Timeline of atomic and subatomic physics: Difference between revisions

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
imported>Davemck
m Clean up duplicate template arguments using findargdups; fix ref error
 
imported>Augmented Seventh
Reverted 10 edits by ~2025-31252-28 (talk): Interesting claims, unsourced
 
(One intermediate revision by one other user not shown)
Line 9: Line 9:
* 430 BCE<ref name="Teresi">{{cite book|url=https://books.google.com/books?id=pheL_ubbXD0C&pg=PA214|title=Lost Discoveries: The Ancient Roots of Modern Science|last=Teresi|first=Dick|publisher=Simon and Schuster|year=2010|isbn=978-1-4391-2860-2|pages=213–214}}</ref> [[Democritus]] speculates about fundamental indivisible particles—calls them "[[atom]]s"
* 430 BCE<ref name="Teresi">{{cite book|url=https://books.google.com/books?id=pheL_ubbXD0C&pg=PA214|title=Lost Discoveries: The Ancient Roots of Modern Science|last=Teresi|first=Dick|publisher=Simon and Schuster|year=2010|isbn=978-1-4391-2860-2|pages=213–214}}</ref> [[Democritus]] speculates about fundamental indivisible particles—calls them "[[atom]]s"


==The beginning of chemistry==
==Beginnings of chemistry==
{{Unreferenced section|date=November 2025}}
* 1766 [[Henry Cavendish]] discovers and studies [[hydrogen]]
* 1766 [[Henry Cavendish]] discovers and studies [[hydrogen]]
* 1778 [[Carl Scheele]] and [[Antoine Lavoisier]] discover that [[Earth's atmosphere|air]] is composed mostly of [[nitrogen]] and [[oxygen]]
* 1778 [[Carl Scheele]] and [[Antoine Lavoisier]] discover that [[Earth's atmosphere|air]] is composed mostly of [[nitrogen]] and [[oxygen]]
Line 37: Line 38:
* 1898 [[William Ramsay]] and [[Morris Travers]] discover [[neon]], and negatively charged [[beta particle]]s
* 1898 [[William Ramsay]] and [[Morris Travers]] discover [[neon]], and negatively charged [[beta particle]]s


