Synchronization: Difference between revisions

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
imported>Macaddct1984
m Rollback edit(s) by 102.91.103.192 (talk): Non-constructive edit (UV 0.1.6)
 
imported>JBW
Removing link(s) to "Network physiology": Removing links to deleted page Network physiology.
 
(One intermediate revision by one other user not shown)
Line 26: Line 26:
* [[Lip sync]]
* [[Lip sync]]
* [[Multimedia]]
* [[Multimedia]]
* [[Rhythm]]
* Network Physiology
* [[Neural synchronization|Neuroscience]]
* [[Neural synchronization|Neuroscience]]
* Photography
* Photography
* [[Physics]] (The idea of [[Relativity of simultaneity|simultaneity]] has many difficulties, both in practice and theory.)
* [[Physics]] (The idea of [[Relativity of simultaneity|simultaneity]] has many difficulties, both in practice and theory.)
* [[Rhythm]]
* [[Oscillator sync|Synthesizers]]
* [[Oscillator sync|Synthesizers]]
* Telecommunication
* Telecommunication
Line 39: Line 40:
{{See also|Synchronization of chaos}}
{{See also|Synchronization of chaos}}


Synchronization of multiple interacting [[dynamical system]]s can occur when the systems are [[Self-oscillation|autonomous oscillators]]. Poincaré phase oscillators are model systems that can interact and partially synchronize within random or regular networks.<ref name="Nolte">{{cite book | first = David | last = Nolte | title = Introduction to Modern Dynamics: Chaos, Networks, Space and Time  | publisher = [[Oxford University Press]] |  year = 2015 }}</ref> In the case of global synchronization of phase oscillators, an abrupt transition from unsynchronized to full synchronization takes place when the coupling strength exceeds a critical threshold. This is known as the [[Kuramoto model]] [[phase transition]].<ref name=":1">{{Cite web|url=https://www.youtube.com/watch?v=t-_VPRCtiUg|title = The Surprising Secret of Synchronization|website = [[YouTube]]| date=31 March 2021 }}</ref> Synchronization is an emergent property that occurs in a broad range of dynamical systems, including neural signaling, the beating of the heart and the synchronization of fire-fly light waves. A unified approach that quantifies synchronization in chaotic systems can be derived from the statistical analysis of measured data.<ref> {{Cite journal|last1=Shah|first1=Dipal| last2=Springer|first2=Sebastian|last3=Haario|first3=Heikki|last4=Barbiellini|first4=Bernardo|last5=Kalachev|first5=Leonid|date=2023|title= Data based quantification of synchronization|journal=Foundations of Data Science|volume=5|issue=1|pages=152–176|doi=10.3934/fods.2022020|doi-access=free}}</ref>
Synchronization of multiple interacting [[dynamical system]]s can occur when the systems are [[Self-oscillation|autonomous oscillators]]. Poincaré phase oscillators are model systems that can interact and partially synchronize within random or regular networks.<ref name="Nolte">{{cite book |author1-link=David D. Nolte | first = David | last = Nolte | title = Introduction to Modern Dynamics: Chaos, Networks, Space and Time  | publisher = [[Oxford University Press]] |  year = 2015 }}</ref> In the case of global synchronization of phase oscillators, an abrupt transition from unsynchronized to full synchronization takes place when the coupling strength exceeds a critical threshold. This is known as the [[Kuramoto model]] [[phase transition]].