Dirichlet function: Difference between revisions

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
imported>Ted.tem.parker
 
Removed incorrect reference, as per the talk.
 
Line 1: Line 1:
{{Short description|Indicator function of rational numbers}}
{{Short description|Indicator function of rational numbers}}
In [[mathematics]], the '''Dirichlet function'''<ref>{{springer|title=Dirichlet-function|id=p/d032860}}</ref><ref>[http://mathworld.wolfram.com/DirichletFunction.html Dirichlet Function — from MathWorld]</ref> is the [[indicator function]] <math>\mathbf{1}_\Q</math> of the set of [[rational number|rational numbers]] <math>\Q</math>, i.e. <math>\mathbf{1}_\Q(x) = 1</math> if {{mvar|x}} is a rational number and <math>\mathbf{1}_\Q(x) = 0</math> if {{mvar|x}} is not a rational number (i.e. is an [[irrational number]]).
{{for|the other function sometimes incorrectly called the Dirichlet function|Dirichlet kernel}}
In [[mathematics]], the '''Dirichlet function'''<ref>{{springer|title=Dirichlet-function|id=p/d032860}}</ref><ref>[http://mathworld.wolfram.com/DirichletFunction.html Dirichlet Function — from MathWorld]</ref> is the [[indicator function]] <math>\mathbf{1}_\Q</math> of the set of [[rational number|rational numbers]] <math>\Q</math> over the set of [[real number]]s <math>\R</math>, i.e. <math>\mathbf{1}_\Q(x) = 1</math> for a real number {{mvar|x}} if {{mvar|x}} is a rational number and <math>\mathbf{1}_\Q(x) = 0</math> if {{mvar|x}} is not a rational number (i.e. is an [[irrational number]]).
<math display="block">\mathbf 1_\Q(x) = \begin{cases}
<math display="block">\mathbf 1_\Q(x) = \begin{cases}
1 & x \in \Q \\
1 & x \in \Q \\
Line 6: Line 7:
\end{cases}</math>
\end{cases}</math>


It is named after the mathematician [[Peter Gustav Lejeune Dirichlet]].<ref>{{cite journal| first = Peter Gustav | last = Lejeune Dirichlet | title = Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données| journal = Journal für die reine und angewandte Mathematik |volume = 4 | year = 1829 | url = https://eudml.org/doc/183134 | pages = 157–169}}</ref> It is an example of a [[Pathological (mathematics)|pathological function]] which provides counterexamples to many situations.
It is named after the mathematician [[Peter Gustav Lejeune Dirichlet]]. It is an example of a [[Pathological (mathematics)|pathological function]] which provides counterexamples to many situations.


== Topological properties ==
== Topological properties ==
{{unordered list
{{unordered list
| The Dirichlet function is [[nowhere continuous function|nowhere continuous]].
| The Dirichlet function is [[nowhere continuous function|nowhere continuous]]. We can prove this by reference to the definition of a [[continuous function]] to show that it violates the continuity properties at both rational and irrational arguments:
{{Math proof| drop=hidden|proof=*If {{mvar|y}} is rational, then {{nowrap|{{math|{{var|f}}({{var|y}}) {{=}} 1}}}}. To show the function is not continuous at {{mvar|y}}, we need to find an {{mvar|ε}} such that no matter how small we choose {{mvar|δ}}, there will be points {{mvar|z}} within {{mvar|δ}} of {{mvar|y}} such that {{math|{{var|f}}({{var|z}})}} is not within {{mvar|ε}} of {{nowrap|{{math|{{var|f}}({{var|y}}) {{=}} 1}}}}.  In fact, {{frac|1|2}} is such an {{mvar|ε}}. Because the [[irrational number]]s are [[dense set|dense]] in the reals, no matter what {{mvar|δ}} we choose we can always find an irrational {{mvar|z}} within {{mvar|δ}} of {{mvar|y}}, and {{nowrap|{{math|{{var|f}}({{var|z}}) {{=}} 0}}}} is at least {{frac|1|2}} away from 1.  
{{Math proof| drop=hidden|proof=*If {{mvar|y}} is rational, then {{nowrap|{{math|{{var|f}}({{var|y}}) {{=}} 1}}}}. To show the function is not continuous at {{mvar|y}}, we need to find an {{mvar|ε}} such that no matter how small we choose {{mvar|δ}}, there will be points {{mvar|z}} within {{mvar|δ}} of {{mvar|y}} such that {{math|{{var|f}}({{var|z}})}} is not within {{mvar|ε}} of {{nowrap|{{math|{{var|f}}({{var|y}}) {{=}} 1}}}}.  In fact, {{frac|1|2}} is such an {{mvar|ε}}. Because the [[irrational number]]s are [[dense set|dense]] in the reals, no matter what {{mvar|δ}} we choose we can always find an irrational {{mvar|z}} within {{mvar|δ}} of {{mvar|y}}, and {{nowrap|{{math|{{var|f}}({{var|z}}) {{=}} 0}}}} is at least {{frac|1|2}} away from 1.  
*If {{mvar|y}} is irrational, then {{nowrap|{{math|{{var|f}}({{var|y}}) {{=}} 0}}}}. Again, we can take {{nowrap|{{math|{{var|ε}} {{=}} {{frac|1|2}}}}}}, and this time, because the rational numbers are dense in the reals, we can pick {{mvar|z}} to be a rational number as close to {{mvar|y}} as is required. Again, {{nowrap|{{math|{{var|f}}({{var|z}}) {{=}} 1}}}} is more than {{frac|1|2}} away from {{nowrap|{{math|{{var|f}}({{var|y}}) {{=}} 0}}}}.}}
*If {{mvar|y}} is irrational, then {{nowrap|{{math|{{var|f}}({{var|y}}) {{=}} 0}}}}. Again, we can take {{nowrap|{{math|{{var|ε}} {{=}} {{frac|1|2}}}}}}, and this time, because the rational numbers are dense in the reals, we can pick {{mvar|z}} to be a rational number as close to {{mvar|y}} as is required. Again, {{nowrap|{{math|{{var|f}}({{var|z}}) {{=}} 1}}}} is more than {{frac|1|2}} away from {{nowrap|{{math|{{var|f}}({{var|y}}) {{=}} 0}}}}.}}

Latest revision as of 10:40, 1 July 2025

Template:Short description Script error: No such module "For". In mathematics, the Dirichlet function[1][2] is the indicator function 𝟏 of the set of rational numbers over the set of real numbers , i.e. 𝟏(x)=1 for a real number Template:Mvar if Template:Mvar is a rational number and 𝟏(x)=0 if Template:Mvar is not a rational number (i.e. is an irrational number). 𝟏(x)={1x0x

It is named after the mathematician Peter Gustav Lejeune Dirichlet. It is an example of a pathological function which provides counterexamples to many situations.

Topological properties

Template:Unordered list

Periodicity

For any real number Template:Mvar and any positive rational number Template:Mvar, 𝟏(x+T)=𝟏(x). The Dirichlet function is therefore an example of a real periodic function which is not constant but whose set of periods, the set of rational numbers, is a dense subset of .

Integration properties

Template:Unordered list

See also

References

Template:Reflist