==The age of quantum mechanics==
==Modern physics==
* 1887 [[Heinrich Rudolf Hertz]] discovers the [[photoelectric effect]] that will play a very important role in the development of the [[quantum mechanics|quantum theory]] with [[Albert Einstein|Einstein]]'s explanation of this effect in terms of ''[[quantum|quanta]]'' of light
* 1887 [[Heinrich Rudolf Hertz]] discovers the [[photoelectric effect]] that will play a very important role in the development of the [[quantum mechanics|quantum theory]] with [[Albert Einstein|Einstein]]'s explanation of this effect in terms of ''[[quantum|quanta]]'' of light
* 1896 [[Wilhelm Conrad Röntgen]] discovers the [[X-ray]]s while studying electrons in [[plasma (physics)|plasma]]; [[scattering]] X-rays—that were considered as 'waves' of high-energy [[electromagnetic radiation]]—[[Arthur Compton]] will be able to demonstrate in 1922 the 'particle' aspect of electromagnetic radiation.
* 1896 [[Wilhelm Conrad Röntgen]] discovers the [[X-ray]]s while studying electrons in [[plasma (physics)|plasma]]; [[scattering]] X-rays—that were considered as 'waves' of high-energy [[electromagnetic radiation]]—[[Arthur Compton]] will be able to demonstrate in 1922 the 'particle' aspect of electromagnetic radiation.
Line 53: Line 54:
* 1911 [[Ștefan Procopiu]] measures the magnetic dipole moment of the electron
* 1911 [[Ștefan Procopiu]] measures the magnetic dipole moment of the electron
* 1912 [[Max von Laue]] suggests using [[crystal lattice]]s to [[diffraction|diffract]] X-rays
* 1912 [[Max von Laue]] suggests using [[crystal lattice]]s to [[diffraction|diffract]] X-rays
* 1912 [[Walter Friedrich]] and [[Paul Knipping]] diffract X-rays in zinc blende
* 1912 [[Walter Friedrich]] and [[Paul Knipping]] diffract X-rays in zinc blende
* 1913 [[Max Bodenstein]] proposed chain reactions
* 1913 [[Henry Moseley]] shows that nuclear charge is the real basis for numbering the elements
* 1913 [[Henry Moseley]] shows that nuclear charge is the real basis for numbering the elements
* 1913 [[Johannes Stark]] demonstrates that strong electric fields will split the Balmer spectral line series of hydrogen
* 1913 [[Johannes Stark]] demonstrates that strong electric fields will split the Balmer spectral line series of hydrogen
Line 59: Line 61:
* 1913 [[Robert Millikan]] measures the [[Elementary charge|fundamental unit of electric charge]]
* 1913 [[Robert Millikan]] measures the [[Elementary charge|fundamental unit of electric charge]]
* 1913 [[William Henry Bragg]] and [[William Lawrence Bragg]] work out the [[Bragg's law|Bragg condition]] for strong X-ray reflection
* 1913 [[William Henry Bragg]] and [[William Lawrence Bragg]] work out the [[Bragg's law|Bragg condition]] for strong X-ray reflection
* 1914 [[Ernest Rutherford]] suggests that the positively charged atomic nucleus contains [[proton]]s<ref>{{Cite book|url=https://books.google.com/books?id=NZsW0gj1OIcC&q=1914+Ernest+Rutherford+suggests+that+the+positively+charged+atomic+nucleus+contains+protons&pg=PA155|title=Evolution: The Universe, Life, Cultures, Ethnicity, Religion, Science, and Technology|last=Tivel|first=David E.|date=September 2012|publisher=Dorrance Publishing|isbn=9781434929747|language=en}}</ref>
* 1914 [[Ernest Rutherford]] suggests that the positively charged atomic nucleus contains [[proton]]s<ref>{{Cite book|url=https://books.google.com/books?id=NZsW0gj1OIcC&q=1914+Ernest+Rutherford+suggests+that+the+positively+charged+atomic+nucleus+contains+protons&pg=PA155|title=Evolution: The Universe, Life, Cultures, Ethnicity, Religion, Science, and Technology|last=Tivel|first=David E.|date=September 2012|publisher=Dorrance Publishing|isbn=978-1-4349-2974-7|language=en}}</ref>
* 1914 [[James Franck]] and [[Gustav Hertz]] observe atomic excitation
* 1914 [[James Franck]] and [[Gustav Hertz]] observe atomic excitation
* 1915 [[Arnold Sommerfeld]] develops a modified [[Bohr Model|Bohr atomic model]] with elliptic orbits to explain relativistic fine structure
* 1915 [[Arnold Sommerfeld]] develops a modified [[Bohr Model|Bohr atomic model]] with elliptic orbits to explain relativistic fine structure
Line 107: Line 109:
* 1931 [[Paul Dirac]] shows that [[charge quantization]] can be explained if [[magnetic monopole]]s exist
* 1931 [[Paul Dirac]] shows that [[charge quantization]] can be explained if [[magnetic monopole]]s exist
* 1931 [[Wolfgang Pauli]] puts forth the [[neutrino]] hypothesis to explain the apparent violation of [[energy conservation]] in beta decay
* 1931 [[Wolfgang Pauli]] puts forth the [[neutrino]] hypothesis to explain the apparent violation of [[energy conservation]] in beta decay
* 1932 Paul Güttinger finds the Hellmann–Feynman theorem
* 1932 [[Carl D. Anderson]] discovers the [[positron]]
* 1932 [[Carl D. Anderson]] discovers the [[positron]]
