Time travel: Difference between revisions

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
imported>CalicoAlbatross
m punctuation
 
imported>AnomieBOT
 
Line 13: Line 13:
== History of the concept ==
== History of the concept ==


=== Mythical time travel ===
=== In religion ===


[[File:Irvington statue of Rip van Winkle.jpg|thumb|Statue of [[Rip Van Winkle]] in [[Irvington, New York]]]]
[[File:Irvington statue of Rip van Winkle.jpg|thumb|Statue of [[Rip Van Winkle]] in [[Irvington, New York]]]]


Some ancient myths depict a character skipping forward in time. In Hindu mythology, the ''[[Vishnu Purana]]'' mentions the story of King Raivata [[Kakudmi]], who travels to heaven to meet the creator [[Brahma]] and is surprised to learn when he returns to Earth that many ages have passed.<ref>{{citation|section-url=http://www.mythfolklore.net/india/encyclopedia/revati.htm|last1=Dowson|first1=John|section=Revati|title=A classical dictionary of Hindu mythology and religion, geography, history, and literature|year=1879|publisher=[[Routledge]]|access-date=2009-08-20|archive-date=2017-09-07|archive-url=https://web.archive.org/web/20170907064810/http://www.mythfolklore.net/india/encyclopedia/revati.htm|url-status=live}}</ref><ref>{{citation|url=https://www.sacred-texts.com/hin/vp/vp093.htm#page_355|title=The Vishnu Purana: Book IV: Chapter I|access-date=2022-01-08|archive-date=2022-05-27|archive-url=https://web.archive.org/web/20220527102631/https://www.sacred-texts.com/hin/vp/vp093.htm#page_355|url-status=live}}</ref> The Buddhist [[Pāli Canon]] mentions the relativity of time. The [[Payasi]] Sutta tells of one of the [[Gautama Buddha|Buddha]]'s chief disciples, Kumara [[Mahākāśyapa|Kassapa]], who explains to the skeptic Payasi that time in the Heavens passes differently than on Earth.<ref>{{citation|title=Indian Philosophy|edition=7|author=Debiprasad Chattopadhyaya|publisher=People's Publishing House, New Delhi|year=1964|author-link=Debiprasad Chattopadhyaya}}</ref> The Japanese tale of "[[Urashima Tarō]]",<ref name=Yorke>{{cite journal|title=Malchronia: Cryonics and Bionics as Primitive Weapons in the War on Time|first=Christopher|last=Yorke|journal=[[Journal of Evolution and Technology]]|volume=15|issue=1|date=February 2006|pages=73–85|url=http://jetpress.org/volume15/yorke-rowe.html|access-date=August 29, 2009|archive-date=May 16, 2006|archive-url=https://web.archive.org/web/20060516005834/http://www.jetpress.org/volume15/yorke-rowe.html|url-status=live}}</ref> first described in the ''[[Manyoshu]]'', tells of a young fisherman named Urashima-no-ko ({{lang|ja|浦嶋子}}) who visits an undersea palace. After three days, he returns home to his village and finds himself 300 years in the future, where he has been forgotten, his house is in ruins, and his family has died.<ref>{{cite book|title=Folklore, myths, and legends: a world perspective|first=Donna|last=Rosenberg|publisher=[[McGraw-Hill]]|year=1997|isbn=978-0-8442-5780-8|page=421}}</ref>  
Some ancient stories feature characters who appear to leap forward in time. ''[[Vishnu Purana]]'', in Hindu mythology narrate the myth of [[Kakudmi|Raivata Kakudmi]], who visits the god [[Brahma]] in heaven and returns to Earth to find that many ages have passed.<ref>{{citation|section-url=http://www.mythfolklore.net/india/encyclopedia/revati.htm|last1=Dowson|first1=John|section=Revati|title=A classical dictionary of Hindu mythology and religion, geography, history, and literature|year=1879|publisher=[[Routledge]]|access-date=2009-08-20|archive-date=2017-09-07|archive-url=https://web.archive.org/web/20170907064810/http://www.mythfolklore.net/india/encyclopedia/revati.htm|url-status=live}}</ref><ref>{{citation|url=https://www.sacred-texts.com/hin/vp/vp093.htm#page_355|title=The Vishnu Purana: Book IV: Chapter I|access-date=2022-01-08|archive-date=2022-05-27|archive-url=https://web.archive.org/web/20220527102631/https://www.sacred-texts.com/hin/vp/vp093.htm#page_355|url-status=live}}</ref> In the Buddhist [[Pāli Canon]], the [[Payasi]] Sutta describes how the disciple Kumara [[Mahākāśyapa|Kassapa]] explains to a skeptic that time flows differently in the heavenly realms.<ref>{{citation|title=Indian Philosophy|edition=7|author=Debiprasad Chattopadhyaya|publisher=People's Publishing House, New Delhi|year=1964|author-link=Debiprasad Chattopadhyaya}}</ref> The Japanese legend of "[[Urashima Tarō]]", first recorded in the ''[[Manyoshu]]'', tells of a fisherman who visits an undersea palace for three days, only to return and find that centuries have passed and his world is gone.<ref>{{cite book|title=Folklore, myths, and legends: a world perspective|first=Donna|last=Rosenberg|publisher=[[McGraw-Hill]]|year=1997|isbn=978-0-8442-5780-8|page=421}}</ref>


=== Abrahamic religions ===
In one tradition in [[Judaism]], [[Moses]] is [[Moses sees Rabbi Akiva (Menachot 29b)|transported by God to the study hall of Rabbi Akiva]], where he is confused by the future evolution of Jewish law. Another Talmudic story features [[Honi HaMe'agel]], a 1st-century BCE miracle worker who sees a man planting a carob tree that will take 70 years to bear fruit. Honi falls asleep and awakens 70 years later to find the tree fully grown and its fruit being harvested by the man's grandson.<ref name="Talmud">Babylonian Talmud Taanit 23a [http://www.mechon-mamre.org/b/l/l2803.htm Hebrew/Aramaic text at Mechon-Mamre] {{Webarchive|url=https://web.archive.org/web/20200809103228/http://www.mechon-mamre.org/b/l/l2803.htm|date=2020-08-09}}</ref><ref name="ChoniLATimes2000">{{cite news |author=Margaret Snyder |date=August 29, 2000 |title=Community Commentary |url=https://www.latimes.com/socal/glendale-news-press/news/tn-gnp-xpm-2000-08-29-export45571-story.html |access-date=November 10, 2022 |newspaper=[[The Los Angeles Times]]}}</ref>
One tradition in Judaism has [[Moses sees Rabbi Akiva (Menachot 29b)|Moses transported by God to the study hall of Rabbi Akiva]], where he is perplexed by the later evolution of the faith. Another Talmudic story concerns [[Honi HaMe'agel]], a miracle-working sage of the 1st century BC, who was a historical character to whom various myths were attached. While traveling one day, Honi saw a man planting a [[carob]] tree and asked him about it. The man explained that the tree would take 70 years to bear fruit, and that he was planting it not for himself but for the generations to follow him. Later that day, Honi sat down to rest but fell asleep for 70 years; when he awoke, he saw a man picking fruit from a fully mature carob tree. Asked whether he had planted it, the man replied that he had not, but that his grandfather had planted it for him.<ref name="Talmud">Babylonian Talmud Taanit 23a [http://www.mechon-mamre.org/b/l/l2803.htm Hebrew/Aramaic text at Mechon-Mamre] {{Webarchive|url=https://web.archive.org/web/20200809103228/http://www.mechon-mamre.org/b/l/l2803.htm|date=2020-08-09}}</ref><ref name="ChoniLATimes2000">{{cite news |author=Margaret Snyder |date=August 29, 2000 |title=Community Commentary |url=https://www.latimes.com/socal/glendale-news-press/news/tn-gnp-xpm-2000-08-29-export45571-story.html |access-date=November 10, 2022 |newspaper=[[The Los Angeles Times]]}}</ref>


In Christian tradition, there is a similar story of "the [[Seven Sleepers]] of [[Ephesus]]", which recounts a group of early Christians who hid in a cave circa 250 AD, to escape the persecution of Christians during the reign of the [[Roman Empire|Roman]] emperor [[Decius]]. They fell into a sleep and woke some 200 years later during the reign of [[Theodosius II]], to discover that the Empire had become Christian.<ref>Benko, Stephhen (1986). ''Pagan Rome and the Early Christians'',
In [[Islam]], the [[Quran]] narrates the story of the [[Seven Sleepers]], a group of [[Monotheism|monotheistic]] young men who sought refuge in a cave to escape persecution. As they slept, [[Allah]] preserved them for centuries, and when they awoke, they discovered that the world around them had changed. This narrative, found in the Quranic Surah [[Al-Kahf]], describes divine protection and time suspension.<ref>{{cite book |last1=Yahya |first1=Farouk |title=Chapter 8 Talismans with the Names of the Seven Sleepers of Ephesus/Aṣḥāb al-Kahf in Muslim Southeast Asia |chapter=Talismans with the Names of the Seven Sleepers of Ephesus/Aṣḥāb al-Kahf in Muslim Southeast Asia |url=https://brill.com/edcollchap/book/9789004529397/BP000009.xml?language=en |website=Brill |publisher=Malay-Indonesian Islamic Studies |access-date=December 7, 2023 |date=December 5, 2022|pages=209–265 |doi=10.1163/9789004529397_010 |isbn=978-90-04-52939-7 }}</ref><ref>{{cite web |title=Cave of the Seven Sleepers |url=https://madainproject.com/cave_of_the_seven_sleepers |website=Madain Project |access-date=December 7, 2023}}</ref><ref>{{cite web |last1=Blakeley |first1=Sasha |title=The Seven Sleepers |url=https://study.com/academy/lesson/seven-sleepers-story-significance.html |website=Study.com |access-date=December 7, 2023 |date=April 24, 2023}}</ref>
Indiana University Press. {{ISBN|978-0253203854}}</ref><ref name="Saint Rip">{{cite web |last1=Thorn |first1=John |title=Saint Rip |url=http://www.nyfolklore.org/pubs/voic36-1-2/st-rip.html |url-status=dead |archive-url=https://web.archive.org/web/20171018210936/http://www.nyfolklore.org/pubs/voic36-1-2/st-rip.html |archive-date=18 October 2017 |access-date=21 June 2017 |website=nyfolklore.org |publisher=Voices: The Journal of New York Folklore}}</ref> This Christian story is recounted by [[Islam]] and appears in a [[Sura]] of the [[Quran]], Sura [[Al-Kahf]].<ref>[http://irebd.com/quran/english/surah-18/ Quran Surah Al-Kahf]</ref> The version recalls a group of young monotheists escaping from persecution within a cave and emerging hundreds of years later. This narrative describes divine protection and time suspension.<ref>{{cite book |last1=Yahya |first1=Farouk |title=Chapter 8 Talismans with the Names of the Seven Sleepers of Ephesus/Aṣḥāb al-Kahf in Muslim Southeast Asia |chapter=Talismans with the Names of the Seven Sleepers of Ephesus/Aṣḥāb al-Kahf in Muslim Southeast Asia |url=https://brill.com/edcollchap/book/9789004529397/BP000009.xml?language=en |website=Brill |publisher=Malay-Indonesian Islamic Studies |access-date=December 7, 2023 |date=December 5, 2022|pages=209–265 |doi=10.1163/9789004529397_010 |isbn=978-90-04-52939-7 }}</ref><ref>{{cite web |title=Cave of the Seven Sleepers |url=https://madainproject.com/cave_of_the_seven_sleepers |website=Madain Project |access-date=December 7, 2023}}</ref><ref>{{cite web |last1=Blakeley |first1=Sasha |title=The Seven Sleepers |url=https://study.com/academy/lesson/seven-sleepers-story-significance.html |website=Study.com |access-date=December 7, 2023 |date=April 24, 2023}}</ref>
 
Another similar story in the Islamic tradition is of [[Uzair]] (usually identified with the Biblical [[Ezra]]) whose grief at the [[Destruction of Jerusalem by the Babylonians]]  was so great that God took his soul and brought him back to life after Jerusalem was reconstructed. He rode on his revived donkey and entered his native place. But the people did not recognize him, nor did his household, except the maid, who was now an old blind woman. He prayed to God to cure her blindness and she could see again. He meets his son who recognized him by a mole between his shoulders and was older than he was.<ref>{{cite journal |last=Renda |first=G'nsel |year=1978 |title=The Miniatures of the Zubdat Al- Tawarikh |url=http://kilyos.ee.bilkent.edu.tr/~history/Ext/Zubdat.html |journal=Turkish Treasures Culture /Art / Tourism Magazine}}</ref><ref>Ibn Kathir, Stories of the Prophets, translated by Shaikh muhammed Mustafa Gemeiah, Office of the Grand Imam, Sheikh al-Azhar, El-Nour Publishing, Egypt, 1997, Ch.21, pp.322-4</ref>


=== Science fiction ===
=== Science fiction ===
Line 34: Line 30:
Early science fiction stories feature characters who sleep for years and awaken in a changed society, or are transported to the past through supernatural means. Among them ''[[The Year 2440|L'An 2440, rêve s'il en fût jamais]]'' (''The Year 2440: A Dream If Ever There Was One'', 1770) by [[Louis-Sébastien Mercier]], ''[[Rip Van Winkle]]'' (1819) by [[Washington Irving]], ''[[Looking Backward]]'' (1888) by [[Edward Bellamy]], and ''[[The Sleeper Awakes|When the Sleeper Awakes]]'' (1899) by H. G. Wells. Prolonged sleep is used as a means of time travel in these stories.<ref>{{citation|title=The Cambridge Companion to Utopian Literature|chapter=Utopia, dystopia, and science fiction|author=Peter Fitting|editor=Gregory Claeys|publisher=Cambridge University Press|year=2010|pages=138–139}}</ref>  
Early science fiction stories feature characters who sleep for years and awaken in a changed society, or are transported to the past through supernatural means. Among them ''[[The Year 2440|L'An 2440, rêve s'il en fût jamais]]'' (''The Year 2440: A Dream If Ever There Was One'', 1770) by [[Louis-Sébastien Mercier]], ''[[Rip Van Winkle]]'' (1819) by [[Washington Irving]], ''[[Looking Backward]]'' (1888) by [[Edward Bellamy]], and ''[[The Sleeper Awakes|When the Sleeper Awakes]]'' (1899) by H. G. Wells. Prolonged sleep is used as a means of time travel in these stories.<ref>{{citation|title=The Cambridge Companion to Utopian Literature|chapter=Utopia, dystopia, and science fiction|author=Peter Fitting|editor=Gregory Claeys|publisher=Cambridge University Press|year=2010|pages=138–139}}</ref>  


