven scientific programs run on the 704, with a small contribution from some IBM 650 programs. The overall score was then the weighted sum of the average execution speed for instructions in each class.[6]

The Gibson Mix is a product of its era, when computer speeds were still measured in kIPS. Other ratings, such as the ADP mix which does not include floating point operations, were produced for commercial applications. These early ratings were nowhere as systemic as the later approaches, although the idea of creating a benchmark to resemble real-world applications (later called a "synthetic benchmark") would persist.

Two flavors of VAX MIPS

The VAX-11/780 was released in 1977. It was marketed as being able to execute the equivalent of 1 million System/370 instructions per second, the first minicomputer to achieve such a speed. VAX-11/780 would quickly become a unit of reference for MIPS measurements, in two separate benchmarks:

  • The Whetstone benchmark of 1972 was modified in 1980 to combine three of its integer-operation speed measures into a "VAX MIPS". It originally included a mix of 42 statements written in ALGOL 60 (124 instructions on the KDF9 compiler), though by 1980 it had been rewritten in Fortran.
  • The integer-and-string-heavy Dhrystone benchmark of 1984 inherited the idea of using VAX as a MIPS reference. Its results were reported in "DMIPS", for Dhrystone MIPS. Each Dhrystone MIPS was defined as the ability to run the Dhrystone main loop 1757 times per second, the score VAX-11/780 received on this benchmark.

Other instruction mixes

zMIPS refers to the MIPS measure used internally by IBM to rate its mainframe servers (zSeries, IBM System z9, and IBM System z10).

Weighted million operations per second (WMOPS) is a similar measurement, used for audio codecs.

Other factors that affect instructions per second

Effective MIPS speeds are highly dependent on the programming language used: some compilers generate highly-efficient code, others do not. The Whetstone Report has a table showing MWIPS speeds of PCs via early interpreters and compilers up to modern languages. The first PC compiler was for BASIC (1982) when a 4.8 MHz 8088/87 CPU obtained 0.01 MWIPS. Results on a 2.4 GHz Intel Core 2 Duo (1 CPU 2007) vary from 9.7 MWIPS using BASIC Interpreter, 59 MWIPS via BASIC Compiler, 347 MWIPS using 1987 Fortran, 1,534 MWIPS through HTML/Java to 2,403 MWIPS using a modern C/C++ compiler.

Timeline of instructions per second

CPU results

Processor / System Dhrystone MIPS or MIPS, and frequency D instructions per clock cycle D instructions per clock cycle per core Year Source
UNIVAC I 0.002 MIPS at 2.25 MHz 0.0008 0.0008 1951

[7]