* 1932 [[James Chadwick]] discovers the [[neutron]]
* 1932 [[James Chadwick]] discovers the [[neutron]]
* 1932 [[John Cockcroft]] and [[Ernest Walton]] split [[lithium]] and [[boron]] nuclei using proton bombardment
* 1932 [[John Cockcroft]] and [[Ernest Walton]] split [[lithium]] and [[boron]] nuclei using proton bombardment
* 1932 [[Werner Heisenberg]] presents the proton–neutron model of the nucleus and uses it to explain isotopes
* 1932 [[Werner Heisenberg]] presents the proton–neutron model of the nucleus and uses it to explain isotopes
* 1933 [[Ernst Stueckelberg]] (1932), [[Lev Landau]] (1932), and [[Clarence Zener]] discover the [[Landau–Zener transition]]
* 1932 [[Ettore Majorana]], [[Ernst Stueckelberg]], [[Lev Landau]], and [[Clarence Zener]] independently discover the [[Landau–Zener transition]]
* 1933 [[Max Delbrück]] suggests that quantum effects will cause photons to be scattered by an external electric field
* 1933 [[Max Delbrück]] suggests that quantum effects will cause photons to be scattered by an external electric field
* 1934 [[Enrico Fermi]] publishes a very successful model of beta decay in which neutrinos were produced.
* 1934 [[Enrico Fermi]] publishes a very successful model of beta decay in which neutrinos were produced.
Line 121: Line 124:
* 1935 [[Albert Einstein]], [[Boris Podolsky]], and [[Nathan Rosen]] put forth the [[EPR paradox]]
* 1935 [[Albert Einstein]], [[Boris Podolsky]], and [[Nathan Rosen]] put forth the [[EPR paradox]]
* 1935 [[Henry Eyring (chemist)|Henry Eyring]] develops the [[transition state]] theory
* 1935 [[Henry Eyring (chemist)|Henry Eyring]] develops the [[transition state]] theory
* 1935 [[Hideki Yukawa]] presents a theory of the [[nuclear force]]<!-- note: what is NOW known as the “strong force” is different from the thing Yukawa theorized about! --> and predicts the scalar [[meson]]
* 1935 [[Hideki Yukawa]] presents a theory of the [[nuclear force]]<!-- note: what is NOW known as the "strong force" is different from the thing Yukawa theorized about! --> and predicts the scalar [[meson]]
* 1935 [[Niels Bohr]] presents his analysis of the EPR paradox
* 1935 [[Niels Bohr]] presents his analysis of the EPR paradox
* 1936 [[Carl D. Anderson]] discovered the [[muon]] while he studied [[cosmic radiation]];
* 1936 [[Carl D. Anderson]] discovered the [[muon]] while he studied [[cosmic radiation]];
Line 128: Line 131:
* 1936 [[Hermann Arthur Jahn]] and [[Edward Teller]] present their systematic study of the symmetry types for which the [[Jahn–Teller effect]] is expected<ref>A. Abragam and B. Bleaney. 1970. Electron Parmagnetic Resonance of Transition Ions, Oxford University Press: Oxford, U.K., p. 911</ref>
* 1936 [[Hermann Arthur Jahn]] and [[Edward Teller]] present their systematic study of the symmetry types for which the [[Jahn–Teller effect]] is expected<ref>A. Abragam and B. Bleaney. 1970. Electron Parmagnetic Resonance of Transition Ions, Oxford University Press: Oxford, U.K., p. 911</ref>
* 1937 Carl Anderson proves experimentally the existence of the pion predicted by Yukawa's theory.
* 1937 Carl Anderson proves experimentally the existence of the pion predicted by Yukawa's theory.
* 1937 [[Hans Hellmann]] finds the [[Hellmann–Feynman theorem]]
* 1937 [[Seth Neddermeyer]], [[Carl David Anderson|Carl Anderson]], J.C. Street, and E.C. Stevenson discover [[muon]]s using [[cloud chamber]] measurements of [[cosmic ray]]s
* 1937 [[Seth Neddermeyer]], [[Carl David Anderson|Carl Anderson]], J.C. Street, and E.C. Stevenson discover [[muon]]s using [[cloud chamber]] measurements of [[cosmic ray]]s
* 1939 [[Lise Meitner]] and [[Otto Robert Frisch]] determine that [[nuclear fission]] is taking place in the Hahn–Strassmann experiments
* 1939 [[Gottfried von Droste]] and [[Siegfried Flügge]] and independently [[Lise Meitner]] and [[Otto Robert Frisch]] determine that [[nuclear fission]] is taking place in the Hahn–Strassmann experiments
* 1939 [[Otto Hahn]] and [[Fritz Strassmann]] bombard uranium salts with [[thermal neutron]]s and discover [[barium]] among the reaction products
* 1939 [[Otto Hahn]] and [[Fritz Strassmann]] bombard uranium salts with [[thermal neutron]]s and discover [[barium]] among the reaction products
* 1939 [[Richard Feynman]] finds the Hellmann–Feynman theorem
* 1942 [[Enrico Fermi]] makes the first controlled nuclear chain reaction
* 1942 [[Enrico Fermi]] makes the first controlled nuclear chain reaction
* 1942 [[Ernst Stueckelberg]] introduces the propagator to positron theory and interprets positrons as negative energy electrons moving backwards through spacetime
* 1942 [[Ernst Stueckelberg]] introduces the propagator to positron theory and interprets positrons as negative energy electrons moving backwards through spacetime