The date of the earliest work about backwards time travel is uncertain. The Chinese novel ''[[A Supplement to the Journey to the West]]'' ({{Circa|1640}}) by Dong Yue features magical mirrors and jade gateways that connect various points in time. The protagonist [[Sun Wukong]] travels back in time to the "World of the Ancients" ([[Qin dynasty]]) to retrieve a magical bell and then travels forward to the "World of the Future" ([[Song dynasty]]) to find an emperor who has been exiled in time. However, the time travel is taking place inside an illusory dream world created by the villain to distract and entrap him.<ref>{{cite book |last1=Dong |first1=Yue |translator-first1=Shuen-fu |translator-last1=Lin |translator-first2=Larry James |translator-last2=Schulz |first2=Chengẻn |last2=Wu| title=The Tower of Myriad Mirrors: A Supplement to Journey to the West |series=Michigan classics in Chinese studies |location=Ann Arbor |publisher=Center for Chinese Studies, The University of Michigan |isbn=9780892641420 |year=2000 |edition=2nd }}</ref> [[Samuel Madden (author)|Samuel Madden]]'s ''[[Memoirs of the Twentieth Century]]'' (1733) is a series of letters from British ambassadors in 1997 and 1998 to diplomats in the past, conveying the political and religious conditions of the future.<ref name="madden">{{cite book|last=Alkon|first=Paul K.|title=Origins of Futuristic Fiction|publisher=The University of Georgia Press|year=1987|isbn=978-0-8203-0932-3|url=https://archive.org/details/originsoffuturis00alko}}</ref>{{rp|95–96}} Because the narrator receives these letters from his [[guardian angel]], Paul Alkon suggests in his book ''Origins of Futuristic Fiction'' that "the first time-traveler in English literature is a guardian angel".<ref name="madden" />{{rp|85}} Madden does not explain how the angel obtains these documents, but Alkon asserts that Madden "deserves recognition as the first to toy with the rich idea of time-travel in the form of an artifact sent backward from the future to be discovered in the present".<ref name="madden"/>{{rp|95–96}} In the science fiction anthology ''Far Boundaries'' (1951), editor [[August Derleth]] claims that an early short story about time travel is ''An Anachronism; or, Missing One's Coach'', written for the ''Dublin Literary Magazine''<ref>{{cite journal|title=An Anachronism; or, Missing One's Coach|url=https://books.google.com/books?id=jfPAwAnj9JUC&pg=RA4-PA701|date=June 1838|journal=Dublin University Magazine|volume=11|access-date=2022-05-11|archive-date=2023-03-24|archive-url=https://web.archive.org/web/20230324181751/https://books.google.com/books?id=jfPAwAnj9JUC&pg=RA4-PA701|url-status=live}}</ref> by an anonymous author in the [https://books.google.com/books?id=jfPAwAnj9JUC&pg=RA4-PA665 June 1838 issue].<ref name="derleth">{{cite book|last=Derleth|first=August|author-link=August Derleth|title=Far Boundaries|publisher=Pellegrini & Cudahy|year=1951}}</ref>{{rp|3}} While the narrator waits under a tree for a [[Stagecoach|coach]] to take him out of [[Newcastle upon Tyne]], he is transported back in time over a thousand years. He encounters the Venerable [[Bede]] in a [[monastery]] and explains to him the developments of the coming centuries. However, the story never makes it clear whether these events are real or a dream.<ref name="derleth" />{{rp|11–38}} Another early work about time travel is ''The Forebears of Kalimeros: Alexander, son of Philip of Macedon'' by [[Alexander Veltman]] published in 1836.<ref>{{Cite web|title=Lib.ru/Классика: Акутин Юрий. Александр Вельтман и его роман "Странник"|url=http://az.lib.ru/w/welxtman_a_f/text_0090.shtml|access-date=2022-12-29|website=az.lib.ru|archive-date=2011-06-06|archive-url=https://web.archive.org/web/20110606034550/http://az.lib.ru/w/welxtman_a_f/text_0090.shtml|url-status=live}}</ref>
The date of the earliest work about backwards time travel is uncertain. The Chinese novel ''[[A Supplement to the Journey to the West]]'' ({{Circa|1640}}) by Dong Yue features magical mirrors and jade gateways that connect various points in time. The protagonist [[Sun Wukong]] travels back in time to the "World of the Ancients" ([[Qin dynasty]]) to retrieve a magical bell and then travels forward to the "World of the Future" ([[Song dynasty]]) to find an emperor who has been exiled in time. However, the time travel is taking place inside an illusory dream world created by the villain to distract and entrap him.<ref>{{cite book |last1=Dong |first1=Yue |translator-first1=Shuen-fu |translator-last1=Lin |translator-first2=Larry James |translator-last2=Schulz |first2=Chengẻn |last2=Wu| title=The Tower of Myriad Mirrors: A Supplement to Journey to the West |series=Michigan classics in Chinese studies |location=Ann Arbor |publisher=Center for Chinese Studies, The University of Michigan |isbn=978-0-89264-142-0 |year=2000 |edition=2nd }}</ref> [[Samuel Madden (author)|Samuel Madden]]'s ''[[Memoirs of the Twentieth Century]]'' (1733) is a series of letters from British ambassadors in 1997 and 1998 to diplomats in the past, conveying the political and religious conditions of the future.<ref name="madden">{{cite book|last=Alkon|first=Paul K.|title=Origins of Futuristic Fiction|publisher=The University of Georgia Press|year=1987|isbn=978-0-8203-0932-3|url=https://archive.org/details/originsoffuturis00alko}}</ref>{{rp|95–96}} Because the narrator receives these letters from his [[guardian angel]], Paul Alkon suggests in his book ''Origins of Futuristic Fiction'' that "the first time-traveler in English literature is a guardian angel".<ref name="madden" />{{rp|85}} Madden does not explain how the angel obtains these documents, but Alkon asserts that Madden "deserves recognition as the first to toy with the rich idea of time-travel in the form of an artifact sent backward from the future to be discovered in the present".<ref name="madden"/>{{rp|95–96}} In the science fiction anthology ''Far Boundaries'' (1951), editor [[August Derleth]] claims that an early short story about time travel is ''An Anachronism; or, Missing One's Coach'', written for the ''Dublin Literary Magazine''<ref>{{cite journal|title=An Anachronism; or, Missing One's Coach|url=https://books.google.com/books?id=jfPAwAnj9JUC&pg=RA4-PA701|date=June 1838|journal=Dublin University Magazine|volume=11|access-date=2022-05-11|archive-date=2023-03-24|archive-url=https://web.archive.org/web/20230324181751/https://books.google.com/books?id=jfPAwAnj9JUC&pg=RA4-PA701|url-status=live}}</ref> by an anonymous author in the [https://books.google.com/books?id=jfPAwAnj9JUC&pg=RA4-PA665 June 1838 issue].<ref name="derleth">{{cite book|last=Derleth|first=August|author-link=August Derleth|title=Far Boundaries|publisher=Pellegrini & Cudahy|year=1951}}</ref>{{rp|3}} While the narrator waits under a tree for a [[Stagecoach|coach]] to take him out of [[Newcastle upon Tyne]], he is transported back in time over a thousand years. He encounters the Venerable [[Bede]] in a [[monastery]] and explains to him the developments of the coming centuries. However, the story never makes it clear whether these events are real or a dream.<ref name="derleth" />{{rp|11–38}} Another early work about time travel is ''The Forebears of Kalimeros: Alexander, son of Philip of Macedon'' by [[Alexander Veltman]] published in 1836.<ref>{{Cite web|title=Lib.ru/Классика: Акутин Юрий. Александр Вельтман и его роман "Странник"|url=http://az.lib.ru/w/welxtman_a_f/text_0090.shtml|access-date=2022-12-29|website=az.lib.ru|archive-date=2011-06-06|archive-url=https://web.archive.org/web/20110606034550/http://az.lib.ru/w/welxtman_a_f/text_0090.shtml|url-status=live}}</ref>


[[File:A Christmas Carol - Mr. Fezziwig's Ball.jpg|thumb|Mr. and Mrs. Fezziwig dance in a vision shown to Scrooge by the [[Ghost of Christmas Past]].]] [[Charles Dickens]]'s ''[[A Christmas Carol]]'' (1843) has early depictions of mystical time travel in both directions, as the protagonist, Ebenezer Scrooge, is transported to Christmases past and future. Other stories employ the same template, where a character naturally goes to sleep, and upon waking up finds themself in a different time.<ref name="Scrooge">{{cite encyclopedia|url=http://www.towson.edu/~flynn/timetv.html|title=Time Travel Literature|access-date=October 28, 2006|author=Flynn, John L.|archive-url=https://web.archive.org/web/20060929071327/http://www.towson.edu/~flynn/timetv.html <!-- Bot retrieved archive -->|archive-date=September 29, 2006|year=1995|encyclopedia=The Encyclopedia Galactica}}</ref> A clearer example of backward time travel is found in the 1861 book ''Paris avant les hommes'' (''Paris before Men'') by the French botanist and geologist [[Pierre Boitard]], published posthumously. In this story, the protagonist is transported to the prehistoric past by the magic of a "lame demon" (a French pun on Boitard's name), where he encounters a [[Plesiosauria|Plesiosaur]] and an apelike ancestor and is able to interact with ancient creatures.<ref name="boitard">{{cite book|last=Rudwick|first=Martin J. S.|title=Scenes From Deep Time|publisher=The University of Chicago Press|year=1992|pages=166–169|isbn=978-0-226-73105-6}}</ref> [[Edward Everett Hale]]'s "Hands Off" (1881)<ref>{{cite book|title=Hands Off|last=Hale|first=Edward Everett|publisher=J. Stilman Smith & Co.|year=1895|url=https://archive.org/details/handsoff00halegoog/mode/2up}}</ref> tells the story of an unnamed being, possibly the soul of a person who has recently died, who interferes with ancient Egyptian history by preventing [[Joseph (Genesis)|Joseph]]'s enslavement. This may have been the first story to feature an [[alternate history]] created as a result of time travel.<ref name="Nahin2001" >{{cite book|last=Nahin|first=Paul J.|title=Time machines: time travel in physics, metaphysics, and science fiction|url=https://books.google.com/books?id=39KQY1FnSfkC&pg=PA54|publisher=Springer|year=2001|isbn=978-0-387-98571-8|access-date=2020-10-20|archive-date=2023-03-24|archive-url=https://web.archive.org/web/20230324181758/https://books.google.com/books?id=39KQY1FnSfkC&pg=PA54|url-status=live}}</ref>{{rp|54}}
[[File:A Christmas Carol - Mr. Fezziwig's Ball.jpg|thumb|Mr. and Mrs. Fezziwig dance in a vision shown to Scrooge by the [[Ghost of Christmas Past]].]] [[Charles Dickens]]'s ''[[A Christmas Carol]]'' (1843) has early depictions of mystical time travel in both directions, as the protagonist, Ebenezer Scrooge, is transported to Christmases past and future. Other stories employ the same template, where a character naturally goes to sleep, and upon waking up finds themself in a different time.<ref name="Scrooge">{{cite encyclopedia|url=http://www.towson.edu/~flynn/timetv.html|title=Time Travel Literature|access-date=October 28, 2006|author=Flynn, John L.|archive-url=https://web.archive.org/web/20060929071327/http://www.towson.edu/~flynn/timetv.html <!-- Bot retrieved archive -->|archive-date=September 29, 2006|year=1995|encyclopedia=The Encyclopedia Galactica}}</ref> A clearer example of backward time travel is found in the 1861 book ''Paris avant les hommes'' (''Paris before Men'') by the French botanist and geologist [[Pierre Boitard]], published posthumously. In this story, the protagonist is transported to the prehistoric past by the magic of a "lame demon" (a French pun on Boitard's name), where he encounters a [[Plesiosauria|Plesiosaur]] and an apelike ancestor and is able to interact with ancient creatures.<ref name="boitard">{{cite book|last=Rudwick|first=Martin J. S.|title=Scenes From Deep Time|publisher=The University of Chicago Press|year=1992|pages=166–169|isbn=978-0-226-73105-6}}</ref> [[Edward Everett Hale]]'s "Hands Off" (1881)<ref>{{cite book|title=Hands Off|last=Hale|first=Edward Everett|publisher=J. Stilman Smith & Co.|year=1895|url=https://archive.org/details/handsoff00halegoog/mode/2up}}</ref> tells the story of an unnamed being, possibly the soul of a person who has recently died, who interferes with ancient Egyptian history by preventing [[Joseph (Genesis)|Joseph]]'s enslavement. This may have been the first story to feature an [[alternate history]] created as a result of time travel.<ref name="Nahin2001" >{{cite book|last=Nahin|first=Paul J.|title=Time machines: time travel in physics, metaphysics, and science fiction|url=https://books.google.com/books?id=39KQY1FnSfkC&pg=PA54|publisher=Springer|year=2001|isbn=978-0-387-98571-8|access-date=2020-10-20|archive-date=2023-03-24|archive-url=https://web.archive.org/web/20230324181758/https://books.google.com/books?id=39KQY1FnSfkC&pg=PA54|url-status=live}}</ref>{{rp|54}}
Line 40: Line 36:
=== Early time machines ===
=== Early time machines ===
{{main| Time machine (device)}}
{{main| Time machine (device)}}
One of the first stories to feature time travel by means of a machine is "[[The Clock that Went Backward]]" by [[Edward Page Mitchell]],<ref>{{cite web|last=Page Mitchell|first=Edward|title=The Clock That Went Backward|url=http://www.horrormasters.com/Text/a2221.pdf|access-date=December 4, 2011|url-status=dead|archive-url=https://web.archive.org/web/20111015110200/http://horrormasters.com/Text/a2221.pdf|archive-date=October 15, 2011}}</ref> which appeared in the ''[[The Sun (New York)|New York Sun]]'' in 1881. However, the mechanism borders on fantasy. An unusual clock, when wound, runs backwards and transports people nearby back in time. The author does not explain the origin or properties of the clock.<ref name="Nahin2001" />{{rp|55}} [[Enrique Gaspar y Rimbau]]'s ''El Anacronópete'' (1887) may have been the first story to feature a vessel engineered to travel through time.<ref name="firsttimemachine">{{cite journal|last=Uribe|first=Augusto|title=The First Time Machine: Enrique Gaspar's Anacronópete|journal=[[The New York Review of Science Fiction]]|volume=11, no. 10|issue=130|page=12|date=June 1999}}</ref><ref>{{Cite book|last=Gaspar|first=Enrique|url=https://books.google.com/books?id=yAUiSP_Mr6wC&pg=PT17|title=The Time Ship: A Chrononautical Journey|date=2012-06-26|publisher=Wesleyan University Press|isbn=978-0-8195-7239-4|language=en|access-date=2022-12-29|archive-date=2023-03-24|archive-url=https://web.archive.org/web/20230324181757/https://books.google.com/books?id=yAUiSP_Mr6wC&pg=PT17|url-status=live}}</ref> [[Andrew Sawyer]] has commented that the story "does seem to be the first literary description of a time machine noted so far", adding that "Edward Page Mitchell's story ''The Clock That Went Backward'' (1881) is usually described as the first time-machine story, but I'm not sure that a clock quite counts".<ref>{{cite news|last=Westcott|first=Kathryn|title=HG Wells or Enrique Gaspar: Whose time machine was first?|work=BBC News|date=9 April 2011|url=https://www.bbc.co.uk/news/world-europe-12900390|access-date=August 1, 2014|archive-url=https://web.archive.org/web/20140329161914/http://www.bbc.co.uk/news/world-europe-12900390|archive-date=March 29, 2014}}</ref> [[H. G. Wells]]' ''[[The Time Machine]]'' (1895) popularized the concept of time travel by mechanical means.<ref name="britannica1">{{cite encyclopedia|last=Sterling|first=Bruce|url=http://www.britannica.com/art/science-fiction/Major-science-fiction-themes#toc235731|title=science fiction &#124; literature and performance :: Major science fiction themes|publisher=Britannica.com|date=August 27, 2014|access-date=November 27, 2015|archive-date=October 5, 2015|archive-url=https://web.archive.org/web/20151005152142/http://www.britannica.com/art/science-fiction/Major-science-fiction-themes#toc235731|url-status=live}}</ref>
One of the first stories to feature time travel by means of a machine is "[[The Clock that Went Backward]]" by [[Edward Page Mitchell]],<ref>{{cite web|last=Page Mitchell|first=Edward|title=The Clock That Went Backward|url=http://www.horrormasters.com/Text/a2221.pdf|access-date=December 4, 2011|archive-url=https://web.archive.org/web/20111015110200/http://horrormasters.com/Text/a2221.pdf|archive-date=October 15, 2011}}</ref> which appeared in the ''[[The Sun (New York)|New York Sun]]'' in 1881. However, the mechanism borders on fantasy. An unusual clock, when wound, runs backwards and transports people nearby back in time. The author does not explain the origin or properties of the clock.<ref name="Nahin2001" />{{rp|55}} [[Enrique Gaspar y Rimbau]]'s ''El Anacronópete'' (1887) may have been the first story to feature a vessel engineered to travel through time.<ref name="firsttimemachine">{{cite journal|last=Uribe|first=Augusto|title=The First Time Machine: Enrique Gaspar's Anacronópete|journal=[[The New York Review of Science Fiction]]|volume=11, no. 10|issue=130|page=12|date=June 1999}}</ref><ref>{{Cite book|last=Gaspar|first=Enrique|url=https://books.google.com/books?id=yAUiSP_Mr6wC&pg=PT17|title=The Time Ship: A Chrononautical Journey|date=2012-06-26|publisher=Wesleyan University Press|isbn=978-0-8195-7239-4|language=en|access-date=2022-12-29|archive-date=2023-03-24|archive-url=https://web.archive.org/web/20230324181757/https://books.google.com/books?id=yAUiSP_Mr6wC&pg=PT17|url-status=live}}</ref> [[Andrew Sawyer]] has commented that the story "does seem to be the first literary description of a time machine noted so far", adding that "Edward Page Mitchell's story ''The Clock That Went Backward'' (1881) is usually described as the first time-machine story, but I'm not sure that a clock quite counts".<ref>{{cite news|last=Westcott|first=Kathryn|title=HG Wells or Enrique Gaspar: Whose time machine was first?|work=BBC News|date=9 April 2011|url=https://www.bbc.co.uk/news/world-europe-12900390|access-date=August 1, 2014|archive-url=https://web.archive.org/web/20140329161914/http://www.bbc.co.uk/news/world-europe-12900390|archive-date=March 29, 2014}}</ref> [[H. G. Wells]]' ''[[The Time Machine]]'' (1895) popularized the concept of time travel by mechanical means.<ref name="britannica1">{{cite encyclopedia|last=Sterling|first=Bruce|url=http://www.britannica.com/art/science-fiction/Major-science-fiction-themes#toc235731|title=science fiction &#124; literature and performance :: Major science fiction themes|publisher=Britannica.com|date=August 27, 2014|access-date=November 27, 2015|archive-date=October 5, 2015|archive-url=https://web.archive.org/web/20151005152142/http://www.britannica.com/art/science-fiction/Major-science-fiction-themes#toc235731|url-status=live}}</ref>