IBM 7030 ("Stretch") 1.200 MIPS at 3.30 MHz 0.364 0.364 1961 [8][9]
CDC 6600 10.00 MIPS at 10.00 MHz 1 1 1965 [10][11]
Intel 4004 0.092 MIPS at 0.740 MHz
(Not Dhrystone)
0.124 0.124 1971 [12]
IBM System/370 Model 158 0.640 MIPS at 8.696 MHz 0.0736 0.0736 1972 [13]
Intel 8080 0.290 MIPS at 2.000 MHz
(Not Dhrystone)
0.145 0.145 1974 [14]
Cray 1 160.0 MIPS at 80.00 MHz 2 2 1975 [15]
MOS Technology 6502 0.430 MIPS at 1.000 MHz 0.43 0.43 1975 [16]
MCP-1600 2.25 MIPS at 3.3 MHz, 4 ϕ 0.75 0.75 1975 [17]
Intel 8085 0.435 MIPS at 3.000 MHz
(Not Dhrystone)
0.145 0.145 1976 [14]
Zilog Z80 0.580 MIPS at 4.000 MHz
(Not Dhrystone)
0.145 0.145 1976 [16]
Signetics 8X300 4.000 MIPS at 8.000 MHz 0.5 0.5 1976 [18]
Motorola 6802 0.500 MIPS at 1.000 MHz 0.5 0.5 1977 [19]
IBM System/370 Model 158-3 0.730 MIPS at 8.696 MHz 0.0839 0.0839 1977 [13]
VAX-11/780 1.000 MIPS at 5.000 MHz 0.2 0.2 1977 [13]
Motorola 6809 0.420 MIPS at 1.000 MHz 0.42 0.42 1978 [16]
Intel 8086 0.330 MIPS at 5.000 MHz 0.066 0.066 1978 [14]
Fujitsu MB8843 2.000 MIPS at 2.000 MHz
(Not Dhrystone)
1 1 1978 [20]
Intel 8088 0.750 MIPS at 10.00 MHz 0.075 0.075 1979 [14] Template:Verification failed
Motorola 68000 1.400 MIPS at 8.000 MHz 0.175 0.175 1979 [16]
Zilog Z8001/Z8002 1.5 MIPS at 6 MHz 0.25 0.25 1979 [21]
Intel 8035/8039/8048 0.400 MIPS at 6 MHz
(Not Dhrystone)
.066 .066 1980 [22]
Fujitsu MB8843/MB8844 6 MIPS at 6 MHz
(Not Dhrystone)
1 1 1980 [20]
Zilog Z80/Z80H 1.16 MIPS at 8 MHz
(Not Dhrystone)
0.145 0.145 1981 [16][23]
Motorola 6802 1.79 MIPS at 3.58 MHz 0.5 0.5 1981 [19][24]
Zilog Z8001/Z8002B 2.5 MIPS at 10 MHz 0.25 0.25 1981 [21]
MOS Technology 6502 2.522 MIPS at 5.865 MHz 0.43 0.43 1981 [16][24]
Intel 80286 1.28 MIPS at 12 MHz 0.107 0.107 1982 [13]
Motorola 68010 2.407 MIPS at 12.5 MHz 0.193 0.193 1982 [25]
NEC V20 4 MIPS at 8 MHz
(Not Dhrystone)
0.5 0.5 1982 [26]
Texas Instruments TMS32010 5 MIPS at 20 MHz 0.25 0.25 1983 [27]
NEC V30 5 MIPS at 10 MHz
(Not Dhrystone)
0.5 0.5 1983 [26]
Motorola 68020 4.848 MIPS at 16 MHz 0.303 0.303 1984 [28]
Hitachi HD63705 2 MIPS at 2 MHz 1 1 1985 [29][30]
Intel i386DX 2.15 MIPS at 16 MHz 0.134 0.134 1985 [13]
Hitachi-Motorola 68HC000 3.5 MIPS at 20 MHz 0.175 0.175 1985 [16]
Intel 8751 1 MIPS at 12 MHz 0.083 0.083 1985 [31]
WDC 65C816 / Ricoh 5A22 0.22 MIPS at 2.8 MHz 0.08 0.08 1985
ARM2 4 MIPS at 8 MHz 0.5 0.5 1986 [32]
Stanford MIPS R2000 / R2000A 8 / 9.8 MIPS at 12.5 MHz 0.64 - 0.78 0.64 - 0.78 1986 / 1988 [33][34]
Sun SPARC / Fujitsu MB86900 10 MIPS at 16.6 MHz 0.6 0.6 1986 [35]
Texas Instruments TMS34010 6 MIPS at 50 MHz 0.12 0.12 1986 [36]
NEC V70 6.6 MIPS at 20 MHz 0.33 0.33 1987 [37]
Motorola 68030 18 MIPS at 50 MHz 0.36 0.36 1987 [38]
Gmicro/200 10 MIPS at 20 MHz 0.5 0.5 1987 [39]
Texas Instruments TMS320C20 12.5 MIPS at 25 MHz 0.5 0.5 1987 [40]
Analog Devices ADSP-2100 12.5 MIPS at 12.5 MHz 1 1 1987 [41]