== Quantum field theory ==
== Rise of quantum field theory ==
* 1947 [[George Rochester|George Dixon Rochester]] and [[Clifford Charles Butler]] discovered the [[kaon]], the first [[strange particle]];
* 1947 [[George Rochester|George Dixon Rochester]] and [[Clifford Charles Butler]] discovered the [[kaon]], the first [[strange particle]];
* 1947 [[Cecil Powell]], [[César Lattes]], and [[Giuseppe Occhialini]] discover the [[pion|pi meson]] by studying cosmic ray tracks
* 1947 [[Cecil Powell]], [[César Lattes]], and [[Giuseppe Occhialini]] discover the [[pion|pi meson]] by studying cosmic ray tracks
* 1947 [[Richard Feynman]] presents [[path integral formulation of quantum mechanics|his propagator approach to quantum electrodynamics]]<ref>{{cite book|last=Feynman |first=R.P.|year=2006 |orig-year=1985|title=[[QED: The Strange Theory of Light and Matter]]|publisher=[[Princeton University Press]]|isbn=0-691-12575-9}}</ref>
* 1947 [[Richard Feynman]] presents [[path integral formulation of quantum mechanics|his propagator approach to quantum electrodynamics]]<ref>{{cite book|last=Feynman |first=R.P.|year=2006 |orig-date=1985|title=[[QED: The Strange Theory of Light and Matter]]|publisher=[[Princeton University Press]]|isbn=0-691-12575-9}}</ref>
* 1947 [[Willis Lamb]] and [[Robert Retherford]] measure the [[Lamb shift#Lamb–Retherford experiment|Lamb–Retherford shift]]
* 1947 [[Willis Lamb]] and [[Robert Retherford]] measure the [[Lamb shift#Lamb–Retherford experiment|Lamb–Retherford shift]]
* 1948 [[Hendrik Casimir]] predicts a rudimentary attractive [[Casimir effect|Casimir force]] on a parallel plate capacitor
* 1948 [[Hendrik Casimir]] predicts a rudimentary attractive [[Casimir effect|Casimir force]] on a parallel plate capacitor
Line 155: Line 156:
* 1957 [[Bruno Pontecorvo]] postulated the flavor oscillation;
* 1957 [[Bruno Pontecorvo]] postulated the flavor oscillation;
* 1957 [[Gerhart Luders]] proves the [[CPT theorem]]
* 1957 [[Gerhart Luders]] proves the [[CPT theorem]]
* 1957 [[Richard Feynman]], [[Murray Gell-Mann]], [[Robert Marshak]], and [[E.C.G. Sudarshan]] propose a vector/axial vector (VA) [[Lagrangian (field theory)|Lagrangian]] for weak interactions.<ref>Richard Feynman; '''QED'''. Princeton University Press: Princeton, (1982)</ref><ref>Richard Feynman; ''Lecture Notes in Physics''. Princeton University Press: Princeton, (1986)</ref><ref>{{cite book|last=Feynman |first=R.P. |author-link=Richard Feynman|year=2001 |orig-year=1964|title=[[The Character of Physical Law]]|publisher=[[MIT Press]]|isbn=0-262-56003-8}}</ref><ref>{{cite book|last=Feynman |first=R.P.|year=2006 |orig-year=1985|title=[[QED: The Strange Theory of Light and Matter]]|publisher=[[Princeton University Press]]|isbn=0-691-12575-9}}</ref><ref>Schweber, Silvan S.; Q.E.D. and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga, Princeton University Press (1994) {{ISBN|0-691-03327-7}}</ref><ref>Schwinger, Julian; Selected Papers on Quantum Electrodynamics, Dover Publications, Inc. (1958) {{ISBN|0-486-60444-6}}</ref>
* 1957 [[Richard Feynman]], [[Murray Gell-Mann]], [[Robert Marshak]], and [[E.C.G. Sudarshan]] propose a vector/axial vector (VA) [[Lagrangian (field theory)|Lagrangian]] for weak interactions.<ref>Richard Feynman; '''QED'''. Princeton University Press: Princeton, (1982)</ref><ref>Richard Feynman; ''Lecture Notes in Physics''. Princeton University Press: Princeton, (1986)</ref><ref>{{cite book|last=Feynman |first=R.P. |author-link=Richard Feynman|year=2001 |orig-date=1964|title=[[The Character of Physical Law]]|publisher=[[MIT Press]]|isbn=0-262-56003-8}}</ref><ref>{{cite book|last=Feynman |first=R.P.|year=2006 |orig-date=1985|title=[[QED: The Strange Theory of Light and Matter]]|publisher=[[Princeton University Press]]|isbn=0-691-12575-9}}</ref><ref>Schweber, Silvan S.; Q.E.D. and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga, Princeton University Press (1994) {{ISBN|0-691-03327-7}}</ref><ref>Schwinger, Julian; Selected Papers on Quantum Electrodynamics, Dover Publications, Inc. (1958) {{ISBN|0-486-60444-6}}</ref>
* 1958 [[Marcus Sparnaay]] experimentally confirms the [[Casimir effect]]
* 1958 [[Marcus Sparnaay]] experimentally confirms the [[Casimir effect]]
* 1959 [[Yakir Aharonov]] and [[David Bohm]] predict the [[Aharonov–Bohm effect]]
* 1959 [[Yakir Aharonov]] and [[David Bohm]] predict the [[Aharonov–Bohm effect]]
Line 164: Line 165:
* 1963 [[Eugene Wigner]] discovers the fundamental roles played by quantum symmetries in atoms and molecules
* 1963 [[Eugene Wigner]] discovers the fundamental roles played by quantum symmetries in atoms and molecules