== Time travel in physics ==
== Time travel in physics ==
Some solutions to Einstein's equations for [[general relativity]] suggest that suitable geometries of [[spacetime]] or specific types of motion in [[space]] might allow time travel into the past and future if these geometries or motions were possible.<ref name="Thorne1994">{{cite book|last=Thorne|first=Kip S.|author-link=Kip Thorne|title=Black Holes and Time Warps|publisher=W. W. Norton|year=1994|isbn=978-0-393-31276-8|title-link=Black Holes and Time Warps}}</ref>{{rp|499}} In technical papers, [[physicist]]s discuss the possibility of [[closed timelike curve]]s, which are [[world line]]s that form closed loops in spacetime, allowing objects to return to their own past. There are known to be solutions to the equations of general relativity that describe spacetimes which contain closed timelike curves, such as [[Gödel metric#Closed timelike curves|Gödel spacetime]], but the physical plausibility of these solutions is uncertain.<ref>{{Cite journal |last1=Ringbauer |first1=Martin |last2=Broome |first2=Matthew A. |last3=Myers |first3=Casey R. |last4=White |first4=Andrew G. |last5=Ralph |first5=Timothy C. |date=2014-06-19 |title=Experimental simulation of closed timelike curves |url=https://www.nature.com/articles/ncomms5145 |journal=Nature Communications |language=en |volume=5 |issue=1 |pages=4145 |doi=10.1038/ncomms5145 |pmid=24942489 |issn=2041-1723|arxiv=1501.05014 |bibcode=2014NatCo...5.4145R }}</ref>
Some solutions to Einstein's equations for [[general relativity]] suggest that suitable geometries of [[spacetime]] or specific types of motion in [[space]] might allow time travel into the past and future if these geometries or motions were possible.<ref name="Thorne1994">{{cite book|last=Thorne|first=Kip S.|author-link=Kip Thorne|title=Black Holes and Time Warps|publisher=W. W. Norton|year=1994|isbn=978-0-393-31276-8|title-link=Black Holes and Time Warps}}</ref>{{rp|499}} In technical papers, [[physicist]]s discuss the possibility of [[closed timelike curve]]s, which are [[world line]]s that form closed loops in spacetime, allowing objects to return to their own past. There are known to be solutions to the equations of general relativity that describe spacetimes which contain closed timelike curves, such as [[Gödel metric#Closed timelike curves|Gödel spacetime]], but the physical plausibility of these solutions is uncertain.<ref>{{Cite journal |last1=Ringbauer |first1=Martin |last2=Broome |first2=Matthew A. |last3=Myers |first3=Casey R. |last4=White |first4=Andrew G. |last5=Ralph |first5=Timothy C. |date=2014-06-19 |title=Experimental simulation of closed timelike curves |url=https://www.nature.com/articles/ncomms5145 |journal=Nature Communications |language=en |volume=5 |issue=1 |page=4145 |doi=10.1038/ncomms5145 |pmid=24942489 |issn=2041-1723|arxiv=1501.05014 |bibcode=2014NatCo...5.4145R }}</ref>


Any theory that would allow backward time travel would introduce potential problems of [[Causality (physics)|causality]].<ref name="Bolonkin">{{cite book|title=Universe, Human Immortality and Future Human Evaluation|first1=Alexander|last1=Bolonkin|publisher=Elsevier|year=2011|isbn=978-0-12-415810-8|page=32|url=https://books.google.com/books?id=IFZWTf93KwgC|access-date=2017-03-26|archive-date=2023-03-24|archive-url=https://web.archive.org/web/20230324181808/https://books.google.com/books?id=IFZWTf93KwgC|url-status=live}} [https://books.google.com/books?id=IFZWTf93KwgC&pg=PA32 Extract of page 32] {{Webarchive|url=https://web.archive.org/web/20230324181801/https://books.google.com/books?id=IFZWTf93KwgC&pg=PA32 |date=2023-03-24 }}</ref> The classic example of a problem involving causality is the "[[grandfather paradox]]," which postulates travelling to the past and intervening in the conception of one's ancestors (causing the death of an ancestor before conception being frequently cited). Some physicists, such as Novikov and Deutsch, suggested that these sorts of [[temporal paradox]]es can be avoided through the [[Novikov self-consistency principle]] or a variation of the [[many-worlds interpretation]] with interacting worlds.<ref name="Everett MWI" />
Any theory that would allow backward time travel would introduce potential problems of [[Causality (physics)|causality]].<ref name="Bolonkin">{{cite book|title=Universe, Human Immortality and Future Human Evaluation|first1=Alexander|last1=Bolonkin|publisher=Elsevier|year=2011|isbn=978-0-12-415810-8|page=32|url=https://books.google.com/books?id=IFZWTf93KwgC|access-date=2017-03-26|archive-date=2023-03-24|archive-url=https://web.archive.org/web/20230324181808/https://books.google.com/books?id=IFZWTf93KwgC|url-status=live}} [https://books.google.com/books?id=IFZWTf93KwgC&pg=PA32 Extract of page 32] {{Webarchive|url=https://web.archive.org/web/20230324181801/https://books.google.com/books?id=IFZWTf93KwgC&pg=PA32 |date=2023-03-24 }}</ref> The classic example of a problem involving causality is the "[[grandfather paradox]]," which postulates travelling to the past and intervening in the conception of one's ancestors (causing the death of an ancestor before conception being frequently cited). Some physicists, such as Novikov and Deutsch, suggested that these sorts of [[temporal paradox]]es can be avoided through the [[Novikov self-consistency principle]] or a variation of the [[many-worlds interpretation]] with interacting worlds.<ref name="Everett MWI" />


=== General relativity ===
=== General relativity ===
Time travel to the past is theoretically possible in certain general relativity spacetime geometries that permit traveling [[faster-than-light|faster than the speed of light]], such as [[cosmic string]]s, traversable [[wormhole]]s, and [[Alcubierre drive]]s.<ref>{{cite web|url=http://ccrg.rit.edu/files/FasterThanLight.pdf|title=Warp Drives, Wormholes, and Black Holes|author=Miguel Alcubierre|date=June 29, 2012|access-date=January 25, 2017|archive-date=March 18, 2016|archive-url=https://web.archive.org/web/20160318223348/http://ccrg.rit.edu/files/FasterThanLight.pdf|url-status=dead}}</ref><ref name="Gott">{{cite book|author=J. Richard Gott|title=Time Travel in Einstein's Universe: The Physical Possibilities of Travel Through Time|url=https://books.google.com/books?id=3QBgCgAAQBAJ&pg=PT45|date=25 August 2015|publisher=HMH|isbn=978-0-547-52657-7|page=33|access-date=3 February 2018|archive-date=24 March 2023|archive-url=https://web.archive.org/web/20230324181808/https://books.google.com/books?id=3QBgCgAAQBAJ&pg=PT45|url-status=live}}</ref>{{rp|33–130}} The theory of [[general relativity]] does suggest a scientific basis for the possibility of backward time travel in certain unusual scenarios, although arguments from [[semiclassical gravity]] suggest that when [[quantum mechanics|quantum]] effects are incorporated into general relativity, these loopholes may be closed.<ref>{{cite book|arxiv=gr-qc/0204022|last=Visser|first=Matt|title=The quantum physics of chronology protection|url=https://archive.org/details/arxiv-gr-qc0204022|year=2002|bibcode=2003ftpc.book..161V}}</ref> These semiclassical arguments led [[Stephen Hawking]] to formulate the [[chronology protection conjecture]], suggesting that the fundamental laws of nature prevent time travel,<ref name="chronology protection">{{cite journal|first=Stephen|last=Hawking|author-link=Stephen Hawking|title=Chronology protection conjecture|journal=Physical Review D|volume=46|year=1992|issue=2|pages=603–611|doi=10.1103/PhysRevD.46.603|pmid=10014972|bibcode=1992PhRvD..46..603H|url=http://thelifeofpsi.com/wp-content/uploads/2014/09/Hawking-1992.pdf|archive-url=https://web.archive.org/web/20150227141021/http://thelifeofpsi.com/wp-content/uploads/2014/09/Hawking-1992.pdf|archive-date=2015-02-27}}</ref> but physicists cannot come to a definitive judgment on the issue without a theory of [[quantum gravity]] to join quantum mechanics and general relativity into a completely unified theory.<ref name="sagan-nova">{{cite web|url=https://www.pbs.org/wgbh/nova/time/sagan.html|title=Carl Sagan Ponders Time Travel|work=NOVA|date=December 10, 1999|publisher=[[PBS]]|access-date=April 26, 2017|archive-date=July 15, 2019|archive-url=https://web.archive.org/web/20190715000440/https://www.pbs.org/wgbh/nova/time/sagan.html|url-status=live}}</ref><ref name="futureofspacetime">{{cite book|last1=Hawking|first1=Stephen|author-link=Stephen Hawking|last2=Thorne|first2=Kip|author-link2=Kip Thorne|last3=Novikov|first3=Igor|author-link3=Igor Dmitriyevich Novikov|last4=Ferris|first4=Timothy|author-link4=Timothy Ferris|last5=Lightman|first5=Alan|author-link5=Alan Lightman|title=The Future of Spacetime|publisher=W. W. Norton|year=2002|isbn=978-0-393-02022-9|url=https://books.google.com/books?id=LlVcB7rz4mkC&pg=PA750}}</ref>{{rp|150}}
Time travel to the past is theoretically possible in certain general relativity spacetime geometries that permit traveling [[faster-than-light|faster than the speed of light]], such as [[cosmic string]]s, traversable [[wormhole]]s, and [[Alcubierre drive]]s.<ref>{{cite web|url=http://ccrg.rit.edu/files/FasterThanLight.pdf|title=Warp Drives, Wormholes, and Black Holes|author=Miguel Alcubierre|date=June 29, 2012|access-date=January 25, 2017|archive-date=March 18, 2016|archive-url=https://web.archive.org/web/20160318223348/http://ccrg.rit.edu/files/FasterThanLight.pdf}}</ref><ref name="Gott">{{cite book|author=J. Richard Gott|title=Time Travel in Einstein's Universe: The Physical Possibilities of Travel Through Time|url=https://books.google.com/books?id=3QBgCgAAQBAJ&pg=PT45|date=25 August 2015|publisher=HMH|isbn=978-0-547-52657-7|page=33|access-date=3 February 2018|archive-date=24 March 2023|archive-url=https://web.archive.org/web/20230324181808/https://books.google.com/books?id=3QBgCgAAQBAJ&pg=PT45|url-status=live}}</ref>{{rp|33–130}} The theory of [[general relativity]] does suggest a scientific basis for the possibility of backward time travel in certain unusual scenarios, although arguments from [[semiclassical gravity]] suggest that when [[quantum mechanics|quantum]] effects are incorporated into general relativity, these loopholes may be closed.<ref>{{cite book|arxiv=gr-qc/0204022|last=Visser|first=Matt|title=The quantum physics of chronology protection|url=https://archive.org/details/arxiv-gr-qc0204022|year=2002|bibcode=2003ftpc.book..161V}}</ref> These semiclassical arguments led [[Stephen Hawking]] to formulate the [[chronology protection conjecture]], suggesting that the fundamental laws of nature prevent time travel,<ref name="chronology protection">{{cite journal|first=Stephen|last=Hawking|author-link=Stephen Hawking|title=Chronology protection conjecture|journal=Physical Review D|volume=46|year=1992|issue=2|pages=603–611|doi=10.1103/PhysRevD.46.603|pmid=10014972|bibcode=1992PhRvD..46..603H|url=http://thelifeofpsi.com/wp-content/uploads/2014/09/Hawking-1992.pdf|archive-url=https://web.archive.org/web/20150227141021/http://thelifeofpsi.com/wp-content/uploads/2014/09/Hawking-1992.pdf|archive-date=2015-02-27}}</ref> but physicists cannot come to a definitive judgment on the issue without a theory of [[quantum gravity]] to join quantum mechanics and general relativity into a completely unified theory.<ref name="sagan-nova">{{cite web|url=https://www.pbs.org/wgbh/nova/time/sagan.html|title=Carl Sagan Ponders Time Travel|work=NOVA|date=December 10, 1999|publisher=[[PBS]]|access-date=April 26, 2017|archive-date=July 15, 2019|archive-url=https://web.archive.org/web/20190715000440/https://www.pbs.org/wgbh/nova/time/sagan.html|url-status=live}}</ref><ref name="futureofspacetime">{{cite book|last1=Hawking|first1=Stephen|author-link=Stephen Hawking|last2=Thorne|first2=Kip|author-link2=Kip Thorne|last3=Novikov|first3=Igor|author-link3=Igor Dmitriyevich Novikov|last4=Ferris|first4=Timothy|author-link4=Timothy Ferris|last5=Lightman|first5=Alan|author-link5=Alan Lightman|title=The Future of Spacetime|publisher=W. W. Norton|year=2002|isbn=978-0-393-02022-9|url=https://books.google.com/books?id=LlVcB7rz4mkC&pg=PA750}}</ref>{{rp|150}}


==== Different spacetime geometries ====
==== Different spacetime geometries ====
Line 62: Line 58:


==== Other approaches based on general relativity ====
==== Other approaches based on general relativity ====
Another approach involves a dense spinning cylinder usually referred to as a [[Tipler cylinder]], a GR solution discovered by [[Willem Jacob van Stockum]]<ref name="stockum">{{cite journal|first=Willem Jacob|last=van Stockum|author-link=Willem Jacob van Stockum|url=http://www-lorentz.leidenuniv.nl/history/stockum/Proc_R_Soc_Edinb_57_135_1937.jpg|title=The Gravitational Field of a Distribution of Particles Rotating about an Axis of Symmetry|year=1936|journal=Proceedings of the Royal Society of Edinburgh|url-status=dead|archive-url=https://web.archive.org/web/20080819215608/http://www-lorentz.leidenuniv.nl/history/stockum/Proc_R_Soc_Edinb_57_135_1937.jpg|archive-date=2008-08-19}}</ref> in 1936 and [[Kornel Lanczos]]<ref name="lanczos">{{cite journal|first=Kornel|last=Lanczos|author-link=Kornel Lanczos|doi=10.1023/A:1010277120072|title=On a Stationary Cosmology in the Sense of Einstein's Theory of Gravitation|year=1924 <!--republished in 1997-->|journal=General Relativity and Gravitation|publisher=Springland Netherlands|volume=29|issue=3|pages=363–399|s2cid=116891680}}</ref> in 1924, but not recognized as allowing closed timelike curves<ref name="Earman">{{cite book|last=Earman|first=John|title=Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic Spacetimes|publisher=Oxford University Press|year=1995|isbn=978-0-19-509591-3|bibcode=1995bcws.book.....E}}</ref>{{rp|21}} until an analysis by [[Frank Tipler]] in 1974.<ref name="tipler">{{cite journal|first=Frank J|last=Tipler|author-link=Frank J. Tipler|title=Rotating Cylinders and the Possibility of Global Causality Violation|journal=Physical Review D|volume=9|year=1974|issue=8|page=2203|doi=10.1103/PhysRevD.9.2203|bibcode=1974PhRvD...9.2203T|s2cid=17524515}}</ref> If a cylinder is infinitely long and spins fast enough about its long axis, then a spaceship flying around the cylinder on a spiral path could travel back in time (or forward, depending on the direction of its spiral). However, the density and speed required is so great that ordinary matter is not strong enough to construct it.  
Another approach involves a dense spinning cylinder usually referred to as a [[Tipler cylinder]], a GR solution discovered by [[Willem Jacob van Stockum]]<ref name="stockum">{{cite journal|first=Willem Jacob|last=van Stockum|author-link=Willem Jacob van Stockum|url=http://www-lorentz.leidenuniv.nl/history/stockum/Proc_R_Soc_Edinb_57_135_1937.jpg|title=The Gravitational Field of a Distribution of Particles Rotating about an Axis of Symmetry|year=1936|journal=Proceedings of the Royal Society of Edinburgh|archive-url=https://web.archive.org/web/20080819215608/http://www-lorentz.leidenuniv.nl/history/stockum/Proc_R_Soc_Edinb_57_135_1937.jpg|archive-date=2008-08-19}}</ref> in 1936 and [[Kornel Lanczos]]<ref name="lanczos">{{cite journal|first=Kornel|last=Lanczos|author-link=Kornel Lanczos|doi=10.1023/A:1010277120072|title=On a Stationary Cosmology in the Sense of Einstein's Theory of Gravitation|year=1924 <!--republished in 1997-->|journal=General Relativity and Gravitation|publisher=Springland Netherlands|volume=29|issue=3|pages=363–399|s2cid=116891680}}</ref> in 1924, but not recognized as allowing closed timelike curves<ref name="Earman">{{cite book|last=Earman|first=John|title=Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic Spacetimes|publisher=Oxford University Press|year=1995|isbn=978-0-19-509591-3|bibcode=1995bcws.book.....E}}</ref>{{rp|21}} until an analysis by [[Frank Tipler]] in 1974.<ref name="tipler">{{cite journal|first=Frank J|last=Tipler|author-link=Frank J. Tipler|title=Rotating Cylinders and the Possibility of Global Causality Violation|journal=Physical Review D|volume=9|year=1974|issue=8|page=2203|doi=10.1103/PhysRevD.9.2203|bibcode=1974PhRvD...9.2203T|s2cid=17524515}}</ref> If a cylinder is infinitely long and spins fast enough about its long axis, then a spaceship flying around the cylinder on a spiral path could travel back in time (or forward, depending on the direction of its spiral). However, the density and speed required is so great that ordinary matter is not strong enough to construct it.  