Texas Instruments TMS320C25 25 MIPS at 50 MHz 0.5 0.5 1987 [40]
Intel i486DX 8.7 MIPS at 25 MHz 0.348 0.348 1989 [13]
NEC V80 16.5 MIPS at 33 MHz 0.5 0.5 1989 [37]
Intel i860 25 MIPS at 25 MHz 1 1 1989 [42]
ARM3 12 MIPS at 25 MHz 0.5 0.5 1989 [43]
Motorola 68040 44 MIPS at 40 MHz 1.1 1.1 1990 [44]
AMD Am386 9 MIPS at 40 MHz 0.225 0.225 1991 [45]
Intel i486DX 11.1 MIPS at 33 MHz 0.336 0.336 1991 [13]
Intel i860 50 MIPS at 50 MHz 1 1 1991 [42]
Intel i486DX2 25.6 MIPS at 66 MHz 0.388 0.388 1992 [13]
Alpha 21064 (EV4) 86 MIPS at 150 MHz 0.573 0.573 1992 [13]
Alpha 21064 (EV4S/EV45) 135 MIPS at 200 MHz 0.675 0.675 1993 [13][46]
MIPS R4400 85 MIPS at 150 MHz 0.567 0.567 1993 [47]
Gmicro/500 132 MIPS at 66 MHz 2 2 1993 [48]
IBM-Motorola PowerPC 601 157.7 MIPS at 80 MHz 1.971 1.971 1993 [49]
ARM7 40 MIPS at 45 MHz 0.889 0.889 1994 [50]
Intel DX4 70 MIPS at 100 MHz 0.7 0.7 1994 [14]
Motorola 68060 110 MIPS at 75 MHz 1.33 1.33 1994
Intel Pentium 188 MIPS at 100 MHz 1.88 1.88 1994 [51]
Microchip PIC16F 5 MIPS at 20 MHz 0.25 0.25 1995 [52]
IBM-Motorola PowerPC 603e 188 MIPS at 133 MHz 1.414 1.414 1995 [53]
ARM 7500FE 35.9 MIPS at 40 MHz 0.9 0.9 1996
IBM-Motorola PowerPC 603ev 423 MIPS at 300 MHz 1.41 1.41 1996 [53]
Intel Pentium Pro 541 MIPS at 200 MHz 2.7 2.7 1996 [54]
Hitachi SH-4 360 MIPS at 200 MHz 1.8 1.8 1997 [55][56]
IBM-Motorola PowerPC 750 525 MIPS at 233 MHz 2.3 2.3 1997
Zilog eZ80 6.6 MIPS at 20 MHz 0.33 0.33 1999 [57]
Intel Pentium III 2,054 MIPS at 600 MHz 3.4 3.4 1999 [51]
Freescale MPC8272 760 MIPS at 400 MHz 1.9 1.9 2000 [58]
AMD Athlon 3,561 MIPS at 1.2 GHz 3.0 3.0 2000
Silicon Recognition ZISC 78 8,600 MIPS at 33 MHz 260.6 260.6 2000 [59]
ARM11 515 MIPS at 412 MHz 1.25 1.25 2002 [60]
AMD Athlon XP 2500+ 7,527 MIPS at 1.83 GHz 4.1 4.1 2003 [51]
Intel Pentium 4 Extreme Edition 9,726 MIPS at 3.2 GHz 3.0 3.0 2003
Microchip PIC10F 1 MIPS at 4 MHz 0.25 0.25 2004 [61][62]
ARM Cortex-M3 125 MIPS at 100 MHz 1.25 1.25 2004 [63]
Nios II 190 MIPS at 165 MHz 1.13 1.13 2004 [64]
MIPS32 4KEc 356 MIPS at 233 MHz 1.5 1.5 2004 [65]
VIA C7 1,799 MIPS at 1.3 GHz 1.4 1.4 2005 [66]
ARM Cortex-A8 2,000 MIPS at 1.0 GHz 2.0 2.0 2005 [67]
AMD Athlon FX-57 12,000 MIPS at 2.8 GHz 4.3 4.3 2005
AMD Athlon 64 3800+ X2 (2-core) 14,564 MIPS at 2.0 GHz 7.3 3.6 2005 [68]
PowerPC G4 MPC7448 3,910 MIPS at 1.7 GHz 2.3 2.3 2005 [69]
ARM Cortex-R4 450 MIPS at 270 MHz 1.66 1.66 2006 [70]
MIPS32 24K 604 MIPS at 400 MHz 1.51 1.51 2006 [71]
PS3 Cell BE (PPE only) 10,240 MIPS at 3.2 GHz 3.2 3.2 2006
IBM Xenon CPU (3-core) 19,200 MIPS at 3.2 GHz 6.0 2.0 2005
AMD Athlon FX-60 (2-core) 18,938 MIPS at 2.6 GHz 7.3 3.6 2006 [68]
Intel Core 2 Extreme X6800 (2-core) 27,079 MIPS at 2.93 GHz 9.2 4.6 2006 [68]
Intel Core 2 Extreme QX6700 (4-core) 49,161 MIPS at 2.66 GHz 18.4 4.6 2006 [72]
MIPS64 20Kc 1,370 MIPS at 600 MHz 2.3 2.3 2007 [73]
P.A. Semi PA6T-1682M 8,800 MIPS at 1.8 GHz 4.4 4.4 2007 [74]