==The formation and successes of the Standard Model==
==Age of the Standard Model==
* 1963 [[Nicola Cabibbo]] develops the mathematical matrix by which the first two (and ultimately three) generations of quarks can be predicted.
* 1963 [[Nicola Cabibbo]] develops the mathematical matrix by which the first two (and ultimately three) generations of quarks can be predicted.
* 1964 [[Murray Gell-Mann]] and [[George Zweig]] propose the [[quark model|quark/aces model]]<ref>Yndurain, Francisco Jose;'' Quantum Chromodynamics: An Introduction to the Theory of Quarks and Gluons'', Springer Verlag, New York, 1983. {{ISBN|0-387-11752-0}}</ref><ref name="arxiv1999">[[Frank Wilczek]] (1999) "[https://arxiv.org/abs/hep-th/9803075 Quantum field theory]", ''Reviews of Modern Physics'' 71: S83–S95. Also doi=10.1103/Rev. Mod. Phys. 71.</ref>
* 1963-1964 [[André Petermann]], [[Murray Gell-Mann]] and [[George Zweig]] propose the [[quark model|quark/aces model]]<ref>Yndurain, Francisco Jose;'' Quantum Chromodynamics: An Introduction to the Theory of Quarks and Gluons'', Springer Verlag, New York, 1983. {{ISBN|0-387-11752-0}}</ref>
* 1964 [[François Englert]], [[Robert Brout]], [[Peter Higgs]], [[Gerald Guralnik]], [[C. R. Hagen]], and [[Tom Kibble]] postulate that a fundamental quantum field, now called the [[Higgs field]], permeates space and, by way of the [[Higgs mechanism]], provides mass to all the elementary subatomic particles that interact with it. While the Higgs field is postulated to confer mass on quarks and leptons, it represents only a tiny portion of the masses of other subatomic particles, such as protons and neutrons. In these, gluons that bind quarks together confer most of the particle mass. The result is obtained independently by three groups: François Englert and Robert Brout; Peter Higgs, working from the ideas of Philip Anderson; and Gerald Guralnik, C. R. Hagen, and Tom Kibble.<ref>{{cite journal| first1=F. | last1=Englert | first2=R. | last2=Brout| year=1964| title=Broken Symmetry and the Mass of Gauge Vector Mesons| journal=[[Physical Review Letters]]| volume=13 | pages=321–323| doi=10.1103/PhysRevLett.13.321| bibcode=1964PhRvL..13..321E| issue=9| doi-access=free}}</ref><ref name="Peter W. Higgs 1964 508-509">{{cite journal| first1=P.W. | last1=Higgs| year=1964| title=Broken Symmetries and the Masses of Gauge Bosons| journal=[[Physical Review Letters]]| volume=13 | pages=508–509| doi=10.1103/PhysRevLett.13.508| bibcode=1964PhRvL..13..508H| issue=16| doi-access=free}}</ref><ref>{{cite journal| first1=G.S. | last1=Guralnik | first2=C.R. | last2=Hagen | first3=T.W.B. | last3=Kibble| year=1964| title=Global Conservation Laws and Massless Particles| journal=[[Physical Review Letters]]| volume=13 | pages=585–587| doi=10.1103/PhysRevLett.13.585| bibcode=1964PhRvL..13..585G| issue=20| doi-access=free}}</ref><ref>{{cite journal| first1=G.S. | last1=Guralnik| year=2009| title=The History of the Guralnik, Hagen and Kibble development of the Theory of Spontaneous Symmetry Breaking and Gauge Particles| journal=[[International Journal of Modern Physics A]]| volume=24 | pages=2601–2627| doi=10.1142/S0217751X09045431| arxiv=0907.3466|bibcode = 2009IJMPA..24.2601G| issue=14| s2cid=16298371}}</ref><ref>{{cite journal|first=T.W.B. | last=Kibble|year=2009|title=Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism|journal=[[Scholarpedia]]|volume=4 |issue=1 |page=6441|doi=10.4249/scholarpedia.6441|bibcode = 2009SchpJ...4.6441K |doi-access=free}}</ref><ref>{{cite web|author1=M. Blume |author2=S. Brown |author3=Y. Millev |year=2008|url=http://prl.aps.org/50years/milestones#1964|title=Letters from the past, a PRL retrospective (1964)|publisher=[[Physical Review Letters]]|accessdate=2010-01-30}}</ref><ref>{{cite web|year=2010|url=http://www.aps.org/units/dpf/awards/sakurai.cfm|title=J. J. Sakurai Prize Winners|publisher=[[American Physical Society]]|accessdate=2010-01-30}}</ref>
* 1964 [[François Englert]], [[Robert Brout]], [[Peter Higgs]], [[Gerald Guralnik]], [[C. R. Hagen]], and [[Tom Kibble]] postulate that a fundamental quantum field, now called the [[Higgs field]], permeates space and, by way of the [[Higgs mechanism]], provides mass to all the elementary subatomic particles that interact with it. While the Higgs field is postulated to confer mass on quarks and leptons, it represents only a tiny portion of the masses of other subatomic particles, such as protons and neutrons. In these, gluons that bind quarks together confer most of the particle mass. The result is obtained independently by three groups: François Englert and Robert Brout; Peter Higgs, working from the ideas of Philip Anderson; and Gerald Guralnik, C. R. Hagen, and Tom Kibble.<ref>{{cite journal| first1=F. | last1=Englert | first2=R. | last2=Brout| year=1964| title=Broken Symmetry and the Mass of Gauge Vector Mesons| journal=[[Physical Review Letters]]| volume=13 | pages=321–323| doi=10.1103/PhysRevLett.13.321| bibcode=1964PhRvL..13..321E| issue=9| doi-access=free}}</ref><ref name="Peter W. Higgs 1964 508-509">{{cite journal| first1=P.W. | last1=Higgs| year=1964| title=Broken Symmetries and the Masses of Gauge Bosons| journal=[[Physical Review Letters]]| volume=13 | pages=508–509| doi=10.1103/PhysRevLett.13.508| bibcode=1964PhRvL..13..508H| issue=16| doi-access=free}}</ref><ref>{{cite journal| first1=G.S. | last1=Guralnik | first2=C.R. | last2=Hagen | first3=T.W.B. | last3=Kibble| year=1964| title=Global Conservation Laws and Massless Particles| journal=[[Physical Review Letters]]| volume=13 | pages=585–587| doi=10.1103/PhysRevLett.13.585| bibcode=1964PhRvL..13..585G| issue=20| doi-access=free}}</ref><ref>{{cite journal| first1=G.S. | last1=Guralnik| year=2009| title=The History of the Guralnik, Hagen and Kibble development of the Theory of Spontaneous Symmetry Breaking and Gauge Particles| journal=[[International Journal of Modern Physics A]]| volume=24 | pages=2601–2627| doi=10.1142/S0217751X09045431| arxiv=0907.3466|bibcode = 2009IJMPA..24.2601G| issue=14| s2cid=16298371}}</ref><ref>{{cite journal|first=T.W.B. | last=Kibble|year=2009|title=Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism|journal=[[Scholarpedia]]|volume=4 |issue=1 |page=6441|doi=10.4249/scholarpedia.6441|bibcode = 2009SchpJ...4.6441K |doi-access=free}}</ref><ref>{{cite web|author1=M. Blume |author2=S. Brown |author3=Y. Millev |year=2008|url=http://prl.aps.org/50years/milestones#1964|title=Letters from the past, a PRL retrospective (1964)|publisher=[[Physical Review Letters]]|access-date=2010-01-30}}</ref><ref>{{cite web|year=2010|url=http://www.aps.org/units/dpf/awards/sakurai.cfm|title=J. J. Sakurai Prize Winners|publisher=[[American Physical Society]]|access-date=2010-01-30}}</ref>. The Higgs mechanism was originally proposed already in 1938 by [[Ernst Stueckelberg]]