A more fundamental objection to time travel schemes based on rotating cylinders or cosmic strings has been put forward by Stephen Hawking, who proved a theorem showing that according to general relativity it is impossible to build a time machine of a special type (a "time machine with the compactly generated Cauchy horizon") in a region where the [[weak energy condition]] is satisfied, meaning that the region contains no matter with negative energy density ([[exotic matter]]). Solutions such as Tipler's assume cylinders of infinite length, which are easier to analyze mathematically, and although Tipler suggested that a finite cylinder might produce closed timelike curves if the rotation rate were fast enough,<ref name="Earman" />{{rp|169}} he did not prove this. But Hawking points out that because of his theorem, "it can't be done with positive energy density everywhere! I can prove that to build a finite time machine, you need negative energy."<ref name="futureofspacetime" />{{rp|96}} This result comes from Hawking's 1992 paper on the [[chronology protection conjecture]], which Hawking states as "The laws of physics do not allow the appearance of closed timelike curves."<ref name="chronology protection" />
A more fundamental objection to time travel schemes based on rotating cylinders or cosmic strings has been put forward by Stephen Hawking, who proved a theorem showing that according to general relativity it is impossible to build a time machine of a special type (a "time machine with the compactly generated Cauchy horizon") in a region where the [[weak energy condition]] is satisfied, meaning that the region contains no matter with negative energy density ([[exotic matter]]). Solutions such as Tipler's assume cylinders of infinite length, which are easier to analyze mathematically, and although Tipler suggested that a finite cylinder might produce closed timelike curves if the rotation rate were fast enough,<ref name="Earman" />{{rp|169}} he did not prove this. But Hawking points out that because of his theorem, "it can't be done with positive energy density everywhere! I can prove that to build a finite time machine, you need negative energy."<ref name="futureofspacetime" />{{rp|96}} This result comes from Hawking's 1992 paper on the [[chronology protection conjecture]], which Hawking states as "The laws of physics do not allow the appearance of closed timelike curves."<ref name="chronology protection" />
Line 76: Line 72:


==== Interacting many-worlds interpretation ====
==== Interacting many-worlds interpretation ====
A variation of [[Hugh Everett]]'s [[many-worlds interpretation]] (MWI) of quantum mechanics provides a resolution to the grandfather paradox that involves the time traveler arriving in a different universe than the one they came from; it's been argued that since the traveler arrives in a different universe's history and not their own history, this is not "genuine" time travel.<ref>{{citation|title=Time Travel and Modern Physics|date=December 23, 2009|author1=Frank Arntzenius|author2=Tim Maudlin|url=http://plato.stanford.edu/entries/time-travel-phys/|encyclopedia=Stanford Encyclopedia of Philosophy|access-date=August 9, 2005|archive-date=May 25, 2011|archive-url=https://web.archive.org/web/20110525025650/http://plato.stanford.edu/entries/time-travel-phys/|url-status=live}}</ref> The accepted many-worlds interpretation suggests that all possible quantum events can occur in mutually exclusive histories.<ref name="many-worlds">{{cite web|url=http://plato.stanford.edu/entries/qm-manyworlds/|title=Many-Worlds Interpretation of Quantum Mechanics|date=January 17, 2014|access-date=April 26, 2017|last1=Vaidman|first1=Lev|archive-date=December 9, 2019|archive-url=https://web.archive.org/web/20191209220612/http://plato.stanford.edu/entries/qm-manyworlds/|url-status=live}}</ref> However, some variations allow different universes to interact. This concept is most often used in science-fiction, but some physicists such as [[David Deutsch]] have suggested that a time traveler should end up in a different history than the one he started from.<ref name="deutsch">{{cite journal|last=Deutsch|first=David|author-link=David Deutsch|year=1991|title=Quantum mechanics near closed timelike lines|journal=Physical Review D|volume=44|issue=10|pages=3197–3217|doi=10.1103/PhysRevD.44.3197|pmid=10013776|bibcode=1991PhRvD..44.3197D|s2cid=38691795|url=http://pdfs.semanticscholar.org/8e99/3e3e9b0952198a51ed99c9c0af3a31f433df.pdf|archive-url=https://web.archive.org/web/20190228075930/http://pdfs.semanticscholar.org/8e99/3e3e9b0952198a51ed99c9c0af3a31f433df.pdf|url-status=dead|archive-date=2019-02-28}}</ref><ref>{{citation|author=Pieter Kok|title=Time Travel Explained: Quantum Mechanics to the Rescue?|url=https://www.youtube.com/watch?v=uz9eLjO2BrA |archive-url=https://ghostarchive.org/varchive/youtube/20211211/uz9eLjO2BrA| archive-date=2021-12-11 |url-status=live|date=February 3, 2013}}{{cbignore}}</ref> On the other hand, Stephen Hawking has argued that even if the MWI is correct, we should expect each time traveler to experience a single self-consistent history, so that time travelers remain within their own world rather than traveling to a different one.<ref name="Hawking warp"/> The physicist Allen Everett argued that Deutsch's approach "involves modifying fundamental principles of quantum mechanics; it certainly goes beyond simply adopting the MWI". Everett also argues that even if Deutsch's approach is correct, it would imply that any macroscopic object composed of multiple particles would be split apart when traveling back in time through a wormhole, with different particles emerging in different worlds.<ref name="Everett MWI">{{cite journal|last=Everett|first=Allen|title=Time travel paradoxes, path integrals, and the many worlds interpretation of quantum mechanics|journal=Physical Review D|volume=69|issue=124023|pages=124023|year=2004|doi=10.1103/PhysRevD.69.124023|arxiv=gr-qc/0410035|bibcode=2004PhRvD..69l4023E|s2cid=18597824}}</ref>
A variation of [[Hugh Everett]]'s [[many-worlds interpretation]] (MWI) of quantum mechanics provides a resolution to the grandfather paradox that involves the time traveler arriving in a different universe than the one they came from; it's been argued that since the traveler arrives in a different universe's history and not their own history, this is not "genuine" time travel.<ref>{{citation|title=Time Travel and Modern Physics|date=December 23, 2009|author1=Frank Arntzenius|author2=Tim Maudlin|url=http://plato.stanford.edu/entries/time-travel-phys/|encyclopedia=Stanford Encyclopedia of Philosophy|access-date=August 9, 2005|archive-date=May 25, 2011|archive-url=https://web.archive.org/web/20110525025650/http://plato.stanford.edu/entries/time-travel-phys/|url-status=live}}</ref> The accepted many-worlds interpretation suggests that all possible quantum events can occur in mutually exclusive histories.<ref name="many-worlds">{{cite web|url=http://plato.stanford.edu/entries/qm-manyworlds/|title=Many-Worlds Interpretation of Quantum Mechanics|date=January 17, 2014|access-date=April 26, 2017|last1=Vaidman|first1=Lev|archive-date=December 9, 2019|archive-url=https://web.archive.org/web/20191209220612/http://plato.stanford.edu/entries/qm-manyworlds/|url-status=live}}</ref> However, some variations allow different universes to interact. This concept is most often used in science-fiction, but some physicists such as [[David Deutsch]] have suggested that a time traveler should end up in a different history than the one he started from.<ref name="deutsch">{{cite journal|last=Deutsch|first=David|author-link=David Deutsch|year=1991|title=Quantum mechanics near closed timelike lines|journal=Physical Review D|volume=44|issue=10|pages=3197–3217|doi=10.1103/PhysRevD.44.3197|pmid=10013776|bibcode=1991PhRvD..44.3197D|s2cid=38691795|url=http://pdfs.semanticscholar.org/8e99/3e3e9b0952198a51ed99c9c0af3a31f433df.pdf|archive-url=https://web.archive.org/web/20190228075930/http://pdfs.semanticscholar.org/8e99/3e3e9b0952198a51ed99c9c0af3a31f433df.pdf|archive-date=2019-02-28}}</ref><ref>{{citation|author=Pieter Kok|title=Time Travel Explained: Quantum Mechanics to the Rescue?|url=https://www.youtube.com/watch?v=uz9eLjO2BrA |archive-url=https://ghostarchive.org/varchive/youtube/20211211/uz9eLjO2BrA| archive-date=2021-12-11 |url-status=live|date=February 3, 2013}}{{cbignore}}</ref> On the other hand, Stephen Hawking has argued that even if the MWI is correct, we should expect each time traveler to experience a single self-consistent history, so that time travelers remain within their own world rather than traveling to a different one.<ref name="Hawking warp"/> The physicist Allen Everett argued that Deutsch's approach "involves modifying fundamental principles of quantum mechanics; it certainly goes beyond simply adopting the MWI". Everett also argues that even if Deutsch's approach is correct, it would imply that any macroscopic object composed of multiple particles would be split apart when traveling back in time through a wormhole, with different particles emerging in different worlds.<ref name="Everett MWI">{{cite journal|last=Everett|first=Allen|title=Time travel paradoxes, path integrals, and the many worlds interpretation of quantum mechanics|journal=Physical Review D|volume=69|article-number=124023|year=2004|doi=10.1103/PhysRevD.69.124023|arxiv=gr-qc/0410035|bibcode=2004PhRvD..69l4023E|s2cid=18597824}}</ref>


=== Experimental results ===
=== Experimental results ===
Certain experiments carried out give the impression of reversed [[causality]], but fail to show it under closer examination.
Certain experiments carried out give the impression of reversed [[causality]], but fail to show it under closer examination.{{Citation needed|date=July 2025}}


The [[delayed-choice quantum eraser]] experiment performed by [[Marlan Scully]] involves pairs of [[Quantum entanglement|entangled]] [[photon]]s that are divided into "signal photons" and "idler photons", with the signal photons emerging from one of two locations and their position later measured as in the [[double-slit experiment]]. Depending on how the idler photon is measured, the experimenter can either learn which of the two locations the signal photon emerged from or "erase" that information. Even though the signal photons can be measured before the choice has been made about the idler photons, the choice seems to retroactively determine whether or not an [[Interference (wave propagation)|interference pattern]] is observed when one correlates measurements of idler photons to the corresponding signal photons. However, since interference can be observed only after the idler photons are measured and they are correlated with the signal photons, there is no way for experimenters to tell what choice will be made in advance just by looking at the signal photons, only by gathering classical information from the entire system; thus causality is preserved.<ref name=Greene2004>{{cite book|last=Greene|first=Brian|title=The Fabric of the Cosmos|url=https://archive.org/details/fabricofcosmossp00gree|url-access=registration|year=2004|publisher=Alfred A. Knopf|isbn=978-0-375-41288-2|pages=[https://archive.org/details/fabricofcosmossp00gree/page/197 197–199]}}</ref>
The [[delayed-choice quantum eraser]] experiment performed by [[Marlan Scully]] involves pairs of [[Quantum entanglement|entangled]] [[photon]]s that are divided into "signal photons" and "idler photons", with the signal photons emerging from one of two locations and their position later measured as in the [[double-slit experiment]]. Depending on how the idler photon is measured, the experimenter can either learn which of the two locations the signal photon emerged from or "erase" that information. Even though the signal photons can be measured before the choice has been made about the idler photons, the choice seems to retroactively determine whether or not an [[Interference (wave propagation)|interference pattern]] is observed when one correlates measurements of idler photons to the corresponding signal photons. However, since interference can be observed only after the idler photons are measured and they are correlated with the signal photons, there is no way for experimenters to tell what choice will be made in advance just by looking at the signal photons, only by gathering classical information from the entire system; thus causality is preserved.<ref name=Greene2004>{{cite book|last=Greene|first=Brian|title=The Fabric of the Cosmos|url=https://archive.org/details/fabricofcosmossp00gree|url-access=registration|year=2004|publisher=Alfred A. Knopf|isbn=978-0-375-41288-2|pages=[https://archive.org/details/fabricofcosmossp00gree/page/197 197–199]}}</ref>
Line 90: Line 86:


=== Absence of time travelers from the future ===
=== Absence of time travelers from the future ===
Many have argued that the absence of time travelers from the future demonstrates that such technology will never be developed, suggesting that it is impossible. This is analogous to the [[Fermi paradox]] related to the absence of evidence of extraterrestrial life. As the absence of extraterrestrial visitors does not categorically ''prove'' they do not exist, so the absence of time travelers fails to prove time travel is physically impossible; it might be that time travel is physically possible but is never developed or is cautiously used. [[Carl Sagan]] once suggested the possibility that time travelers could be here but are disguising their existence or are not recognized as time travelers.<ref name="sagan-nova" /> Some versions of general relativity suggest that time travel might only be possible in a region of [[spacetime]] that is warped a certain way,{{clarify|date=April 2022}} and hence time travelers would not be able to travel back to earlier regions in spacetime, before this region existed. [[Stephen Hawking]] stated that this would explain why the world has not already been overrun by "tourists from the future".<ref name="Hawking warp">{{cite web|url=https://www.hawking.org.uk/in-words/lectures/space-and-time-warps|title=Space and Time Warps|year=1999|access-date=September 23, 2020|last1=Hawking|first1=Stephen|archive-date=October 31, 2020|archive-url=https://web.archive.org/web/20201031050328/https://www.hawking.org.uk/in-words/lectures/space-and-time-warps|url-status=live}}</ref>
Many have argued that the absence of time travelers from the future demonstrates that such technology will never be developed, suggesting that it is impossible. This is analogous to the [[Fermi paradox]] related to the absence of evidence of extraterrestrial life. As the absence of extraterrestrial visitors does not categorically ''prove'' they do not exist, so the absence of time travelers fails to prove time travel is physically impossible; it might be that time travel is physically possible but is never developed or is cautiously used. [[Carl Sagan]] once suggested the possibility that time travelers could be here but are disguising their existence or are not recognized as time travelers.<ref name="sagan-nova" /> Some interpretations of general relativity propose that time travel could only occur within specific conditions such as regions of [[spacetime]] affected by extreme [[Gravitational field|gravitational fields]] or other distortions. In such scenarios, time travelers would be limited to moving within the period after such a region came into existence, and could not travel to a time before it formed. [[Stephen Hawking]] stated that this would explain why the world has not already been overrun by "tourists from the future".<ref name="Hawking warp">{{cite web|url=https://www.hawking.org.uk/in-words/lectures/space-and-time-warps|title=Space and Time Warps|year=1999|access-date=September 23, 2020|last1=Hawking|first1=Stephen|archive-date=October 31, 2020|archive-url=https://web.archive.org/web/20201031050328/https://www.hawking.org.uk/in-words/lectures/space-and-time-warps|url-status=live}}</ref>