Qualcomm Scorpion (Cortex-A8-like) 2,100 MIPS at 1 GHz 2.1 2.1 2008 [60]
Intel Atom N270 3,846 MIPS at 1.6 GHz 2.4 2.4 2008 [75]
Intel Core 2 Extreme QX9770 (4-core) 59,455 MIPS at 3.2 GHz 18.6 4.6 2008 [72]
Intel Core i7 920 (4-core) 82,300 MIPS at 2.93 GHz 28.089 7.022 2008 [76]
ARM Cortex-M0 45 MIPS at 50 MHz 0.9 0.9 2009 [77]
ARM Cortex-A9 (2-core) 7,500 MIPS at 1.5 GHz 5.0 2.5 2009 [78]
AMD Phenom II X4 940 Black Edition 42,820 MIPS at 3.0 GHz 14.3 3.5 2009 [79]
AMD Phenom II X6 1100T 78,440 MIPS at 3.3 GHz 23.7 3.9 2010 [76]
Intel Core i7 Extreme Edition 980X (6-core) 147,600 MIPS at 3.33 GHz 44.7 7.46 2010 [80]
ARM Cortex-A5 1,256 MIPS at 800 MHz 1.57 1.57 2011 [67]
ARM Cortex-A7 2,850 MIPS at 1.5 GHz 1.9 1.9 2011 [60]
Qualcomm Krait (Cortex-A15-like, 2-core) 9,900 MIPS at 1.5 GHz 6.6 3.3 2011 [60]
AMD E-350 (2-core) 10,000 MIPS at 1.6 GHz 6.25 3.125 2011 [81]
Nvidia Tegra 3 (Quad core Cortex-A9) 13,800 MIPS at 1.5 GHz 9.2 2.5 2011
Samsung Exynos 5250 (Cortex-A15-like 2-core) 14,000 MIPS at 2.0 GHz 7.0 3.5 2011 [82]
Intel Core i5-2500K (4-core) 83,000 MIPS at 3.3 GHz 25.152 6.288 2011 [83]
Intel Core i7 875K 92,100 MIPS at 2.93 GHz 31.4 7.85 2011 [76]
AMD FX-8150 (8-core) 90,749 MIPS at 3.6 GHz 25.2 3.15 2011 [84]
Intel Core i7 2600K (4-core) 117,160 MIPS at 3.4 GHz 34.45 8.61 2011 [85]
Intel Core i7-3960X (6-core) 176,170 MIPS at 3.3 GHz 53.38 8.89 2011 [86]
AMD FX-8350 (8-core) 97,125 MIPS at 4.2 GHz 23.1 2.9 2012 [84][87]
AMD FX-9590 (8-core) 115,625 MIPS at 5.0 GHz 23.1 2.9 2012 [76]
Intel Core i7 3770K (4-core) 106,924 MIPS at 3.9 GHz 27.4 6.9 2012 [84]
Intel Core i7 4770K (4-core) 133,740 MIPS at 3.9 GHz 34.29 8.57 2013 [84][87][88]
Intel Core i7 5960X (8-core) 298,190 MIPS at 3.5 GHz 85.2 10.65 2014 [89]
Intel Core i7 6950X (10-core) 320,440 MIPS at 3.5 GHz 91.55 9.16 2016 [90]
ARM Cortex-A73 (4-core) 71,120 MIPS at 2.8 GHz 25.4 6.35 2016
ARM Cortex-A75 ? ? 8.2-9.5 2017 [91]
ARM Cortex-A76 ? ? 10.7-12.4 2018 [91]
ARM Cortex-A53 2,300 MIPS at 1 GHz 2.3 2.3 2012 [92]
ARM Cortex-A35 2,100 MIPS at 1 GHz 2.1 2.1 2015 [92]
ARM Cortex-A72 15,750 to 18,375 at 2.5 GHz 6.3 to 7.35 6.3 to 7.35 2015 [92]
ARM Cortex-A57 10,250 to 11,750 at 2.5 GHz 4.1 to 4.7 4.1 to 4.7 2012 [92]
Sitara AM64x ARM Cortex-A53 (2-core) 5,992 MIPS at 1 GHz 6 3 2021 [93]
AMD Ryzen 7 1800X (8-core) 304,510 MIPS at 3.7 GHz 82.3 10.29 2017 [94]
Intel Core i7-8086K (6-core) 221,720 MIPS at 5.0 GHz 44.34 7.39 2018 [95]
Intel Core i9-9900K (8-core) 412,090 MIPS at 4.7 GHz 87.68 10.96 2018 [96]
AMD Ryzen 9 3950X (16-core) 749,070 MIPS at 4.6 GHz 162.84 10.18 2019 [96]
AMD Ryzen Threadripper 3990X (64 core) 2,356,230 MIPS at 4.35 GHz 541.66 8.46 2020 [97]
Intel Core i5-11600K (6-core) 346,350 MIPS at 4.92 GHz 57.72 11.73 2021 [98]
Processor / System Dhrystone MIPS / MIPS D instructions per clock cycle D instructions per clock cycle per core Year Source