* 1964 [[Murray Gell-Mann]] and [[George Zweig]] independently propose the [[quark|quark model]] of hadrons, predicting the arbitrarily named [[Up quark|up]], [[Down quark|down]], and [[Strange quark|strange]] quarks. Gell-Mann is credited with coining the term ''quark'', which he found in [[James Joyce]]'s book ''[[Finnegans Wake]]''.
* 1964 [[Murray Gell-Mann]] and [[George Zweig]] independently propose the [[quark|quark model]] of hadrons, predicting the arbitrarily named [[Up quark|up]], [[Down quark|down]], and [[Strange quark|strange]] quarks. Gell-Mann is credited with coining the term ''quark'', which he found in [[James Joyce]]'s book ''[[Finnegans Wake]]''.
* 1964 [[Sheldon Glashow]] and [[James Bjorken]] predict the existence of the charm quark. The addition is proposed because it allows for a better description of the [[weak interaction]] (the mechanism that allows quarks and other particles to decay), equalizes the number of known [[quarks]] with the number of known [[leptons]], and implies a mass formula that correctly reproduced the masses of the known [[mesons]].
* 1964 [[Sheldon Glashow]] and [[James Bjorken]] predict the existence of the charm quark. The addition is proposed because it allows for a better description of the [[weak interaction]] (the mechanism that allows quarks and other particles to decay), equalizes the number of known [[quarks]] with the number of known [[leptons]], and implies a mass formula that correctly reproduced the masses of the known [[mesons]].
Line 183: Line 184:
* 1973 [[Frank Wilczek|Frank Anthony Wilczek]] discover the quark asymptotic freedom in the theory of strong interactions; receives the [[Lorentz Medal]] in 2002, and the Nobel Prize in Physics in 2004 for his discovery and his subsequent contributions to [[quantum chromodynamics]].<ref>{{cite journal|arxiv=hep-th/9803075|doi=10.1103/RevModPhys.71.S85|title=Quantum field theory|year=1999|last1=Wilczek|first1=Frank|journal=Reviews of Modern Physics|volume=71|issue=2|pages=S85–S95|bibcode = 1999RvMPS..71...85W |s2cid=279980 }}</ref>
* 1973 [[Frank Wilczek|Frank Anthony Wilczek]] discover the quark asymptotic freedom in the theory of strong interactions; receives the [[Lorentz Medal]] in 2002, and the Nobel Prize in Physics in 2004 for his discovery and his subsequent contributions to [[quantum chromodynamics]].<ref>{{cite journal|arxiv=hep-th/9803075|doi=10.1103/RevModPhys.71.S85|title=Quantum field theory|year=1999|last1=Wilczek|first1=Frank|journal=Reviews of Modern Physics|volume=71|issue=2|pages=S85–S95|bibcode = 1999RvMPS..71...85W |s2cid=279980 }}</ref>
* 1973 [[Makoto Kobayashi (physicist)|Makoto Kobayashi]] and [[Toshihide Maskawa]] note that the experimental observation of [[CP violation]] can be explained if an additional pair of [[quarks]] exist. The two new quarks are eventually named [[Top quark|top]] and [[Bottom quark|bottom]].
* 1973 [[Makoto Kobayashi (physicist)|Makoto Kobayashi]] and [[Toshihide Maskawa]] note that the experimental observation of [[CP violation]] can be explained if an additional pair of [[quarks]] exist. The two new quarks are eventually named [[Top quark|top]] and [[Bottom quark|bottom]].
* 1973 [[David Politzer]] and [[Frank Wilczek|Frank Anthony Wilczek]] propose the [[asymptotic freedom]] of quarks<ref name="arxiv1999"/>
* 1973 [[David Politzer]] and [[Frank Wilczek|Frank Anthony Wilczek]] propose the [[asymptotic freedom]] of quarks
* 1974 [[Burton Richter]] and [[Samuel Ting]]: Charm quarks are produced almost simultaneously by two teams in November 1974 (see [[November Revolution (physics)|November Revolution]]) — one at [[SLAC]] under Burton Richter, and one at [[Brookhaven National Laboratory]] under Samuel Ting. The charm quarks are observed bound with charm [[antiquarks]] in [[mesons]]. The two discovering parties independently assign the discovered meson two different symbols, J and ψ; thus, it becomes formally known as the [[J/ψ meson]]. The discovery finally convinces the physics community of the quark model's validity.
* 1974 [[Burton Richter]] and [[Samuel Ting]]: Charm quarks are produced almost simultaneously by two teams in November 1974 (see [[November Revolution (physics)|November Revolution]]) — one at [[SLAC]] under Burton Richter, and one at [[Brookhaven National Laboratory]] under Samuel Ting. The charm quarks are observed bound with charm [[antiquarks]] in [[mesons]]. The two discovering parties independently assign the discovered meson two different symbols, J and ψ; thus, it becomes formally known as the [[J/ψ meson]]. The discovery finally convinces the physics community of the quark model's validity.
* 1974 [[Robert J. Buenker]] and [[Sigrid D. Peyerimhoff]] introduce the [[multireference configuration interaction]] method.
* 1974 [[Robert J. Buenker]] and [[Sigrid D. Peyerimhoff]] introduce the [[multireference configuration interaction]] method.
* 1975 [[Martin Perl]] discovers the [[tau lepton]]
* 1975 [[Martin Perl]] discovers the [[tau lepton]], predicted by [[Antonino Zichichi]] in 1967
* 1977 [[Leon Lederman]] observes the [[bottom quark]] with his team at [[Fermilab]].<ref name=fermilabDiscoveries>{{Cite web|title=Fermilab {{!}} Science {{!}} Particle Physics {{!}} Key Discoveries|url=https://www.fnal.gov/pub/science/particle-physics/key-discoveries.html|access-date=2020-08-26|website=www.fnal.gov}}</ref> This discovery is a strong indicator of the [[top quark]]'s existence: without the top quark, the bottom quark would be without a partner that is required by the mathematics of the theory.
* 1977 [[Leon Lederman]] observes the [[bottom quark]] with his team at [[Fermilab]].<ref name=fermilabDiscoveries>{{Cite web|title=Fermilab {{!}} Science {{!}} Particle Physics {{!}} Key Discoveries|url=https://www.fnal.gov/pub/science/particle-physics/key-discoveries.html|access-date=2020-08-26|website=www.fnal.gov}}</ref> This discovery is a strong indicator of the [[top quark]]'s existence: without the top quark, the bottom quark would be without a partner that is required by the mathematics of the theory. The [[bottom quark]] was theorised already in 1973 by Makoto Kobayashi and Toshihide Maskawa.
* 1977 [[Martin Lewis Perl]] discovered the [[tau lepton]] after a series of experiments;