[[File:WelcomeKrononauts Artforum Jan1980 p.90 800x600.png|thumb|Advertisement placed in a 1980 edition of ''[[Artforum]]'', advertising the Krononauts event]]
[[File:WelcomeKrononauts Artforum Jan1980 p.90 800x600.png|thumb|Advertisement placed in a 1980 edition of ''[[Artforum]]'', advertising the Krononauts event]]
Several experiments have been carried out to try to entice future humans, who might invent time travel technology, to come back and demonstrate it to people of the present time. Events such as Perth's [[Destination Day]], [[Massachusetts Institute of Technology|MIT]]'s [[Time Traveler Convention]] and Stephen Hawking's [[Hawking's time traveller party|Reception For Time Travellers]] heavily publicized permanent "advertisements" of a meeting time and place for future time travelers to meet.<ref>{{citation|url=https://www.wired.com/2005/05/time-travelers-welcome-at-mit/|title=Time Travelers Welcome at MIT|author=Mark Baard|date=September 5, 2005|publisher=[[Wired (magazine)|Wired]]|access-date=June 18, 2018|archive-date=June 18, 2018|archive-url=https://web.archive.org/web/20180618125948/https://www.wired.com/2005/05/time-travelers-welcome-at-mit/|url-status=live}}</ref><ref>{{cite news |title=Stephen Hawking service: Possibility of time travellers 'can't be excluded' |url=https://www.bbc.co.uk/news/uk-england-cambridgeshire-44073903 |access-date=18 October 2024 |work=BBC News |date=12 May 2018}}</ref> In 1982, a group in [[Baltimore]], [[Maryland]], identifying itself as the Krononauts, hosted an event of this type welcoming visitors from the future.<ref>{{cite news|last=Franklin|first=Ben A.|date=March 11, 1982|url=https://select.nytimes.com/gst/abstract.html?res=F70E13FD395F0C728DDDAA0894DA484D81|title=The night the planets were aligned with Baltimore lunacy|archive-url=https://web.archive.org/web/20081206170526/http://select.nytimes.com/gst/abstract.html?res=F70E13FD395F0C728DDDAA0894DA484D81|archive-date=2008-12-06|work=[[The New York Times]]}}</ref><ref>"Welcome the People from the Future. March 9, 1982". Ad in ''[[Artforum]]'' p. 90.</ref>
Several experiments have been carried out to try to entice future humans, who might invent time travel technology, to come back and demonstrate it to people of the present time. Events such as Perth's [[Destination Day]], [[Massachusetts Institute of Technology|MIT]]'s [[Time Traveler Convention]] and Stephen Hawking's [[Hawking's time traveller party|Reception For Time Travellers]] heavily publicized permanent "advertisements" of a meeting time and place for future time travelers to meet.<ref>{{citation|url=https://www.wired.com/2005/05/time-travelers-welcome-at-mit/|title=Time Travelers Welcome at MIT|author=Mark Baard|date=September 5, 2005|publisher=[[Wired (magazine)|Wired]]|access-date=June 18, 2018|archive-date=June 18, 2018|archive-url=https://web.archive.org/web/20180618125948/https://www.wired.com/2005/05/time-travelers-welcome-at-mit/|url-status=live}}</ref><ref>{{cite news |title=Stephen Hawking service: Possibility of time travellers 'can't be excluded' |url=https://www.bbc.co.uk/news/uk-england-cambridgeshire-44073903 |access-date=18 October 2024 |work=BBC News |date=12 May 2018}}</ref> In 1982, a group in [[Baltimore]], [[Maryland]], identifying itself as the Krononauts, hosted an event of this type welcoming visitors from the future.<ref>{{cite news|last=Franklin|first=Ben A.|date=March 11, 1982|url=https://select.nytimes.com/gst/abstract.html?res=F70E13FD395F0C728DDDAA0894DA484D81|title=The night the planets were aligned with Baltimore lunacy|archive-url=https://web.archive.org/web/20081206170526/http://select.nytimes.com/gst/abstract.html?res=F70E13FD395F0C728DDDAA0894DA484D81|archive-date=2008-12-06|work=[[The New York Times]]}}</ref><ref>"Welcome the People from the Future. March 9, 1982". Ad in ''[[Artforum]]'' p. 90.</ref>


These experiments only stood the possibility of generating a positive result demonstrating the existence of time travel, but have failed so far—no time travelers are known to have attended either event. Some versions of the [[many-worlds interpretation]] can be used to suggest that future humans have traveled back in time, but have traveled back to the meeting time and place in a [[Multiverse|parallel universe]].<ref>{{cite journal|author1=Jaume Garriga|author2=Alexander Vilenkin|doi=10.1103/PhysRevD.64.043511|year=2001|volume=64|issue=4|page=043511|journal=Phys. Rev. D|arxiv=gr-qc/0102010|bibcode=2001PhRvD..64d3511G|title=Many worlds in one|s2cid=119000743}}</ref>
These experiments only stood the possibility of generating a positive result demonstrating the existence of time travel, but have failed so far—no time travelers are known to have attended either event. Some versions of the [[many-worlds interpretation]] can be used to suggest that future humans have traveled back in time, but have traveled back to the meeting time and place in a [[Multiverse|parallel universe]].<ref>{{cite journal|author1=Jaume Garriga|author2=Alexander Vilenkin|doi=10.1103/PhysRevD.64.043511|year=2001|volume=64|issue=4|article-number=043511|journal=Phys. Rev. D|arxiv=gr-qc/0102010|bibcode=2001PhRvD..64d3511G|title=Many worlds in one|s2cid=119000743}}</ref>


== Time dilation ==
== Time dilation ==
{{main|Time dilation}}
{{main|Time dilation}}
[[File:Time dilation02.gif|thumb|Transversal time dilation. The blue dots represent a pulse of light. Each pair of dots with light "bouncing" between them is a clock. For each group of clocks, the other group appears to be ticking more slowly, because the moving clock's light pulse has to travel a larger distance than the stationary clock's light pulse. That is so, even though the clocks are identical and their relative motion is perfectly reciprocal.]]
[[File:Time dilation02.gif|thumb|Transversal time dilation. The blue dots represent a pulse of light. Each pair of dots with light "bouncing" between them is a clock. For each group of clocks, the other group appears to be ticking more slowly, because the moving clock's light pulse has to travel a larger distance than the stationary clock's light pulse. That is so, even though the clocks are identical and their relative motion is perfectly reciprocal.]]
There is a great deal of observable evidence for time dilation in special relativity<ref name="tomroberts">{{cite web|last=Roberts|first=Tom|title=What is the experimental basis of Special Relativity?|date=October 2007|url=http://math.ucr.edu/home/baez/physics/Relativity/SR/experiments.html#Tests_of_time_dilation|access-date=April 26, 2017|archive-date=May 1, 2013|archive-url=https://web.archive.org/web/20130501002220/http://math.ucr.edu/home/baez/physics/Relativity/SR/experiments.html#Tests_of_time_dilation|url-status=live}}</ref> and gravitational time dilation in general relativity,<ref name="scoutrocket">{{cite web|title=Scout Rocket Experiment|url=http://hyperphysics.phy-astr.gsu.edu/hbase/relativ/gratim.html#c3|last1=Nave|first1=Carl Rod|work=HyperPhysics|year=2012|access-date=April 26, 2017|archive-date=April 26, 2017|archive-url=https://web.archive.org/web/20170426195700/http://hyperphysics.phy-astr.gsu.edu/hbase/Relativ/gratim.html#c3|url-status=live}}</ref><ref name="hafelekeating">{{cite web|title=Hafele-Keating Experiment|url=http://hyperphysics.phy-astr.gsu.edu/hbase/relativ/airtim.html#c3|last1=Nave|first1=Carl Rod|work=HyperPhysics|year=2012|access-date=April 26, 2017|archive-date=April 18, 2017|archive-url=https://web.archive.org/web/20170418005731/http://hyperphysics.phy-astr.gsu.edu/hbase/Relativ/airtim.html#c3|url-status=live}}</ref><ref name="GPS">{{cite web|last=Pogge|first=Richard W.|title=GPS and Relativity|date=April 26, 2017|url=http://www.astronomy.ohio-state.edu/~pogge/Ast162/Unit5/gps.html|access-date=April 26, 2017|archive-date=November 14, 2015|archive-url=https://web.archive.org/web/20151114135709/http://www.astronomy.ohio-state.edu/~pogge/Ast162/Unit5/gps.html|url-status=live}}</ref> for example in the famous and easy-to-replicate observation of [[Experimental testing of time dilation|atmospheric muon decay]].<ref name=easwar>{{cite journal|author1=Easwar, Nalini|author2=Macintire, Douglas A.|title=Study of the effect of relativistic time dilation on cosmic ray muon flux – An undergraduate modern physics experiment|journal=American Journal of Physics|volume=59|issue=7|year=1991|pages=589–592|doi=10.1119/1.16841|bibcode=1991AmJPh..59..589E|url=https://scholarworks.smith.edu/cgi/viewcontent.cgi?article=1041&context=phy_facpubs|access-date=2020-09-08|archive-date=2020-11-04|archive-url=https://web.archive.org/web/20201104084110/https://scholarworks.smith.edu/cgi/viewcontent.cgi?article=1041&context=phy_facpubs|url-status=live}}</ref><ref>{{cite journal|author1=Coan, Thomas|author2=Liu, Tiankuan|author3=Ye, Jingbo|title=A Compact Apparatus for Muon Lifetime Measurement and Time Dilation Demonstration in the Undergraduate Laboratory|journal=American Journal of Physics|volume=74|issue=2|pages=161–164|year=2006|doi=10.1119/1.2135319|arxiv=physics/0502103|bibcode=2006AmJPh..74..161C|s2cid=30481535}}</ref><ref name="Ferraro" /> The theory of relativity states that the [[speed of light]] is [[Speed of light#Fundamental role in physics|invariant]] for all observers in any [[frame of reference]]; that is, it is always the same. Time dilation is a direct consequence of the invariance of the speed of light.<ref name="Ferraro">{{citation|title=Einstein's Space-Time: An Introduction to Special and General Relativity|first1=Rafael|last1=Ferraro|pages=52–53|publisher=Springer Science & Business Media|date=2007|isbn=9780387699462|bibcode=2007esti.book.....F}}</ref> Time dilation may be regarded in a limited sense as "time travel into the future": a person may use time dilation so that a small amount of [[proper time]] passes for them, while a large amount of proper time passes elsewhere. This can be achieved by traveling at [[relativistic speed]]s or through the effects of [[gravity]].<ref>Serway, Raymond A. (2000) ''Physics for Scientists and Engineers with Modern Physics'', Fifth Edition, Brooks/Cole, p. 1258, {{ISBN|0030226570}}.</ref>
There is a great deal of observable evidence for time dilation in special relativity<ref name="tomroberts">{{cite web|last=Roberts|first=Tom|title=What is the experimental basis of Special Relativity?|date=October 2007|url=http://math.ucr.edu/home/baez/physics/Relativity/SR/experiments.html#Tests_of_time_dilation|access-date=April 26, 2017|archive-date=May 1, 2013|archive-url=https://web.archive.org/web/20130501002220/http://math.ucr.edu/home/baez/physics/Relativity/SR/experiments.html#Tests_of_time_dilation|url-status=live}}</ref> and gravitational time dilation in general relativity,<ref name="scoutrocket">{{cite web|title=Scout Rocket Experiment|url=http://hyperphysics.phy-astr.gsu.edu/hbase/relativ/gratim.html#c3|last1=Nave|first1=Carl Rod|work=HyperPhysics|year=2012|access-date=April 26, 2017|archive-date=April 26, 2017|archive-url=https://web.archive.org/web/20170426195700/http://hyperphysics.phy-astr.gsu.edu/hbase/Relativ/gratim.html#c3|url-status=live}}</ref><ref name="hafelekeating">{{cite web|title=Hafele-Keating Experiment|url=http://hyperphysics.phy-astr.gsu.edu/hbase/relativ/airtim.html#c3|last1=Nave|first1=Carl Rod|work=HyperPhysics|year=2012|access-date=April 26, 2017|archive-date=April 18, 2017|archive-url=https://web.archive.org/web/20170418005731/http://hyperphysics.phy-astr.gsu.edu/hbase/Relativ/airtim.html#c3|url-status=live}}</ref><ref name="GPS">{{cite web|last=Pogge|first=Richard W.|title=GPS and Relativity|date=April 26, 2017|url=http://www.astronomy.ohio-state.edu/~pogge/Ast162/Unit5/gps.html|access-date=April 26, 2017|archive-date=November 14, 2015|archive-url=https://web.archive.org/web/20151114135709/http://www.astronomy.ohio-state.edu/~pogge/Ast162/Unit5/gps.html|url-status=live}}</ref> for example in the famous and easy-to-replicate observation of [[Experimental testing of time dilation|atmospheric muon decay]].<ref name=easwar>{{cite journal|author1=Easwar, Nalini|author2=Macintire, Douglas A.|title=Study of the effect of relativistic time dilation on cosmic ray muon flux – An undergraduate modern physics experiment|journal=American Journal of Physics|volume=59|issue=7|year=1991|pages=589–592|doi=10.1119/1.16841|bibcode=1991AmJPh..59..589E|url=https://scholarworks.smith.edu/cgi/viewcontent.cgi?article=1041&context=phy_facpubs|access-date=2020-09-08|archive-date=2020-11-04|archive-url=https://web.archive.org/web/20201104084110/https://scholarworks.smith.edu/cgi/viewcontent.cgi?article=1041&context=phy_facpubs|url-status=live}}</ref><ref>{{cite journal|author1=Coan, Thomas|author2=Liu, Tiankuan|author3=Ye, Jingbo|title=A Compact Apparatus for Muon Lifetime Measurement and Time Dilation Demonstration in the Undergraduate Laboratory|journal=American Journal of Physics|volume=74|issue=2|pages=161–164|year=2006|doi=10.1119/1.2135319|arxiv=physics/0502103|bibcode=2006AmJPh..74..161C|s2cid=30481535}}</ref><ref name="Ferraro" /> The theory of relativity states that the [[speed of light]] is [[Speed of light#Fundamental role in physics|invariant]] for all observers in any [[frame of reference]]; that is, it is always the same. Time dilation is a direct consequence of the invariance of the speed of light.<ref name="Ferraro">{{citation|title=Einstein's Space-Time: An Introduction to Special and General Relativity|first1=Rafael|last1=Ferraro|pages=52–53|publisher=Springer Science & Business Media|date=2007|isbn=978-0-387-69946-2|bibcode=2007esti.book.....F}}</ref> Time dilation may be regarded in a limited sense as "time travel into the future": a person may use time dilation so that a small amount of [[proper time]] passes for them, while a large amount of proper time passes elsewhere. This can be achieved by traveling at [[relativistic speed]]s or through the effects of [[gravity]].<ref>Serway, Raymond A. (2000) ''Physics for Scientists and Engineers with Modern Physics'', Fifth Edition, Brooks/Cole, p. 1258, {{ISBN|0030226570}}.</ref>


For two identical clocks moving relative to each other without accelerating, each clock measures the other to be ticking slower. This is possible due to the [[relativity of simultaneity]]. However, the symmetry is broken if one clock accelerates, allowing for less proper time to pass for one clock than the other. The [[twin paradox]] describes this: one twin remains on Earth, while the other undergoes acceleration to [[relativistic speed]] as they travel into space, turn around, and travel back to Earth; the traveling twin ages less than the twin who stayed on Earth, because of the time dilation experienced during their acceleration. General relativity treats the effects of acceleration and the effects of gravity as [[Equivalence principle|equivalent]], and shows that time dilation also occurs in [[gravity well]]s, with a clock deeper in the well ticking more slowly; this effect is taken into account when calibrating the clocks on the satellites of the [[Global Positioning System]], and it could lead to significant differences in rates of aging for observers at different distances from a large gravity well such as a [[black hole]].<ref name="Gott"/>{{rp|33–130}}
For two identical clocks moving relative to each other without accelerating, each clock measures the other to be ticking slower. This is possible due to the [[relativity of simultaneity]]. However, the symmetry is broken if one clock accelerates, allowing for less proper time to pass for one clock than the other. The [[twin paradox]] describes this: one twin remains on Earth, while the other undergoes acceleration to [[relativistic speed]] as they travel into space, turn around, and travel back to Earth; the traveling twin ages less than the twin who stayed on Earth, because of the time dilation experienced during their acceleration. General relativity treats the effects of acceleration and the effects of gravity as [[Equivalence principle|equivalent]], and shows that time dilation also occurs in [[gravity well]]s, with a clock deeper in the well ticking more slowly; this effect is taken into account when calibrating the clocks on the satellites of the [[Global Positioning System]], and it could lead to significant differences in rates of aging for observers at different distances from a large gravity well such as a [[black hole]].<ref name="Gott"/>{{rp|33–130}}
Line 111: Line 107:


=== Presentism vs. eternalism ===
=== Presentism vs. eternalism ===
Many philosophers have argued that relativity implies [[Eternalism (philosophy of time)|eternalism]], the idea that the past and future exist in a real sense, not only as changes that occurred or will occur to the present.<ref name="Crisp">{{citation|chapter=Presentism, Eternalism, and Relativity Physics|title=Einstein, Relativity and Absolute Simultaneity|author=Thomas M. Crisp|editor1=William Lane Craig|editor2=Quentin Smith|page=footnote 1|chapter-url=https://thomasmcrisp.files.wordpress.com/2017/07/presentism-eternalism-and-relativity-physics.pdf|year=2007|access-date=2018-02-01|archive-date=2018-02-02|archive-url=https://web.archive.org/web/20180202012816/https://thomasmcrisp.files.wordpress.com/2017/07/presentism-eternalism-and-relativity-physics.pdf|url-status=live}}</ref> Philosopher of science [[Dean Rickles]] disagrees with some qualifications, but notes that "the consensus among philosophers seems to be that special and general relativity are incompatible with presentism".<ref>{{citation|author=Dean Rickles|year=2007|title=Symmetry, Structure, and Spacetime|url=https://books.google.com/books?id=gDwJYtfoCh8C&pg=PA158|page=158|publisher=Elsevier |access-date=July 9, 2016|isbn=9780444531162|archive-date=March 24, 2023|archive-url=https://web.archive.org/web/20230324181809/https://books.google.com/books?id=gDwJYtfoCh8C&pg=PA158|url-status=live}}</ref> Some philosophers view time as a dimension equal to spatial dimensions, that future events are "already there" in the same sense different places exist, and that there is no objective flow of time; however, this view is disputed.<ref>{{citation|author=Tim Maudlin|title=The Metaphysics Within Physics|isbn=9780199575374|year=2010|chapter=On the Passing of Time|publisher=Oxford University Press |chapter-url=https://philocosmology.rutgers.edu/images/uploads/TimDavidClass/05-maudlin-chap04.pdf|author-link=Tim Maudlin|access-date=2018-02-01|archive-date=2021-03-08|archive-url=https://web.archive.org/web/20210308030324/https://philocosmology.rutgers.edu/images/uploads/TimDavidClass/05-maudlin-chap04.pdf|url-status=live}}</ref>
Many philosophers have argued that relativity implies [[Eternalism (philosophy of time)|eternalism]], the idea that the past and future exist in a real sense, not only as changes that occurred or will occur to the present.<ref name="Crisp">{{citation|chapter=Presentism, Eternalism, and Relativity Physics|title=Einstein, Relativity and Absolute Simultaneity|author=Thomas M. Crisp|editor1=William Lane Craig|editor2=Quentin Smith|page=footnote 1|chapter-url=https://thomasmcrisp.files.wordpress.com/2017/07/presentism-eternalism-and-relativity-physics.pdf|year=2007|access-date=2018-02-01|archive-date=2018-02-02|archive-url=https://web.archive.org/web/20180202012816/https://thomasmcrisp.files.wordpress.com/2017/07/presentism-eternalism-and-relativity-physics.pdf|url-status=live}}</ref> Philosopher of science [[Dean Rickles]] disagrees with some qualifications, but notes that "the consensus among philosophers seems to be that special and general relativity are incompatible with presentism".<ref>{{citation|author=Dean Rickles|year=2007|title=Symmetry, Structure, and Spacetime|url=https://books.google.com/books?id=gDwJYtfoCh8C&pg=PA158|page=158|publisher=Elsevier |access-date=July 9, 2016|isbn=978-0-444-53116-2|archive-date=March 24, 2023|archive-url=https://web.archive.org/web/20230324181809/https://books.google.com/books?id=gDwJYtfoCh8C&pg=PA158|url-status=live}}</ref> Some philosophers view time as a dimension equal to spatial dimensions, that future events are "already there" in the same sense different places exist, and that there is no objective flow of time; however, this view is disputed.<ref>{{citation|author=Tim Maudlin|title=The Metaphysics Within Physics|isbn=978-0-19-957537-4|year=2010|chapter=On the Passing of Time|publisher=Oxford University Press |chapter-url=https://philocosmology.rutgers.edu/images/uploads/TimDavidClass/05-maudlin-chap04.pdf|author-link=Tim Maudlin|access-date=2018-02-01|archive-date=2021-03-08|archive-url=https://web.archive.org/web/20210308030324/https://philocosmology.rutgers.edu/images/uploads/TimDavidClass/05-maudlin-chap04.pdf|url-status=live}}</ref>


[[Presentism (philosophy of time)|Presentism]] is a school of philosophy that holds that the future and the past exist only as changes that occurred or will occur to the present, and they have no real existence of their own. In this view, time travel is impossible because there is no future or past to travel to.<ref name="Crisp" /> Keller and Nelson have argued that even if past and future objects do not exist, there can still be definite truths about past and future events, and thus it is possible that a future truth about a time traveler deciding to travel back to the present date could explain the time traveler's actual appearance in the present;<ref name="Presentism">{{cite journal|first=Simon|last=Keller|author2=Michael Nelson|title=Presentists should believe in time-travel|url=http://people.bu.edu/stk/Papers/Timetravel.pdf|journal= Australasian Journal of Philosophy|volume=79|issue=3|pages=333–345|date=September 2001|doi=10.1080/713931204|s2cid=170920718|url-status=dead|archive-url=https://web.archive.org/web/20081028211537/http://people.bu.edu/stk/Papers/Timetravel.pdf|archive-date=October 28, 2008}}</ref> these views are contested by some authors.<ref name="Bourne">{{cite book|author=Craig Bourne|title=A Future for Presentism|url=https://books.google.com/books?id=DJMSDAAAQBAJ|date=7 December 2006|publisher=Clarendon Press|isbn=978-0-19-921280-4}}</ref>
[[Presentism (philosophy of time)|Presentism]] is a school of philosophy that holds that the future and the past exist only as changes that occurred or will occur to the present, and they have no real existence of their own. In this view, time travel is impossible because there is no future or past to travel to.<ref name="Crisp" /> Keller and Nelson have argued that even if past and future objects do not exist, there can still be definite truths about past and future events, and thus it is possible that a future truth about a time traveler deciding to travel back to the present date could explain the time traveler's actual appearance in the present;<ref name="Presentism">{{cite journal|first=Simon|last=Keller|author2=Michael Nelson|title=Presentists should believe in time-travel|url=http://people.bu.edu/stk/Papers/Timetravel.pdf|journal= Australasian Journal of Philosophy|volume=79|issue=3|pages=333–345|date=September 2001|doi=10.1080/713931204|s2cid=170920718|archive-url=https://web.archive.org/web/20081028211537/http://people.bu.edu/stk/Papers/Timetravel.pdf|archive-date=October 28, 2008}}</ref> these views are contested by some authors.<ref name="Bourne">{{cite book|author=Craig Bourne|title=A Future for Presentism|url=https://books.google.com/books?id=DJMSDAAAQBAJ|date=7 December 2006|publisher=Clarendon Press|isbn=978-0-19-921280-4}}</ref>


=== The grandfather paradox ===
=== The grandfather paradox ===
{{main|Grandfather paradox}}
{{main|Grandfather paradox}}
A common objection to the idea of traveling back in time is put forth in the grandfather paradox or the argument of auto-infanticide.<ref name="horwich">{{cite book|last1=Horwich|first1=Paul|title=Asymmetries in Time: Problems in the Philosophy of Science|date=1987|publisher=MIT Press|location=Cambridge, Massachusetts|isbn=978-0262580885|page=116|edition=2nd}}</ref> If one were able to go back in time, inconsistencies and contradictions would ensue if the time traveler were to change anything; there is a contradiction if the past becomes different from the way it ''is''.<ref name="NicholasSmith">{{cite encyclopedia|url=http://plato.stanford.edu/entries/time-travel/index.html#CauLoo|author=Nicholas J.J. Smith|date=2013|title=Time Travel|encyclopedia=Stanford Encyclopedia of Philosophy|access-date=November 2, 2015|archive-date=August 18, 2018|archive-url=https://web.archive.org/web/20180818152007/https://plato.stanford.edu/entries/time-travel/index.html#CauLoo|url-status=live}}</ref><ref name="lobo">{{cite journal|title=Time, Closed Timelike Curves and Causality|journal=The Nature of Time: Geometry|volume=95|pages=289–296|author=Francisco Lobo|year=2003|arxiv=gr-qc/0206078v2|bibcode=2003ntgp.conf..289L}}</ref> The paradox is commonly described with a person who travels to the past and kills their own grandfather, prevents the existence of their father or mother, and therefore their own existence.<ref name="sagan-nova" /> Philosophers question whether these paradoxes prove time travel impossible. Some philosophers answer these paradoxes by arguing that it might be the case that backward time travel could be possible but that it would be impossible to actually ''change'' the past in any way,<ref name="unchangeable">{{cite web|author=Norman Swartz|title=Time Travel: Visiting the Past|url=https://www.sfu.ca/~swartz/time_travel1.htm|date=1993|access-date=February 20, 2016|archive-date=August 18, 2018|archive-url=https://web.archive.org/web/20180818151754/https://www.sfu.ca/~swartz/time_travel1.htm|url-status=live}}</ref> an idea similar to the proposed [[Novikov self-consistency principle]] in physics.
A common objection to the idea of traveling back in time is put forth in the grandfather paradox or the argument of auto-infanticide.<ref name="horwich">{{cite book|last1=Horwich|first1=Paul|title=Asymmetries in Time: Problems in the Philosophy of Science|date=1987|publisher=MIT Press|location=Cambridge, Massachusetts|isbn=978-0-262-58088-5|page=116|edition=2nd}}</ref> If one were able to go back in time, inconsistencies and contradictions would ensue if the time traveler were to change anything; there is a contradiction if the past becomes different from the way it ''is''.<ref name="NicholasSmith">{{cite encyclopedia|url=http://plato.stanford.edu/entries/time-travel/index.html#CauLoo|author=Nicholas J.J. Smith|date=2013|title=Time Travel|encyclopedia=Stanford Encyclopedia of Philosophy|access-date=November 2, 2015|archive-date=August 18, 2018|archive-url=https://web.archive.org/web/20180818152007/https://plato.stanford.edu/entries/time-travel/index.html#CauLoo|url-status=live}}</ref><ref name="lobo">{{cite journal|title=Time, Closed Timelike Curves and Causality|journal=The Nature of Time: Geometry|volume=95|pages=289–296|author=Francisco Lobo|year=2003|arxiv=gr-qc/0206078v2|bibcode=2003ntgp.conf..289L}}</ref> The paradox is commonly described with a person who travels to the past and kills their own grandfather, prevents the existence of their father or mother, and therefore their own existence.<ref name="sagan-nova" /> Philosophers question whether these paradoxes prove time travel impossible. Some philosophers answer these paradoxes by arguing that it might be the case that backward time travel could be possible but that it would be impossible to actually ''change'' the past in any way,<ref name="unchangeable">{{cite web|author=Norman Swartz|title=Time Travel: Visiting the Past|url=https://www.sfu.ca/~swartz/time_travel1.htm|date=1993|access-date=February 20, 2016|archive-date=August 18, 2018|archive-url=https://web.archive.org/web/20180818151754/https://www.sfu.ca/~swartz/time_travel1.htm|url-status=live}}</ref> an idea similar to the proposed [[Novikov self-consistency principle]] in physics.


=== Ontological paradox ===
=== Ontological paradox ===
Line 124: Line 120:


==== Self-consistency principle ====
==== Self-consistency principle ====
The [[Novikov self-consistency principle]], named after [[Igor Dmitrievich Novikov]], states that any actions taken by a time traveler or by an object that travels back in time were part of history all along, and therefore it is impossible for the time traveler to "change" history in any way. The time traveler's actions may be the ''cause'' of events in their own past though, which leads to the potential for [[causal loop|circular causation]], sometimes called a predestination paradox,<ref>{{cite book|last1=Erdmann|first1=Terry J.|last2=Hutzel|first2=Gary|title=Star Trek: The Magic of Tribbles|date=2001|publisher=Pocket Books|isbn=978-0-7434-4623-5|page=31}}</ref> ontological paradox,<ref name="smeenk">{{citation|last1=Smeenk|first1=Chris|last2=Wüthrich|first2=Christian|editor-last=Callender|editor-first=Craig|contribution=Time Travel and Time Machines|title=The Oxford Handbook of Philosophy of Time|year=2011|publisher=Oxford University Press|isbn=978-0-19-929820-4|page=581}}</ref> or bootstrap paradox.<ref name="smeenk" /><ref>{{citation|last=Krasnikov|first=S.|year=2001|title=The time travel paradox|journal=Phys. Rev. D|volume=65|issue=6|page=06401|arxiv=gr-qc/0109029|bibcode=2002PhRvD..65f4013K|doi=10.1103/PhysRevD.65.064013|s2cid=18460829}}</ref> The term bootstrap paradox was popularized by [[Robert A. Heinlein]]'s story "[[By His Bootstraps]]".<ref name="Klosterman">{{cite book|last1=Klosterman|first1=Chuck|title=Eating the Dinosaur|date=2009|publisher=Scribner|location=New York|isbn=9781439168486|edition=1st Scribner hardcover|pages=[https://books.google.com/books?id=lZurDFJtAWwC&pg=PA60 60–62]}}</ref> The Novikov self-consistency principle proposes that the local laws of physics in a region of spacetime containing time travelers cannot be any different from the local laws of physics in any other region of spacetime.<ref>{{cite journal|first=John|last=Friedman|author2=Michael Morris|author3=Igor Novikov|author4=Fernando Echeverria|author5=Gunnar Klinkhammer|author6=Kip Thorne|author7=Ulvi Yurtsever|url=http://authors.library.caltech.edu/3737/|title=Cauchy problem in spacetimes with closed timelike curves|journal=Physical Review D|volume=42|year=1990|issue=6|pages=1915–1930|doi=10.1103/PhysRevD.42.1915|pmid=10013039|bibcode=1990PhRvD..42.1915F|access-date=2009-01-10|archive-date=2011-09-28|archive-url=https://web.archive.org/web/20110928215902/http://authors.library.caltech.edu/3737/|url-status=live}}</ref>
The [[Novikov self-consistency principle]], named after [[Igor Dmitrievich Novikov]], states that any actions taken by a time traveler or by an object that travels back in time were part of history all along, and therefore it is impossible for the time traveler to "change" history in any way. The time traveler's actions may be the ''cause'' of events in their own past though, which leads to the potential for [[causal loop|circular causation]], sometimes called a predestination paradox,<ref>{{cite book|last1=Erdmann|first1=Terry J.|last2=Hutzel|first2=Gary|title=Star Trek: The Magic of Tribbles|date=2001|publisher=Pocket Books|isbn=978-0-7434-4623-5|page=31}}</ref> ontological paradox,<ref name="smeenk">{{citation|last1=Smeenk|first1=Chris|last2=Wüthrich|first2=Christian|editor-last=Callender|editor-first=Craig|contribution=Time Travel and Time Machines|title=The Oxford Handbook of Philosophy of Time|year=2011|publisher=Oxford University Press|isbn=978-0-19-929820-4|page=581}}</ref> or bootstrap paradox.<ref name="smeenk" /><ref>{{citation|last=Krasnikov|first=S.|year=2001|title=The time travel paradox|journal=Phys. Rev. D|volume=65|issue=6|page=06401|arxiv=gr-qc/0109029|bibcode=2002PhRvD..65f4013K|doi=10.1103/PhysRevD.65.064013|s2cid=18460829}}</ref> The term bootstrap paradox was popularized by [[Robert A. Heinlein]]'s story "[[By His Bootstraps]]".<ref name="Klosterman">{{cite book|last1=Klosterman|first1=Chuck|title=Eating the Dinosaur|date=2009|publisher=Scribner|location=New York|isbn=978-1-4391-6848-6|edition=1st Scribner hardcover|pages=[https://books.google.com/books?id=lZurDFJtAWwC&pg=PA60 60–62]}}</ref> The Novikov self-consistency principle proposes that the local laws of physics in a region of spacetime containing time travelers cannot be any different from the local laws of physics in any other region of spacetime.<ref>{{cite journal|first=John|last=Friedman|author2=Michael Morris|author3=Igor Novikov|author4=Fernando Echeverria|author5=Gunnar Klinkhammer|author6=Kip Thorne|author7=Ulvi Yurtsever|url=http://authors.library.caltech.edu/3737/|title=Cauchy problem in spacetimes with closed timelike curves|journal=Physical Review D|volume=42|year=1990|issue=6|pages=1915–1930|doi=10.1103/PhysRevD.42.1915|pmid=10013039|bibcode=1990PhRvD..42.1915F|access-date=2009-01-10|archive-date=2011-09-28|archive-url=https://web.archive.org/web/20110928215902/http://authors.library.caltech.edu/3737/|url-status=live}}</ref>