Multi-CPU cluster results

Processor / System Dhrystone MIPS or MIPS, and frequency D instructions per clock cycle D instructions per clock cycle per core Year Source
LINKS-1 Computer Graphics System (257-processor) 642.5 MIPS at 10 MHz 2.5 0.25 1982 [99]
Sega System 16 (4-processor) 16.33 MIPS at 10 MHz 4.083 1.020 1985 [100]
Namco System 21 (10-processor) 73.927 MIPS at 25 MHz 2.957 0.296 1988 [101]
Atari Hard Drivin' (7-processor) 33.573 MIPS at 50 MHz 0.671 0.0959 1989 [102]
NEC SX-3 (4-processor) 680 MIPS at 400 MHz 1.7 0.425 1989 [103]
Namco System 21 (Galaxian³) (96-processor) 1,660.386 MIPS at 40 MHz 41.51 0.432 1990 [104]
SGI Onyx RealityEngine2 (36-processor) 2,640 MIPS at 150 MHz 17.6 0.489 1993 [105]
Namco Magic Edge Hornet Simulator (36-processor) 2,880 MIPS at 150 MHz 19.2 0.533 1993 [47]
Sega Naomi Multiboard (32-processor) 6,400 MIPS at 200 MHz 32 1 1999 [106]
Raspberry Pi 2 (quad-core ARM Cortex-A7) 4,744 MIPS at 1.0 GHz 4.744 1.186 2014 [107]
Processor / System Dhrystone MIPS / MIPS D instructions per clock cycle D instructions per clock cycle per core Year Source