* 1977 [[Steve Herb]] finds the [[upsilon particle|upsilon resonance]] implying the existence of the [[bottom quark|beauty/bottom quark]]
* 1977 [[Steve Herb]] finds the [[upsilon particle|upsilon resonance]] implying the existence of the [[bottom quark|beauty/bottom quark]]
* 1979 [[Gluon]] observed indirectly in [[three-jet event]]s at [[DESY]];
* 1979 [[Gluon]] observed indirectly in [[three-jet event]]s at [[DESY]];
Line 203: Line 203:
* 2000 scientists at  [[Fermilab]] announce the first direct evidence for the [[tau neutrino]], the third kind of neutrino in particle physics.<ref name=fermilabDiscoveries />
* 2000 scientists at  [[Fermilab]] announce the first direct evidence for the [[tau neutrino]], the third kind of neutrino in particle physics.<ref name=fermilabDiscoveries />
* 2000 [[CERN]] announced [[Quark–gluon plasma|quark-gluon plasma]], a new phase of matter.<ref>{{Cite web|title=New State of Matter created at CERN|url=https://home.cern/news/press-release/cern/new-state-matter-created-cern|website=CERN|language=en|access-date=2020-05-22}}</ref>
* 2000 [[CERN]] announced [[Quark–gluon plasma|quark-gluon plasma]], a new phase of matter.<ref>{{Cite web|title=New State of Matter created at CERN|url=https://home.cern/news/press-release/cern/new-state-matter-created-cern|website=CERN|language=en|access-date=2020-05-22}}</ref>
* 2001 the [[Sudbury Neutrino Observatory]] (Canada) confirm the existence of neutrino oscillations. [[Lene Hau]] stops a beam of light completely in a [[Bose–Einstein condensate]].<ref>{{cite web|url=http://www.physicscentral.com/explore/people/hau.cfm |title=Lene Hau |publisher=Physicscentral.com |date= |accessdate=2013-01-30}}</ref>
* 2001 the [[Sudbury Neutrino Observatory]] (Canada) confirm the existence of neutrino oscillations. [[Lene Hau]] stops a beam of light completely in a [[Bose–Einstein condensate]].<ref>{{cite web|url=http://www.physicscentral.com/explore/people/hau.cfm |title=Lene Hau |publisher=Physicscentral.com |date= |access-date=2013-01-30}}</ref>
* 2001 The [[Sudbury Neutrino Observatory]] (Canada) confirms the existence of [[neutrino oscillations]].
* 2001 The [[Sudbury Neutrino Observatory]] (Canada) confirms the existence of [[neutrino oscillations]].
* 2005 the [[RHIC]] accelerator of [[Brookhaven National Laboratory]] generates a "perfect" fluid, perhaps the [[quark–gluon plasma]].<ref>{{Cite web|title=RHIC Scientists Serve Up 'Perfect' Liquid|url=https://www.bnl.gov/newsroom/news.php?a=110303|access-date=2020-08-26|website=Brookhaven National Laboratory|language=en}}</ref>
* 2005 the [[RHIC]] accelerator of [[Brookhaven National Laboratory]] generates a "perfect" fluid, perhaps the [[quark–gluon plasma]].<ref>{{Cite web|title=RHIC Scientists Serve Up 'Perfect' Liquid|url=https://www.bnl.gov/newsroom/news.php?a=110303|access-date=2020-08-26|website=Brookhaven National Laboratory|language=en}}</ref>
* 2010 The [[Large Hadron Collider]] at [[CERN]] begins operation with the primary goal of searching for the [[Higgs boson]].
* 2010 The [[Large Hadron Collider]] at [[CERN]] begins operation with the primary goal of searching for the [[Higgs boson]].
* 2012 [[Higgs boson]]-like particle discovered at [[CERN]]'s [[Large Hadron Collider]] (LHC).<ref>{{Cite web|title=CERN experiments observe particle consistent with long-sought Higgs boson|url=https://home.cern/news/press-release/cern/cern-experiments-observe-particle-consistent-long-sought-higgs-boson|website=CERN|language=en|access-date=2020-05-22}}</ref>
* 2012 [[Higgs boson]]-like particle discovered at [[CERN]]'s [[Large Hadron Collider]] (LHC).<ref>{{Cite web|title=CERN experiments observe particle consistent with long-sought Higgs boson|url=https://home.cern/news/press-release/cern/cern-experiments-observe-particle-consistent-long-sought-higgs-boson|website=CERN|language=en|access-date=2020-05-22}}</ref>
* 2014 The [[LHCb experiment]] observes particles consistent with [[tetraquark]]s and [[pentaquark]]s <ref>{{cite journal| author1=LHCb Collaboration |title=Observation of the Resonant Character of the Z ( 4430 ) − State |journal=Physical Review Letters |date=4 June 2014 |volume=112 |issue=22 |page=222002 |doi=10.1103/PhysRevLett.112.222002|pmid=24949760 |s2cid=904429 |hdl=2445/133080 |hdl-access=free }}</ref>
* 2014 The [[LHCb experiment]] observes particles consistent with [[tetraquark]]s and [[pentaquark]]s <ref>{{cite journal| author1=LHCb Collaboration |title=Observation of the Resonant Character of the Z ( 4430 ) − State |journal=Physical Review Letters |date=4 June 2014 |volume=112 |issue=22 |article-number=222002 |doi=10.1103/PhysRevLett.112.222002|pmid=24949760 |s2cid=904429 |hdl=2445/133080 |hdl-access=free |arxiv=1404.1903 }}</ref>
* 2014 The [[T2K experiment|T2K]] and [[OPERA experiment]] observe the appearance of [[electron neutrino]]s and [[Tau neutrino]]s in a [[muon neutrino]] [[Accelerator neutrino|beam]]<ref>{{cite journal |author1=((T2K Collaboration)) |title=Observation of Electron Neutrino Appearance in a Muon Neutrino Beam |journal=Physical Review Letters |date=10 February 2014 |volume=112 |issue=6 |pages=061802 |doi=10.1103/PhysRevLett.112.061802|pmid=24580687 |arxiv=1311.4750 |bibcode=2014PhRvL.112f1802A |hdl=10044/1/20051 |s2cid=2586182 |hdl-access=free }}</ref><ref>{{cite journal |author1=OPERA Collaboration |title=Observation of tau neutrino appearance in the CNGS beam with the OPERA experiment |journal=Progress of Theoretical and Experimental Physics |date=28 October 2014 |volume=2014 |issue=10 |pages=101C01 |doi=10.1093/ptep/ptu132|doi-access=free |arxiv=1407.3513 }}</ref>
* 2014 The [[T2K experiment|T2K]] and [[OPERA experiment]] observe the appearance of [[electron neutrino]]s and [[Tau neutrino]]s in a [[muon neutrino]] [[Accelerator neutrino|beam]]<ref>{{cite journal |author1=((T2K Collaboration)) |title=Observation of Electron Neutrino Appearance in a Muon Neutrino Beam |journal=Physical Review Letters |date=10 February 2014 |volume=112 |issue=6 |article-number=061802 |doi=10.1103/PhysRevLett.112.061802|pmid=24580687 |arxiv=1311.4750 |bibcode=2014PhRvL.112f1802A |hdl=10044/1/20051 |s2cid=2586182 |hdl-access=free }}</ref><ref>{{cite journal |author1=OPERA Collaboration |title=Observation of tau neutrino appearance in the CNGS beam with the OPERA experiment |journal=Progress of Theoretical and Experimental Physics |date=28 October 2014 |volume=2014 |issue=10 |pages=101C01 |doi=10.1093/ptep/ptu132|doi-access=free |arxiv=1407.3513 }}</ref>