The philosopher Kelley L. Ross argues in "Time Travel Paradoxes"<ref>{{citation|first1=Kelley L.|last1=Ross|url=http://www.friesian.com/paradox.htm|title=Time Travel Paradoxes|year=2016|access-date=April 26, 2017|archive-date=January 18, 1998|archive-url=https://web.archive.org/web/19980118212457/http://www.friesian.com/paradox.htm|url-status=live}}</ref> that in a scenario involving a physical object whose world-line or history forms a closed loop in time there can be a violation of the [[second law of thermodynamics]]. Ross uses the film ''[[Somewhere in Time (film)|Somewhere in Time]]'' as an example of such an ontological paradox, where a watch is given to a person, and 60 years later the same watch is brought back in time and given to the same character. Ross states that [[entropy]] of the watch will increase, and the watch carried back in time will be more worn with each repetition of its history. The second law of thermodynamics is understood by modern physicists to be a [[Statistical mechanics|statistical]] law, so [[Fluctuation theorem|decreasing entropy and non-increasing entropy]] are not impossible, just improbable. Additionally, entropy statistically increases in systems which are isolated, so non-isolated systems, such as an object, that interact with the outside world, can become less worn and decrease in entropy, and it's possible for an object whose world-line forms a closed loop to be always in the same condition in the same point of its history.<ref name="Gott" />{{rp|23}}
The philosopher Kelley L. Ross argues in "Time Travel Paradoxes"<ref>{{citation|first1=Kelley L.|last1=Ross|url=http://www.friesian.com/paradox.htm|title=Time Travel Paradoxes|year=2016|access-date=April 26, 2017|archive-date=January 18, 1998|archive-url=https://web.archive.org/web/19980118212457/http://www.friesian.com/paradox.htm|url-status=live}}</ref> that in a scenario involving a physical object whose world-line or history forms a closed loop in time there can be a violation of the [[second law of thermodynamics]]. Ross uses the film ''[[Somewhere in Time (film)|Somewhere in Time]]'' as an example of such an ontological paradox, where a watch is given to a person, and 60 years later the same watch is brought back in time and given to the same character. Ross states that [[entropy]] of the watch will increase, and the watch carried back in time will be more worn with each repetition of its history. The second law of thermodynamics is understood by modern physicists to be a [[Statistical mechanics|statistical]] law, so [[Fluctuation theorem|decreasing entropy and non-increasing entropy]] are not impossible, just improbable. Additionally, entropy statistically increases in systems which are isolated, so non-isolated systems, such as an object, that interact with the outside world, can become less worn and decrease in entropy, and it's possible for an object whose world-line forms a closed loop to be always in the same condition in the same point of its history.<ref name="Gott" />{{rp|23}}

Latest revision as of 19:34, 3 October 2025

Template:Short description Script error: No such module "other uses". Template:Pp-semi-indef Template:Use American English Template:Use mdy dates

File:The Time Machine – Frontpage Heinemann.png
The first page of The Time Machine published by Heinemann

Time travel is the hypothetical activity of traveling into the past or future. Time travel is a concept in philosophy and fiction, particularly science fiction. In fiction, time travel is typically achieved through the use of a device known as a time machine. The idea of a time machine was popularized by H. G. Wells's 1895 novel The Time Machine.[1]

It is uncertain whether time travel to the past would be physically possible. Such travel, if at all feasible, may give rise to questions of causality. Forward time travel, outside the usual sense of the perception of time, is an extensively observed phenomenon and is well understood within the framework of special relativity and general relativity. However, making one body advance or delay more than a few milliseconds compared to another body is not feasible with current technology. As for backward time travel, it is possible to find solutions in general relativity that allow for it, such as a rotating black hole. Traveling to an arbitrary point in spacetime has very limited support in theoretical physics, and is usually connected only with quantum mechanics or wormholes.

Script error: No such module "anchor".

History of the concept

In religion

File:Irvington statue of Rip van Winkle.jpg
Statue of Rip Van Winkle in Irvington, New York

Some ancient stories feature characters who appear to leap forward in time. Vishnu Purana, in Hindu mythology narrate the myth of Raivata Kakudmi, who visits the god Brahma in heaven and returns to Earth to find that many ages have passed.[2][3] In the Buddhist Pāli Canon, the Payasi Sutta describes how the disciple Kumara Kassapa explains to a skeptic that time flows differently in the heavenly realms.[4] The Japanese legend of "Urashima Tarō", first recorded in the Manyoshu, tells of a fisherman who visits an undersea palace for three days, only to return and find that centuries have passed and his world is gone.[5]

In one tradition in Judaism, Moses is transported by God to the study hall of Rabbi Akiva, where he is confused by the future evolution of Jewish law. Another Talmudic story features Honi HaMe'agel, a 1st-century BCE miracle worker who sees a man planting a carob tree that will take 70 years to bear fruit. Honi falls asleep and awakens 70 years later to find the tree fully grown and its fruit being harvested by the man's grandson.[6][7]

In Islam, the Quran narrates the story of the Seven Sleepers, a group of monotheistic young men who sought refuge in a cave to escape persecution. As they slept, Allah preserved them for centuries, and when they awoke, they discovered that the world around them had changed. This narrative, found in the Quranic Surah Al-Kahf, describes divine protection and time suspension.[8][9][10]

Science fiction

Script error: No such module "labelled list hatnote".

Time travel themes in science fiction and the media can be grouped into three categories: immutable timeline; mutable timeline; and alternate histories, as in the interacting-many-worlds interpretation.[11][12][13] The non-scientific term 'timeline' is often used to refer to all physical events in history, so that where events are changed, the time traveler is described as creating a new timeline.[14]

Early science fiction stories feature characters who sleep for years and awaken in a changed society, or are transported to the past through supernatural means. Among them L'An 2440, rêve s'il en fût jamais (The Year 2440: A Dream If Ever There Was One, 1770) by Louis-Sébastien Mercier, Rip Van Winkle (1819) by Washington Irving, Looking Backward (1888) by Edward Bellamy, and When the Sleeper Awakes (1899) by H. G. Wells. Prolonged sleep is used as a means of time travel in these stories.[15]

The date of the earliest work about backwards time travel is uncertain. The Chinese novel A Supplement to the Journey to the West (Template:Circa) by Dong Yue features magical mirrors and jade gateways that connect various points in time. The protagonist Sun Wukong travels back in time to the "World of the Ancients" (Qin dynasty) to retrieve a magical bell and then travels forward to the "World of the Future" (Song dynasty) to find an emperor who has been exiled in time. However, the time travel is taking place inside an illusory dream world created by the villain to distract and entrap him.[16] Samuel Madden's Memoirs of the Twentieth Century (1733) is a series of letters from British ambassadors in 1997 and 1998 to diplomats in the past, conveying the political and religious conditions of the future.[17]Template:Rp Because the narrator receives these letters from his guardian angel, Paul Alkon suggests in his book Origins of Futuristic Fiction that "the first time-traveler in English literature is a guardian angel".[17]Template:Rp Madden does not explain how the angel obtains these documents, but Alkon asserts that Madden "deserves recognition as the first to toy with the rich idea of time-travel in the form of an artifact sent backward from the future to be discovered in the present".[17]Template:Rp In the science fiction anthology Far Boundaries (1951), editor August Derleth claims that an early short story about time travel is An Anachronism; or, Missing One's Coach, written for the Dublin Literary Magazine[18] by an anonymous author in the June 1838 issue.[19]Template:Rp While the narrator waits under a tree for a coach to take him out of Newcastle upon Tyne, he is transported back in time over a thousand years. He encounters the Venerable Bede in a monastery and explains to him the developments of the coming centuries. However, the story never makes it clear whether these events are real or a dream.[19]Template:Rp Another early work about time travel is The Forebears of Kalimeros: Alexander, son of Philip of Macedon by Alexander Veltman published in 1836.[20]

File:A Christmas Carol - Mr. Fezziwig's Ball.jpg
Mr. and Mrs. Fezziwig dance in a vision shown to Scrooge by the Ghost of Christmas Past.

Charles Dickens's A Christmas Carol (1843) has early depictions of mystical time travel in both directions, as the protagonist, Ebenezer Scrooge, is transported to Christmases past and future. Other stories employ the same template, where a character naturally goes to sleep, and upon waking up finds themself in a different time.[21] A clearer example of backward time travel is found in the 1861 book Paris avant les hommes (Paris before Men) by the French botanist and geologist Pierre Boitard, published posthumously. In this story, the protagonist is transported to the prehistoric past by the magic of a "lame demon" (a French pun on Boitard's name), where he encounters a Plesiosaur and an apelike ancestor and is able to interact with ancient creatures.[22] Edward Everett Hale's "Hands Off" (1881)[23] tells the story of an unnamed being, possibly the soul of a person who has recently died, who interferes with ancient Egyptian history by preventing Joseph's enslavement. This may have been the first story to feature an alternate history created as a result of time travel.[24]Template:Rp

Early time machines

Script error: No such module "Labelled list hatnote". One of the first stories to feature time travel by means of a machine is "The Clock that Went Backward" by Edward Page Mitchell,[25] which appeared in the New York Sun in 1881. However, the mechanism borders on fantasy. An unusual clock, when wound, runs backwards and transports people nearby back in time. The author does not explain the origin or properties of the clock.[24]Template:Rp Enrique Gaspar y Rimbau's El Anacronópete (1887) may have been the first story to feature a vessel engineered to travel through time.[26][27] Andrew Sawyer has commented that the story "does seem to be the first literary description of a time machine noted so far", adding that "Edward Page Mitchell's story The Clock That Went Backward (1881) is usually described as the first time-machine story, but I'm not sure that a clock quite counts".[28] H. G. Wells' The Time Machine (1895) popularized the concept of time travel by mechanical means.[29]

Time travel in physics

Some solutions to Einstein's equations for general relativity suggest that suitable geometries of spacetime or specific types of motion in space might allow time travel into the past and future if these geometries or motions were possible.[30]Template:Rp In technical papers, physicists discuss the possibility of closed timelike curves, which are world lines that form closed loops in spacetime, allowing objects to return to their own past. There are known to be solutions to the equations of general relativity that describe spacetimes which contain closed timelike curves, such as Gödel spacetime, but the physical plausibility of these solutions is uncertain.[31]

Any theory that would allow backward time travel would introduce potential problems of causality.[32] The classic example of a problem involving causality is the "grandfather paradox," which postulates travelling to the past and intervening in the conception of one's ancestors (causing the death of an ancestor before conception being frequently cited). Some physicists, such as Novikov and Deutsch, suggested that these sorts of temporal paradoxes can be avoided through the Novikov self-consistency principle or a variation of the many-worlds interpretation with interacting worlds.[33]

General relativity

Time travel to the past is theoretically possible in certain general relativity spacetime geometries that permit traveling faster than the speed of light, such as cosmic strings, traversable wormholes, and Alcubierre drives.[34][35]Template:Rp The theory of general relativity does suggest a scientific basis for the possibility of backward time travel in certain unusual scenarios, although arguments from semiclassical gravity suggest that when quantum effects are incorporated into general relativity, these loopholes may be closed.[36] These semiclassical arguments led Stephen Hawking to formulate the chronology protection conjecture, suggesting that the fundamental laws of nature prevent time travel,[37] but physicists cannot come to a definitive judgment on the issue without a theory of quantum gravity to join quantum mechanics and general relativity into a completely unified theory.[38][39]Template:Rp

Different spacetime geometries

The theory of general relativity describes the universe under a system of field equations that determine the metric, or distance function, of spacetime. There exist exact solutions to these equations that include closed time-like curves, which are world lines that intersect themselves; some point in the causal future of the world line is also in its causal past, a situation that can be described as time travel. Such a solution was first proposed by Kurt Gödel, a solution known as the Gödel metric, but his (and others') solution requires the universe to have physical characteristics that it does not appear to have,[30]Template:Rp such as rotation and lack of Hubble expansion. Whether general relativity forbids closed time-like curves for all realistic conditions is still being researched.[40]

Wormholes

Script error: No such module "Labelled list hatnote". Wormholes are a hypothetical warped spacetime permitted by the Einstein field equations of general relativity.[41]Template:Rp A proposed time-travel machine using a traversable wormhole would hypothetically work in the following way: One end of the wormhole is accelerated to some significant fraction of the speed of light, perhaps with some advanced propulsion system, and then brought back to the point of origin. Alternatively, another way is to take one entrance of the wormhole and move it to within the gravitational field of an object that has higher gravity than the other entrance, and then return it to a position near the other entrance. For both these methods, time dilation causes the end of the wormhole that has been moved to have aged less, or become "younger", than the stationary end as seen by an external observer; however, time connects differently through the wormhole than outside it, so that synchronized clocks at either end of the wormhole will always remain synchronized as seen by an observer passing through the wormhole, no matter how the two ends move around.[30]Template:Rp This means that an observer entering the "younger" end would exit the "older" end at a time when it was the same age as the "younger" end, effectively going back in time as seen by an observer from the outside. One significant limitation of such a time machine is that it is only possible to go as far back in time as the initial creation of the machine;[30]Template:Rp in essence, it is more of a path through time than it is a device that itself moves through time, and it would not allow the technology itself to be moved backward in time.

According to current theories on the nature of wormholes, construction of a traversable wormhole would require the existence of a substance with negative energy, often referred to as "exotic matter". More technically, the wormhole spacetime requires a distribution of energy that violates various energy conditions, such as the null energy condition along with the weak, strong, and dominant energy conditions. However, it is known that quantum effects can lead to small measurable violations of the null energy condition,[41]Template:Rp and many physicists believe that the required negative energy may actually be possible due to the Casimir effect in quantum physics.[42] Although early calculations suggested that a very large amount of negative energy would be required, later calculations showed that the amount of negative energy can be made arbitrarily small.[43]

In 1993, Matt Visser argued that the two mouths of a wormhole with such an induced clock difference could not be brought together without inducing quantum field and gravitational effects that would either make the wormhole collapse or the two mouths repel each other.[44] Because of this, the two mouths could not be brought close enough for causality violation to take place. However, in a 1997 paper, Visser hypothesized that a complex "Roman ring" (named after Tom Roman) configuration of an N number of wormholes arranged in a symmetric polygon could still act as a time machine, although he concludes that this is more likely a flaw in classical quantum gravity theory rather than proof that causality violation is possible.[45]

Other approaches based on general relativity

Another approach involves a dense spinning cylinder usually referred to as a Tipler cylinder, a GR solution discovered by Willem Jacob van Stockum[46] in 1936 and Kornel Lanczos[47] in 1924, but not recognized as allowing closed timelike curves[48]Template:Rp until an analysis by Frank Tipler in 1974.[49] If a cylinder is infinitely long and spins fast enough about its long axis, then a spaceship flying around the cylinder on a spiral path could travel back in time (or forward, depending on the direction of its spiral). However, the density and speed required is so great that ordinary matter is not strong enough to construct it.

A more fundamental objection to time travel schemes based on rotating cylinders or cosmic strings has been put forward by Stephen Hawking, who proved a theorem showing that according to general relativity it is impossible to build a time machine of a special type (a "time machine with the compactly generated Cauchy horizon") in a region where the weak energy condition is satisfied, meaning that the region contains no matter with negative energy density (exotic matter). Solutions such as Tipler's assume cylinders of infinite length, which are easier to analyze mathematically, and although Tipler suggested that a finite cylinder might produce closed timelike curves if the rotation rate were fast enough,[48]Template:Rp he did not prove this. But Hawking points out that because of his theorem, "it can't be done with positive energy density everywhere! I can prove that to build a finite time machine, you need negative energy."[39]Template:Rp This result comes from Hawking's 1992 paper on the chronology protection conjecture, which Hawking states as "The laws of physics do not allow the appearance of closed timelike curves."[37]

Quantum physics

Script error: No such module "Labelled list hatnote".

No-communication theorem

When a signal is sent from one location and received at another location, then as long as the signal is moving at the speed of light or slower, the mathematics of simultaneity in the theory of relativity show that all reference frames agree that the transmission-event happened before the reception-event. When the signal travels faster than light, it is received before it is sent, in all reference frames.[50] The signal could be said to have moved backward in time. This hypothetical scenario is sometimes referred to as a tachyonic antitelephone.[51]

Quantum-mechanical phenomena such as quantum teleportation, the EPR paradox, or quantum entanglement might appear to create a mechanism that allows for faster-than-light (FTL) communication or time travel, and in fact some interpretations of quantum mechanics such as the Bohm interpretation presume that some information is being exchanged between particles instantaneously in order to maintain correlations between particles.[52] This effect was referred to as "spooky action at a distance" by Einstein.

Nevertheless, the fact that causality is preserved in quantum mechanics is a rigorous result in modern quantum field theories, and therefore modern theories do not allow for time travel or FTL communication. In any specific instance where FTL has been claimed, more detailed analysis has proven that to get a signal, some form of classical communication must also be used.[53] The no-communication theorem also gives a general proof that quantum entanglement cannot be used to transmit information faster than classical signals.