See also

References

Template:Reflist

Template:CPU technologies

  1. Script error: No such module "citation/CS1".
  2. Script error: No such module "citation/CS1".
  3. Script error: No such module "citation/CS1".
  4. Template:Cite magazine
  5. Script error: No such module "citation/CS1".
  6. Script error: No such module "citation/CS1".
  7. Script error: No such module "citation/CS1".
  8. Script error: No such module "citation/CS1".
  9. Script error: No such module "citation/CS1".
  10. Script error: No such module "citation/CS1".
  11. Script error: No such module "citation/CS1".
  12. Script error: No such module "citation/CS1".
  13. a b c d e f g h i j Script error: No such module "citation/CS1".
  14. a b c d e Script error: No such module "citation/CS1".
  15. Script error: No such module "citation/CS1".
  16. a b c d e f g Script error: No such module "citation/CS1".
  17. Script error: No such module "citation/CS1".
  18. Script error: No such module "citation/CS1".
  19. a b 2 cycles per instruction [1] Template:Webarchive
  20. a b 1 instruction per cycle [2]
  21. a b 4 cycles per instruction [3] Template:Webarchive = 0.25 instructions per cycle
  22. Script error: No such module "citation/CS1".
  23. Script error: No such module "citation/CS1".
  24. a b Script error: No such module "citation/CS1".
  25. 10% faster [4] Template:Webarchive than 68000 (0.175 MIPS per MHz [5] Template:Webarchive)
  26. a b NEC V20/V30 Template:Webarchive: "250 nanoseconds per instruction @ 8 MHz" means some fastest 2-clock register-register instructions only
  27. Script error: No such module "citation/CS1".
  28. Script error: No such module "citation/CS1".
  29. Script error: No such module "citation/CS1".
  30. Script error: No such module "citation/CS1".
  31. 1 instruction per cycle [6] Template:Webarchive
  32. Script error: No such module "citation/CS1".
  33. Script error: No such module "citation/CS1".
  34. Script error: No such module "citation/CS1".
  35. Script error: No such module "citation/CS1".
  36. Template:Cite magazine
  37. a b Script error: No such module "Citation/CS1".
  38. Script error: No such module "citation/CS1".
  39. Script error: No such module "citation/CS1".
  40. a b Script error: No such module "citation/CS1".
  41. Script error: No such module "citation/CS1".
  42. a b Script error: No such module "citation/CS1".
  43. Script error: No such module "citation/CS1".
  44. Script error: No such module "citation/CS1".
  45. Template:Cite magazine
  46. Digital's 21064 Microprocessor, Digital Equipment CorporationTemplate:Dead linkTemplate:Cbignore (c1992) accessdate=2009-08-29
  47. a b Script error: No such module "citation/CS1".
  48. Script error: No such module "Citation/CS1".
  49. Script error: No such module "citation/CS1".
  50. Script error: No such module "citation/CS1".
  51. a b c Script error: No such module "citation/CS1".
  52. Script error: No such module "citation/CS1".
  53. a b Script error: No such module "citation/CS1".
  54. Script error: No such module "citation/CS1".
  55. Script error: No such module "citation/CS1".
  56. Script error: No such module "citation/CS1".
  57. Script error: No such module "citation/CS1".
  58. Script error: No such module "citation/CS1".
  59. Script error: No such module "citation/CS1".
  60. a b c d Script error: No such module "citation/CS1".
  61. Script error: No such module "citation/CS1".
  62. Script error: No such module "citation/CS1".
  63. Script error: No such module "citation/CS1".
  64. Script error: No such module "citation/CS1".
  65. Script error: No such module "citation/CS1".