==See also==
==See also==
Line 228: Line 228:
==External links==
==External links==
* [http://www.alainconnes.org/ Alain Connes official website] with [http://www.alainconnes.org/en/downloads.php downloadable papers.]
* [http://www.alainconnes.org/ Alain Connes official website] with [http://www.alainconnes.org/en/downloads.php downloadable papers.]
* [http://resonaances.blogspot.com/2007/02/alain-connes-standard-model.html Alain Connes's Standard Model.]
* [https://resonaances.blogspot.com/2007/02/alain-connes-standard-model.html Alain Connes's Standard Model.]
* [http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/The_Quantum_age_begins.html A History of Quantum Mechanics] {{Webarchive|url=https://web.archive.org/web/20191028220722/http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/The_Quantum_age_begins.html |date=2019-10-28 }}
* [http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/The_Quantum_age_begins.html A History of Quantum Mechanics] {{Webarchive|url=https://web.archive.org/web/20191028220722/http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/The_Quantum_age_begins.html |date=2019-10-28 }}
* [http://www.oberlin.edu/physics/dstyer/StrangeQM/history.html A Brief History of Quantum Mechanics]
* [http://www.oberlin.edu/physics/dstyer/StrangeQM/history.html A Brief History of Quantum Mechanics]

Latest revision as of 20:26, 17 November 2025

Template:Short description Template:Use dmy dates A timeline of atomic and subatomic physics, including particle physics.

Antiquity

  • 6th - 2nd Century BCE Kanada (philosopher) proposes that anu is an indestructible particle of matter, an "atom"; anu is an abstraction and not observable.[1]
  • 430 BCE[2] Democritus speculates about fundamental indivisible particles—calls them "atoms"

Beginnings of chemistry

Script error: No such module "Unsubst".

Modern physics

Rise of quantum field theory

Age of the Standard Model

See also

References

Template:Reflist

External links

Template:Particles Template:History of physics

  1. Script error: No such module "citation/CS1".
  2. Script error: No such module "citation/CS1".
  3. Script error: No such module "citation/CS1".
  4. Script error: No such module "citation/CS1".
  5. Gilbert N. Lewis. Letter to the editor of Nature (Vol. 118, Part 2, 18 December 1926, pp. 874–875).
  6. The origin of the word "photon"
  7. The Davisson–Germer experiment, which demonstrates the wave nature of the electron
  8. A. Abragam and B. Bleaney. 1970. Electron Parmagnetic Resonance of Transition Ions, Oxford University Press: Oxford, U.K., p. 911
  9. Script error: No such module "citation/CS1".
  10. Richard Feynman; QED. Princeton University Press: Princeton, (1982)
  11. Richard Feynman; Lecture Notes in Physics. Princeton University Press: Princeton, (1986)
  12. Script error: No such module "citation/CS1".
  13. Script error: No such module "citation/CS1".
  14. Schweber, Silvan S.; Q.E.D. and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga, Princeton University Press (1994) Template:ISBN
  15. Schwinger, Julian; Selected Papers on Quantum Electrodynamics, Dover Publications, Inc. (1958) Template:ISBN
  16. *Script error: No such module "citation/CS1".
  17. Yndurain, Francisco Jose; Quantum Chromodynamics: An Introduction to the Theory of Quarks and Gluons, Springer Verlag, New York, 1983. Template:ISBN
  18. Script error: No such module "Citation/CS1".
  19. Script error: No such module "Citation/CS1".
  20. Script error: No such module "Citation/CS1".
  21. Script error: No such module "Citation/CS1".
  22. Script error: No such module "Citation/CS1".
  23. Script error: No such module "citation/CS1".
  24. Script error: No such module "citation/CS1".
  25. Weinberg, Steven; The Quantum Theory of Fields: Foundations (vol. I), Cambridge University Press (1995) Template:ISBN. The first chapter (pp. 1–40) of Weinberg's monumental treatise gives a brief history of Q.F.T., pp. 608.
  26. Weinberg, Steven; The Quantum Theory of Fields: Modern Applications (vol. II), Cambridge University Press:Cambridge, U.K. (1996) Template:ISBN, pp. 489.
  27. * Gerard 't Hooft (2007) "The Conceptual Basis of Quantum Field Theory" in Butterfield, J., and John Earman, eds., Philosophy of Physics, Part A. Elsevier: 661-730.
  28. Script error: No such module "Citation/CS1".
  29. a b c Script error: No such module "citation/CS1".
  30. Pais, Abraham; Inward Bound: Of Matter & Forces in the Physical World, Oxford University Press (1986) Template:ISBN Written by a former Einstein assistant at Princeton, this is a beautiful detailed history of modern fundamental physics, from 1895 (discovery of X-rays) to 1983 (discovery of vectors bosons at C.E.R.N.)
  31. Script error: No such module "Citation/CS1".
  32. Script error: No such module "citation/CS1".
  33. Script error: No such module "citation/CS1".
  34. Script error: No such module "citation/CS1".
  35. Script error: No such module "citation/CS1".
  36. Script error: No such module "citation/CS1".
  37. Script error: No such module "Citation/CS1".
  38. Script error: No such module "Citation/CS1".
  39. Script error: No such module "Citation/CS1".