Interacting many-worlds interpretation

A variation of Hugh Everett's many-worlds interpretation (MWI) of quantum mechanics provides a resolution to the grandfather paradox that involves the time traveler arriving in a different universe than the one they came from; it's been argued that since the traveler arrives in a different universe's history and not their own history, this is not "genuine" time travel.[54] The accepted many-worlds interpretation suggests that all possible quantum events can occur in mutually exclusive histories.[55] However, some variations allow different universes to interact. This concept is most often used in science-fiction, but some physicists such as David Deutsch have suggested that a time traveler should end up in a different history than the one he started from.[56][57] On the other hand, Stephen Hawking has argued that even if the MWI is correct, we should expect each time traveler to experience a single self-consistent history, so that time travelers remain within their own world rather than traveling to a different one.[58] The physicist Allen Everett argued that Deutsch's approach "involves modifying fundamental principles of quantum mechanics; it certainly goes beyond simply adopting the MWI". Everett also argues that even if Deutsch's approach is correct, it would imply that any macroscopic object composed of multiple particles would be split apart when traveling back in time through a wormhole, with different particles emerging in different worlds.[33]

Experimental results

Certain experiments carried out give the impression of reversed causality, but fail to show it under closer examination.Script error: No such module "Unsubst".

The delayed-choice quantum eraser experiment performed by Marlan Scully involves pairs of entangled photons that are divided into "signal photons" and "idler photons", with the signal photons emerging from one of two locations and their position later measured as in the double-slit experiment. Depending on how the idler photon is measured, the experimenter can either learn which of the two locations the signal photon emerged from or "erase" that information. Even though the signal photons can be measured before the choice has been made about the idler photons, the choice seems to retroactively determine whether or not an interference pattern is observed when one correlates measurements of idler photons to the corresponding signal photons. However, since interference can be observed only after the idler photons are measured and they are correlated with the signal photons, there is no way for experimenters to tell what choice will be made in advance just by looking at the signal photons, only by gathering classical information from the entire system; thus causality is preserved.[59]

The experiment of Lijun Wang might also show causality violation since it made it possible to send packages of waves through a bulb of caesium gas in such a way that the package appeared to exit the bulb 62 nanoseconds before its entry, but a wave package is not a single well-defined object but rather a sum of multiple waves of different frequencies (see Fourier analysis), and the package can appear to move faster than light or even backward in time even if none of the pure waves in the sum do so. This effect cannot be used to send any matter, energy, or information faster than light,[60] so this experiment is understood not to violate causality either.

The physicists Günter Nimtz and Alfons Stahlhofen, of the University of Koblenz, claim to have violated Einstein's theory of relativity by transmitting photons faster than the speed of light. They say they have conducted an experiment in which microwave photons traveled "instantaneously" between a pair of prisms that had been moved up to Template:Convert apart, using a phenomenon known as quantum tunneling. Nimtz told New Scientist magazine: "For the time being, this is the only violation of special relativity that I know of." However, other physicists say that this phenomenon does not allow information to be transmitted faster than light. Aephraim M. Steinberg, a quantum optics expert at the University of Toronto, Canada, uses the analogy of a train traveling from Chicago to New York, but dropping off train cars at each station along the way, so that the center of the train moves forward at each stop; in this way, the speed of the center of the train exceeds the speed of any of the individual cars.[61]

Shengwang Du claims in a peer-reviewed journal to have observed single photons' precursors, saying that they travel no faster than c in a vacuum. His experiment involved slow light as well as passing light through a vacuum. He generated two single photons, passing one through rubidium atoms that had been cooled with a laser (thus slowing the light) and passing one through a vacuum. Both times, apparently, the precursors preceded the photons' main bodies, and the precursor traveled at c in a vacuum. According to Du, this implies that there is no possibility of light traveling faster than c and, thus, no possibility of violating causality.[62]

Absence of time travelers from the future

Many have argued that the absence of time travelers from the future demonstrates that such technology will never be developed, suggesting that it is impossible. This is analogous to the Fermi paradox related to the absence of evidence of extraterrestrial life. As the absence of extraterrestrial visitors does not categorically prove they do not exist, so the absence of time travelers fails to prove time travel is physically impossible; it might be that time travel is physically possible but is never developed or is cautiously used. Carl Sagan once suggested the possibility that time travelers could be here but are disguising their existence or are not recognized as time travelers.[38] Some interpretations of general relativity propose that time travel could only occur within specific conditions such as regions of spacetime affected by extreme gravitational fields or other distortions. In such scenarios, time travelers would be limited to moving within the period after such a region came into existence, and could not travel to a time before it formed. Stephen Hawking stated that this would explain why the world has not already been overrun by "tourists from the future".[58]

File:WelcomeKrononauts Artforum Jan1980 p.90 800x600.png
Advertisement placed in a 1980 edition of Artforum, advertising the Krononauts event

Several experiments have been carried out to try to entice future humans, who might invent time travel technology, to come back and demonstrate it to people of the present time. Events such as Perth's Destination Day, MIT's Time Traveler Convention and Stephen Hawking's Reception For Time Travellers heavily publicized permanent "advertisements" of a meeting time and place for future time travelers to meet.[63][64] In 1982, a group in Baltimore, Maryland, identifying itself as the Krononauts, hosted an event of this type welcoming visitors from the future.[65][66]

These experiments only stood the possibility of generating a positive result demonstrating the existence of time travel, but have failed so far—no time travelers are known to have attended either event. Some versions of the many-worlds interpretation can be used to suggest that future humans have traveled back in time, but have traveled back to the meeting time and place in a parallel universe.[67]

Time dilation

Script error: No such module "Labelled list hatnote".

File:Time dilation02.gif
Transversal time dilation. The blue dots represent a pulse of light. Each pair of dots with light "bouncing" between them is a clock. For each group of clocks, the other group appears to be ticking more slowly, because the moving clock's light pulse has to travel a larger distance than the stationary clock's light pulse. That is so, even though the clocks are identical and their relative motion is perfectly reciprocal.

There is a great deal of observable evidence for time dilation in special relativity[68] and gravitational time dilation in general relativity,[69][70][71] for example in the famous and easy-to-replicate observation of atmospheric muon decay.[72][73][74] The theory of relativity states that the speed of light is invariant for all observers in any frame of reference; that is, it is always the same. Time dilation is a direct consequence of the invariance of the speed of light.[74] Time dilation may be regarded in a limited sense as "time travel into the future": a person may use time dilation so that a small amount of proper time passes for them, while a large amount of proper time passes elsewhere. This can be achieved by traveling at relativistic speeds or through the effects of gravity.[75]

For two identical clocks moving relative to each other without accelerating, each clock measures the other to be ticking slower. This is possible due to the relativity of simultaneity. However, the symmetry is broken if one clock accelerates, allowing for less proper time to pass for one clock than the other. The twin paradox describes this: one twin remains on Earth, while the other undergoes acceleration to relativistic speed as they travel into space, turn around, and travel back to Earth; the traveling twin ages less than the twin who stayed on Earth, because of the time dilation experienced during their acceleration. General relativity treats the effects of acceleration and the effects of gravity as equivalent, and shows that time dilation also occurs in gravity wells, with a clock deeper in the well ticking more slowly; this effect is taken into account when calibrating the clocks on the satellites of the Global Positioning System, and it could lead to significant differences in rates of aging for observers at different distances from a large gravity well such as a black hole.[35]Template:Rp

A time machine that utilizes this principle might be, for instance, a spherical shell with a diameter of five meters and the mass of Jupiter. A person at its center will travel forward in time at a rate four times slower than that of distant observers. Squeezing the mass of a large planet into such a small structure is not expected to be within humanity's technological capabilities in the near future.[35]Template:Rp With current technologies, it is only possible to cause a human traveler to age less than companions on Earth by a few milliseconds after a few hundred days of space travel.[76]

Philosophy

Script error: No such module "Labelled list hatnote". Philosophers have discussed the philosophy of space and time since at least the time of ancient Greece; for example, Parmenides presented the view that time is an illusion. Centuries later, Isaac Newton supported the idea of absolute time, while his contemporary Gottfried Wilhelm Leibniz maintained that time is only a relation between events and it cannot be expressed independently. The latter approach eventually gave rise to the spacetime of relativity.[77]

Presentism vs. eternalism

Many philosophers have argued that relativity implies eternalism, the idea that the past and future exist in a real sense, not only as changes that occurred or will occur to the present.[78] Philosopher of science Dean Rickles disagrees with some qualifications, but notes that "the consensus among philosophers seems to be that special and general relativity are incompatible with presentism".[79] Some philosophers view time as a dimension equal to spatial dimensions, that future events are "already there" in the same sense different places exist, and that there is no objective flow of time; however, this view is disputed.[80]

Presentism is a school of philosophy that holds that the future and the past exist only as changes that occurred or will occur to the present, and they have no real existence of their own. In this view, time travel is impossible because there is no future or past to travel to.[78] Keller and Nelson have argued that even if past and future objects do not exist, there can still be definite truths about past and future events, and thus it is possible that a future truth about a time traveler deciding to travel back to the present date could explain the time traveler's actual appearance in the present;[81] these views are contested by some authors.[82]

The grandfather paradox

Script error: No such module "Labelled list hatnote". A common objection to the idea of traveling back in time is put forth in the grandfather paradox or the argument of auto-infanticide.[83] If one were able to go back in time, inconsistencies and contradictions would ensue if the time traveler were to change anything; there is a contradiction if the past becomes different from the way it is.[84][85] The paradox is commonly described with a person who travels to the past and kills their own grandfather, prevents the existence of their father or mother, and therefore their own existence.[38] Philosophers question whether these paradoxes prove time travel impossible. Some philosophers answer these paradoxes by arguing that it might be the case that backward time travel could be possible but that it would be impossible to actually change the past in any way,[86] an idea similar to the proposed Novikov self-consistency principle in physics.

Ontological paradox

Compossibility

According to the philosophical theory of compossibility, what can happen, for example in the context of time travel, must be weighed against the context of everything relating to the situation. If the past is a certain way, it's not possible for it to be any other way. What can happen when a time traveler visits the past is limited to what did happen, in order to prevent logical contradictions.[87]

Self-consistency principle

The Novikov self-consistency principle, named after Igor Dmitrievich Novikov, states that any actions taken by a time traveler or by an object that travels back in time were part of history all along, and therefore it is impossible for the time traveler to "change" history in any way. The time traveler's actions may be the cause of events in their own past though, which leads to the potential for circular causation, sometimes called a predestination paradox,[88] ontological paradox,[89] or bootstrap paradox.[89][90] The term bootstrap paradox was popularized by Robert A. Heinlein's story "By His Bootstraps".[91] The Novikov self-consistency principle proposes that the local laws of physics in a region of spacetime containing time travelers cannot be any different from the local laws of physics in any other region of spacetime.[92]

The philosopher Kelley L. Ross argues in "Time Travel Paradoxes"[93] that in a scenario involving a physical object whose world-line or history forms a closed loop in time there can be a violation of the second law of thermodynamics. Ross uses the film Somewhere in Time as an example of such an ontological paradox, where a watch is given to a person, and 60 years later the same watch is brought back in time and given to the same character. Ross states that entropy of the watch will increase, and the watch carried back in time will be more worn with each repetition of its history. The second law of thermodynamics is understood by modern physicists to be a statistical law, so decreasing entropy and non-increasing entropy are not impossible, just improbable. Additionally, entropy statistically increases in systems which are isolated, so non-isolated systems, such as an object, that interact with the outside world, can become less worn and decrease in entropy, and it's possible for an object whose world-line forms a closed loop to be always in the same condition in the same point of its history.[35]Template:Rp

In 2005, Daniel Greenberger and Karl Svozil proposed that quantum theory gives a model for time travel where the past must be self-consistent.[94][95]

See also

<templatestyles src="Col-begin/styles.css"/>

Further reading

References

Template:Reflist

External links

Script error: No such module "Sister project links".Template:Main other

Template:Time travel Template:Time topics Template:Authority control

  1. Script error: No such module "citation/CS1". Extract of page 180 Template:Webarchive
  2. Script error: No such module "citation/CS1".
  3. Script error: No such module "citation/CS1".
  4. Script error: No such module "citation/CS1".
  5. Script error: No such module "citation/CS1".
  6. Babylonian Talmud Taanit 23a Hebrew/Aramaic text at Mechon-Mamre Template:Webarchive
  7. Script error: No such module "citation/CS1".
  8. Script error: No such module "citation/CS1".
  9. Script error: No such module "citation/CS1".
  10. Script error: No such module "citation/CS1".
  11. Script error: No such module "Citation/CS1".
  12. Script error: No such module "citation/CS1".
  13. Script error: No such module "citation/CS1".
  14. Script error: No such module "citation/CS1".
  15. Script error: No such module "citation/CS1".
  16. Script error: No such module "citation/CS1".
  17. a b c Script error: No such module "citation/CS1".
  18. Script error: No such module "Citation/CS1".
  19. a b Script error: No such module "citation/CS1".
  20. Script error: No such module "citation/CS1".
  21. Script error: No such module "citation/CS1".
  22. Script error: No such module "citation/CS1".
  23. Script error: No such module "citation/CS1".
  24. a b Script error: No such module "citation/CS1".
  25. Script error: No such module "citation/CS1".
  26. Script error: No such module "Citation/CS1".
  27. Script error: No such module "citation/CS1".
  28. Script error: No such module "citation/CS1".
  29. Script error: No such module "citation/CS1".
  30. a b c d Script error: No such module "citation/CS1".
  31. Script error: No such module "Citation/CS1".
  32. Script error: No such module "citation/CS1". Extract of page 32 Template:Webarchive
  33. a b Script error: No such module "Citation/CS1".
  34. Script error: No such module "citation/CS1".
  35. a b c d Script error: No such module "citation/CS1".
  36. Script error: No such module "citation/CS1".
  37. a b Script error: No such module "Citation/CS1".
  38. a b c Script error: No such module "citation/CS1".
  39. a b Script error: No such module "citation/CS1".
  40. S. W. Hawking, Introductory note to 1949 and 1952 in Kurt Gödel, Collected works, Volume II (S. Feferman et al., eds).
  41. a b Script error: No such module "citation/CS1".
  42. Script error: No such module "citation/CS1".
  43. Script error: No such module "Citation/CS1".
  44. Script error: No such module "Citation/CS1".
  45. Script error: No such module "Citation/CS1".
  46. Script error: No such module "Citation/CS1".
  47. Script error: No such module "Citation/CS1".
  48. a b Script error: No such module "citation/CS1".
  49. Script error: No such module "Citation/CS1".
  50. Script error: No such module "citation/CS1".
  51. Script error: No such module "Citation/CS1".
  52. Script error: No such module "citation/CS1".
  53. Script error: No such module "citation/CS1".
  54. Script error: No such module "citation/CS1".
  55. Script error: No such module "citation/CS1".
  56. Script error: No such module "Citation/CS1".
  57. Script error: No such module "citation/CS1".Template:Cbignore
  58. a b Script error: No such module "citation/CS1".
  59. Script error: No such module "citation/CS1".
  60. Script error: No such module "citation/CS1".
  61. Script error: No such module "citation/CS1".
  62. Script error: No such module "citation/CS1".
  63. Script error: No such module "citation/CS1".
  64. Script error: No such module "citation/CS1".
  65. Script error: No such module "citation/CS1".
  66. "Welcome the People from the Future. March 9, 1982". Ad in Artforum p. 90.
  67. Script error: No such module "Citation/CS1".
  68. Script error: No such module "citation/CS1".
  69. Script error: No such module "citation/CS1".
  70. Script error: No such module "citation/CS1".
  71. Script error: No such module "citation/CS1".
  72. Script error: No such module "Citation/CS1".
  73. Script error: No such module "Citation/CS1".
  74. a b Script error: No such module "citation/CS1".
  75. Serway, Raymond A. (2000) Physics for Scientists and Engineers with Modern Physics, Fifth Edition, Brooks/Cole, p. 1258, Template:ISBN.
  76. Template:Cite magazine
  77. Script error: No such module "citation/CS1".
  78. a b Script error: No such module "citation/CS1".
  79. Script error: No such module "citation/CS1".
  80. Script error: No such module "citation/CS1".
  81. Script error: No such module "Citation/CS1".
  82. Script error: No such module "citation/CS1".
  83. Script error: No such module "citation/CS1".
  84. Script error: No such module "citation/CS1".
  85. Script error: No such module "Citation/CS1".
  86. Script error: No such module "citation/CS1".
  87. Script error: No such module "Citation/CS1".
  88. Script error: No such module "citation/CS1".
  89. a b Script error: No such module "citation/CS1".
  90. Script error: No such module "citation/CS1".
  91. Script error: No such module "citation/CS1".
  92. Script error: No such module "Citation/CS1".
  93. Script error: No such module "citation/CS1".
  94. Script error: No such module "citation/CS1".
  95. Script error: No such module "citation/CS1".