  66. Script error: No such module "citation/CS1".
  67. a b Script error: No such module "citation/CS1".
  68. a b c Script error: No such module "citation/CS1".
  69. Script error: No such module "citation/CS1".
  70. Script error: No such module "citation/CS1".
  71. Script error: No such module "citation/CS1".
  72. a b Script error: No such module "citation/CS1".
  73. Script error: No such module "citation/CS1".
  74. Script error: No such module "citation/CS1".
  75. Script error: No such module "citation/CS1".
  76. a b c d Script error: No such module "citation/CS1".
  77. Script error: No such module "citation/CS1".
  78. Script error: No such module "citation/CS1".
  79. Script error: No such module "citation/CS1".
  80. Script error: No such module "citation/CS1".
  81. Script error: No such module "citation/CS1".
  82. Script error: No such module "citation/CS1".
  83. Script error: No such module "citation/CS1".
  84. a b c d Script error: No such module "citation/CS1".
  85. Script error: No such module "citation/CS1".
  86. Script error: No such module "citation/CS1".
  87. a b Script error: No such module "citation/CS1".
  88. Script error: No such module "citation/CS1".
  89. Script error: No such module "citation/CS1".
  90. Script error: No such module "citation/CS1".
  91. a b Script error: No such module "citation/CS1".
  92. a b c d Script error: No such module "citation/CS1".
  93. Script error: No such module "citation/CS1".
  94. Script error: No such module "citation/CS1".
  95. Script error: No such module "citation/CS1".
  96. a b Script error: No such module "citation/CS1".
  97. Script error: No such module "citation/CS1".
  98. Script error: No such module "citation/CS1".
  99. LINKS-1 Computer Graphics System: 257× Zilog Z8001 [7] Template:Webarchive at 10 MHz [8] Template:Webarchive (2.5 MIPS [9] Template:Webarchive) each
  100. Sega System 16: Hitachi-Motorola 68000 @ 10 MHz (1.75 MIPS), NEC-Zilog Z80 @ 4 MHz (0.58 MIPS) [10] Template:Webarchive [11] Template:Webarchive, Intel 8751 @ 8 MHz [12] (8 MIPS [13] Template:Webarchive), Intel 8048 @ 6 MHz Script error: No such module "citation/CS1". (6 MIPS [14])
  101. Namco System 21 hardware: 5× Texas Instruments TMS320C20 @ 25 MHz (62.5 MIPS [15] Template:Webarchive), 2× Motorola 68000 @ 12.288 MHz [16] Template:Webarchive (4.301 MIPS [17] Template:Webarchive), Motorola 68020 [18] @ 12.5 MHz (3.788 MIPS [19] Template:Webarchive), Hitachi HD63705 @ 2.048 MHz [20] (2.048 MIPS [21]), Motorola 6809 @ 3.072 MHz [22] (1.29 MIPS [23] )
  102. Atari Hard Drivin' hardware: [24] Template:Webarchive Motorola 68000 @ 7 MHz (1.225 MIPS [25] Template:Webarchive), Motorola 68010 @ 7 MHz (1.348 MIPS [26] Template:Webarchive), 3× Texas Instruments TMS34010 @ 50 MHz (18 MIPS [27]), Analog Devices ADSP-2100 @ 8 MHz (8 MIPS [28] Template:Webarchive), Texas Instruments TMS32010 @ 20 MHz (5 MIPS Script error: No such module "citation/CS1".)
  103. Script error: No such module "Citation/CS1".
  104. Namco System 21 (Galaxian³) hardware: [29] 80× Texas Instruments TMS320C25 @ 40 MHz (1600 MIPS [30] Template:Webarchive), 5× Motorola 68020 @ 24.576 MHz (37.236 MIPS [31] Template:Webarchive) Motorola 68000 @ 12.288 MHz (2.15 MIPS [32] Template:Webarchive), 10× Motorola 68000 @ 12 MHz (21 MIPS [33] )
  105. 24× MIPS R4400 (2040 MIPS), [34] Template:Webarchive 12× Intel i860 (600 MIPS) Script error: No such module "citation/CS1".
  106. Sega Naomi Multiboard hardware: [35] Template:Webarchive [36] Template:Webarchive 16× Hitachi SH-4 at 200 MHz (5760 MIPS [37] Template:Webarchive), 16× ARM7 at 45 MHz (640 MIPS [38])
  107. Script error: No such module "citation/CS1".