<ref name=":1">{{Cite web|url=https://www.youtube.com/watch?v=t-_VPRCtiUg|title = The Surprising Secret of Synchronization|website = [[YouTube]]| date=31 March 2021 }}</ref> Synchronization is an emergent property that occurs in a broad range of dynamical systems, including neural signaling, the beating of the heart and the synchronization of fire-fly light waves <ref name=":3" /><ref name=":2" />. A unified approach that quantifies synchronization in chaotic systems can be derived from the statistical analysis of measured data.<ref>{{Cite journal|last1=Shah|first1=Dipal| last2=Springer|first2=Sebastian|last3=Haario|first3=Heikki|last4=Barbiellini|first4=Bernardo|last5=Kalachev|first5=Leonid|date=2023|title= Data based quantification of synchronization|journal=Foundations of Data Science|volume=5|issue=1|pages=152–176|doi=10.3934/fods.2022020|doi-access=free}}</ref>


== Applications ==
== Applications ==
=== Network physiology ===
Synchronization and global synchronization phenomena play essential role in the field of Network Physiology <ref>{{Citation |last1=Ivanov |first1=Plamen Ch. |title=Network Physiology: Mapping Interactions Between Networks of Physiologic Networks |date=2014 |work=Networks of Networks: The Last Frontier of Complexity |pages=203–222 |editor-last=D'Agostino |editor-first=Gregorio  |place=Cham |publisher=Springer International Publishing |language=en |doi=10.1007/978-3-319-03518-5_10 |isbn=978-3-319-03518-5 |last2=Bartsch |first2=Ronny P. |bibcode=2014nnlf.book..203I |editor2-last=Scala |editor2-first=Antonio}}</ref><ref>{{Cite journal |last=Ivanov |first=Plamen Ch |date=2021 |title=The New Field of Network Physiology: Building the Human Physiolome |journal=Frontiers in Network Physiology |language=English |volume=1 |doi=10.3389/fnetp.2021.711778 |issn=2674-0109 |article-number=711778 |doi-access=free }}</ref> with focus on whole-body research to understand the mechanisms through which physiological systems and sub-systems — from sub-cellular, metabolic and genomic scale to cellular and neuronal networks, to organs and the organism level — synchronize their dynamics to coordinate functions and generate distinct physiological states in health and disease. Amplitude, frequency, and phase synchronization, as forms of coupling and interaction, underlie biological/physiological network mechanisms through which global states, functions and behaviors emerge at the system and organism level <ref name=":3">{{Cite book |last1=Pikovsky |first1=Arkady |url=https://www.cambridge.org/core/books/synchronization/E46C1FC3ADC82EEA75AE6F5B9B74E28C |title=Synchronization: A Universal Concept in Nonlinear Sciences |last2=Rosenblum |first2=Michael |last3=Kurths |first3=Jürgen |date=2001 |publisher=Cambridge University Press |isbn=978-0-521-53352-2 |series=Cambridge Nonlinear Science Series |location=Cambridge}}</ref><ref name=":2">{{Cite book |last=Strogatz |first=Steven |url=https://dl.acm.org/doi/10.5555/961852 |title=Sync: The Emerging Science of Spontaneous Order |date=2003 |publisher=Hyperion Press |isbn=978-0-7868-6844-5 }}</ref>. Synchronization has been reported across physiological systems and levels of integration, including cardio-respiratory coupling <ref>{{Cite journal |last1=Schäfer |first1=Carsten |last2=Rosenblum |first2=Michael G. |last3=Kurths |first3=Jürgen |last4=Abel |first4=Hans-Henning |date=March 1998 |title=Heartbeat synchronized with ventilation |url=https://www.nature.com/articles/32567 |journal=Nature |language=en |volume=392 |issue=6673 |pages=239–240 |doi=10.1038/32567 |pmid=9521318 |bibcode=1998Natur.392..239S |issn=1476-4687}}</ref><ref>{{Cite journal |last1=Bartsch |first1=Ronny P. |last2=Schumann |first2=Aicko Y. |last3=Kantelhardt |first3=Jan W. |last4=Penzel |first4=Thomas |last5=Ivanov |first5=Plamen Ch. |date=2012 |title=Phase transitions in physiologic coupling |journal=Proceedings of the National Academy of Sciences |volume=109 |issue=26 |pages=10181–10186 |doi=10.1073/pnas.1204568109 |doi-access=free |pmc=3387128 |pmid=22691492 |bibcode=2012PNAS..10910181B }}</ref>; maternal-fetal cardiac phase-synchronization <ref>{{Cite journal |last1=Van Leeuwen |first1=P. |last2=Geue |first2=D. |last3=Thiel |first3=M. |last4=Cysarz |first4=D. |last5=Lange |first5=S. |last6=Romano |first6=M. C. |last7=Wessel |first7=N. |last8=Kurths |first8=J. |last9=Grönemeyer |first9=D. H. |date=2009-08-18 |title=Influence of paced maternal breathing on fetal-maternal heart rate coordination |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=106 |issue=33 |pages=13661–13666 |doi=10.1073/pnas.0901049106 |doi-access=free |issn=1091-6490 |pmc=2728950 |pmid=19597150}}</ref><ref>{{Cite journal |last1=Ivanov |first1=Plamen Ch. |last2=Ma |first2=Qianli D. Y. |last3=Bartsch |first3=Ronny P. |date=2009 |title=Maternal–fetal heartbeat phase synchronization |journal=Proceedings of the National Academy of Sciences |volume=106 |issue=33 |pages=13641–13642 |doi=10.1073/pnas.0906987106 |doi-access=free |pmc=2728945 |pmid=19706494 |bibcode=2009PNAS..10613641I }}</ref>; brain blood flow velocity vs. peripheral blood pressure in stroke <ref>{{Cite journal |last1=Chen |first1=Zhi |last2=Hu |first2=Kun |last3=Stanley |first3=H. Eugene |last4=Novak |first4=Vera |last5=Ivanov |first5=Plamen Ch. |date=2006-03-15 |title=Cross-correlation of instantaneous phase increments in pressure-flow fluctuations: Applications to cerebral autoregulation |journal=Physical Review E |volume=73 |issue=3 |article-number=031915 |doi=10.1103/PhysRevE.73.031915 |pmid=16605566 |pmc=2140229 |arxiv=physics/0508102 |bibcode=2006PhRvE..73c1915C }}</ref>; synchronization in neuron synaptic function <ref>{{Cite journal |last1=Smirnov |first1=Lev A. |last2=Munyayev |first2=Vyacheslav O. |last3=Bolotov |first3=Maxim I. |last4=Osipov |first4=Grigory V. |last5=Belykh |first5=Igor |date=2024 |title=How synaptic function controls critical transitions in spiking neuron networks: insight from a Kuramoto model reduction |journal=Frontiers in Network Physiology |language=English |volume=4 |doi=10.3389/fnetp.2024.1423023 |issn=2674-0109 |article-number=1423023 |pmid=39185374 |doi-access=free |pmc=11341377 }}</ref>; organ networks <ref>{{Cite journal |last1=Bashan |first1=Amir |last2=Bartsch |first2=Ronny P. |last3=Kantelhardt |first3=Jan W. |last4=Havlin |first4=Shlomo |last5=Ivanov |first5=Plamen Ch |date=2012-02-28 |title=Network physiology reveals relations between network topology and physiological function |journal=Nature Communications |language=en |volume=3 |issue=1 |page=702 |doi=10.1038/ncomms1705 |pmid=22426223 |pmc=3518900 |arxiv=1203.0242 |bibcode=2012NatCo...3..702B |issn=2041-1723}}</ref><ref>{{Cite journal |last1=Bartsch |first1=Ronny P. |last2=Liu |first2=Kang K. L. |last3=Bashan |first3=Amir |last4=Ivanov |first4=Plamen Ch |date=2015-11-10 |title=Network Physiology: How Organ Systems Dynamically Interact |journal=PLOS ONE |language=en |volume=10 |issue=11 |article-number=e0142143 |doi=10.1371/journal.pone.0142143 |doi-access=free |issn=1932-6203 |pmc=4640580 |pmid=26555073 |bibcode=2015PLoSO..1042143B }}</ref>; EEG-synchronization and EEG-desynchronization in NREM and REM sleep <ref>{{Cite book |last1=Kryger |first1=Meir |last2=Roth |first2=Thomas |last3=Dement |first3=William C. |date=1994 |title=Principles and Practice of Sleep Medicine |publisher=Elsevier |url=https://www.sciencedirect.com/book/9780323242882/principles-and-practice-of-sleep-medicine |access-date=2025-10-17 |isbn=978-0-323-24288-2 |language=en-us}}</ref><ref>{{Cite journal |last=Siegel |first=Jerome M. |date=2005 |title=Clues to the functions of mammalian sleep |journal=Nature |volume=437 |issue=7063 |pages=1264–1271 |doi=10.1038/nature04285 |pmid=16251951 |pmc=8760626 |bibcode=2005Natur.437.1264S |issn=0028-0836}}</ref>; brain waves synchronization and anti-synchronization during rest, exercise, cognitive tasks, sleep and wake <ref>{{Cite journal |last1=Kopell |first1=N. |last2=Ermentrout |first2=G. B. |last3=Whittington |first3=M. A. |last4=Traub |first4=R. D. |date=2000 |title=Gamma rhythms and beta rhythms have different synchronization properties |journal=Proceedings of the National Academy of Sciences |volume=97 |issue=4 |pages=1867–1872 |doi=10.1073/pnas.97.4.1867 |doi-access=free |pmc=26528 |pmid=10677548 |bibcode=2000PNAS...97.1867K }}</ref><ref>{{Cite journal |last1=Liu |first1=Kang K. L. |last2=Bartsch |first2=Ronny P. |last3=Lin |first3=Aijing |last4=Mantegna |first4=Rosario N. |last5=Ivanov |first5=Plamen Ch |date=2015-10-26 |title=Plasticity of brain wave network interactions and evolution across physiologic states |journal=Frontiers in Neural Circuits |language=English |volume=9 |doi=10.3389/fncir.2015.00062 |issn=1662-5110 |article-number=62 |pmid=26578891 |pmc=4620446 |doi-access=free }}</ref><ref>{{Cite journal |last1=Lin |first1=Aijing |last2=Liu |first2=Kang K. L. |last3=Bartsch |first3=Ronny P. |last4=Ivanov |first4=Plamen Ch |date=2020-04-27 |title=Dynamic network interactions among distinct brain rhythms as a hallmark of physiologic state and function |url=https://www.nature.com/articles/s42003-020-0878-4 |journal=Communications Biology |language=en |volume=3 |issue=1 |page=197 |doi=10.1038/s42003-020-0878-4 |pmid=32341420 |issn=2399-3642|pmc=7184753 }}</ref><ref>{{Cite journal |last1=Chen |first1=Bolun |last2=Ciria |first2=Luis F. |last3=Hu |first3=Congtai |last4=Ivanov |first4=Plamen Ch |date=2022 |title=Ensemble of coupling forms and networks among brain rhythms as function of states and cognition |url=https://www.nature.com/articles/s42003-022-03017-4 |journal=Communications Biology |language=en |volume=5 |issue=1 |page=82 |doi=10.1038/s42003-022-03017-4 |issn=2399-3642|pmc=8782865 }}</ref>; cortio-muscular synchronization <ref>{{Cite journal |last1=Gross |first1=J. |last2=Tass |first2=P. A. |last3=Salenius |first3=S. |last4=Hari |first4=R. |last5=Freund |first5=H. J. |last6=Schnitzler |first6=A. |date=2000-09-15 |title=Cortico-muscular synchronization during isometric muscle contraction in humans as revealed by magnetoencephalography |journal=The Journal of Physiology |volume=527 Pt 3 |issue=Pt 3 |pages=623–631 |doi=10.1111/j.1469-7793.2000.00623.x |issn=0022-3751 |pmc=2270094 |pmid=10990546}}</ref><ref>{{Cite journal |last1=Rizzo |first1=Rossella |last2=Wang |first2=Jilin W. J. L. |last3=DePold Hohler |first3=Anna |last4=Holsapple |first4=James W. |last5=Vaou |first5=Okeanis E. |last6=Ivanov |first6=Plamen Ch |date=2023-09-05 |title=Dynamic networks of cortico-muscular interactions in sleep and neurodegenerative disorders |journal=Frontiers in Network Physiology |language=English |volume=3 |doi=10.3389/fnetp.2023.1168677 |issn=2674-0109 |article-number=1168677 |doi-access=free |hdl=10447/665071 |hdl-access=free }}</ref>;  synchronization in pancreatic cells and metabolism <ref>{{Cite journal |last1=Šterk |first1=Marko |last2=Zhang |first2=Yaowen |last3=Pohorec |first3=Viljem |last4=Leitgeb |first4=Eva Paradiž |last5=Dolenšek |first5=Jurij |last6=Benninger |first6=Richard K. P. |last7=Stožer |first7=Andraž |last8=Kravets |first8=Vira |last9=Gosak |first9=Marko |date=2024 |title=Network representation of multicellular activity in pancreatic islets: Technical considerations for functional connectivity analysis |journal=PLOS Computational Biology |volume=20 |issue=5 |article-number=e1012130 |doi=10.1371/journal.pcbi.1012130 |doi-access=free |issn=1553-7358 |pmc=11115366 |pmid=38739680 |bibcode=2024PLSCB..20E2130S }}</ref><ref>{{Cite journal |last1=Rutter |first1=Guy A. |last2=Hodson |first2=David J. |date=2015-02-01 |title=Beta cell connectivity in pancreatic islets: a type 2 diabetes target? |journal=Cellular and Molecular Life Sciences |language=en |volume=72 |issue=3 |pages=453–467 |doi=10.1007/s00018-014-1755-4 |issn=1420-9071 |pmc=11113448 |pmid=25323131}}</ref><ref>{{Cite journal |last1=Pizarro-Delgado |first1=Javier |last2=Fasciani |first2=Ilaria |last3=Temperan |first3=Ana |last4=Romero |first4=María |last5=González-Nieto |first5=Daniel |last6=Alonso-Magdalena |first6=Paloma |last7=Nualart-Marti |first7=Anna |last8=Estil'les |first8=Elisabet |last9=Paul |first9=David L. |last10=Martín-del-Río |first10=Rafael |last11=Montanya |first11=Eduard |last12=Solsona |first12=Carles |last13=Nadal |first13=Angel |last14=Barrio |first14=Luis Carlos |last15=Tamarit-Rodríguez |first15=J. |date=2014-06-15 |title=Inhibition of connexin 36 hemichannels by glucose contributes to the stimulation of insulin secretion |url=https://journals.physiology.org/doi/full/10.1152/ajpendo.00358.2013 |journal=American Journal of Physiology-Endocrinology and Metabolism |volume=306 |issue=12 |pages=E1354–E1366 |doi=10.1152/ajpendo.00358.2013 |pmid=24735890 |issn=0193-1849|url-access=subscription }}</ref>; inter-muscular muscle fibers synchronization in exercise and fatigue <ref>{{Cite journal |last1=Garcia-Retortillo |first1=Sergi |last2=Ivanov |first2=Plamen Ch |date=2022 |title=Inter-muscular networks of synchronous muscle fiber activation |journal=Frontiers in Network Physiology |language=English |volume=2 |article-number=1059793 |doi=10.3389/fnetp.2022.1059793 |doi-access=free |issn=2674-0109}}</ref><ref>{{Cite journal |last1=Garcia-Retortillo |first1=Sergi |last2=Romero-Gómez |first2=Carlos |last3=Ivanov |first3=Plamen Ch |date=2023 |title=Network of muscle fibers activation facilitates inter-muscular coordination, adapts to fatigue and reflects muscle function |journal=Communications Biology |language=en |volume=6 |issue=1 |page=891 |doi=10.1038/s42003-023-05204-3 |pmid=37648791 |pmc=10468525 |issn=2399-3642}}</ref>;  neuromodulation and Parkinson's, dystonia and epilepsy <ref>{{Cite journal |last1=Lehnertz |first1=Klaus |last2=Bialonski |first2=Stephan |last3=Horstmann |first3=Marie-Therese |last4=Krug |first4=Dieter |last5=Rothkegel |first5=Alexander |last6=Staniek |first6=Matthäus |last7=Wagner |first7=Tobias |date=2009-09-30 |title=Synchronization phenomena in human epileptic brain networks |url=https://www.sciencedirect.com/science/article/pii/S016502700900274X |journal=Journal of Neuroscience Methods |series=BrainModes: A Principled Approach to Modeling and Measuring Large-Scale Neuronal Activity |volume=183 |issue=1 |pages=42–48 |doi=10.1016/j.jneumeth.2009.05.015 |pmid=19481573 |issn=0165-0270|url-access=subscription }}</ref><ref>{{Cite journal |last1=Popovych |first1=Oleksandr V. |last2=Tass |first2=Peter A. |date=2014-12-16 |title=Control of Abnormal Synchronization in Neurological Disorders |journal=Frontiers in Neurology |language=English |volume=5 |doi=10.3389/fneur.2014.00268 |issn=1664-2295 |article-number=268 |pmid=25566174 |pmc=4267271 |doi-access=free }}</ref><ref>{{Cite journal |last1=Asher |first1=Eitan E. |last2=Plotnik |first2=Meir |last3=Günther |first3=Moritz |last4=Moshel |first4=Shay |last5=Levy |first5=Orr |last6=Havlin |first6=Shlomo |last7=Kantelhardt |first7=Jan W. |last8=Bartsch |first8=Ronny P. |date=2021-08-30 |title=Connectivity of EEG synchronization networks increases for Parkinson's disease patients with freezing of gait |url=https://www.nature.com/articles/s42003-021-02544-w |journal=Communications Biology |language=en |volume=4 |issue=1 |page=1017 |doi=10.1038/s42003-021-02544-w |pmid=34462540 |issn=2399-3642|pmc=8405655 }}</ref><ref>{{Cite journal |last1=Boddeti |first1=Ujwal |last2=Langbein |first2=Jenna |last3=McAfee |first3=Darrian |last4=Altshuler |first4=Marcelle |last5=Bachani |first5=Muzna |last6=Zaveri |first6=Hitten P. |last7=Spencer |first7=Dennis |last8=Zaghloul |first8=Kareem A. |last9=Ksendzovsky |first9=Alexander |date=2024-09-03 |title=Modeling seizure networks in neuron-glia cultures using microelectrode arrays |journal=Frontiers in Network Physiology |language=English |volume=4 |doi=10.3389/fnetp.2024.1441345 |issn=2674-0109 |article-number=1441345 |pmid=39290793 |pmc=11405204 |doi-access=free }}</ref>; circadian synchrony of sleep, nutrition and physical activity <ref>{{Cite journal |last1=Healy |first1=Kelly L. |last2=Morris |first2=Andrew R. |last3=Liu |first3=Andrew C. |date=2021 |title=Circadian Synchrony: Sleep, Nutrition, and Physical Activity |journal=Frontiers in Network Physiology |language=English |volume=1 |doi=10.3389/fnetp.2021.732243 |issn=2674-0109 |article-number=732243 |pmid=35156088 |doi-access=free |pmc=8830366 }}</ref>.


=== Neuroscience ===
=== Neuroscience ===
Line 49: Line 53:
=== Cognitive science ===
=== Cognitive science ===


In cognitive science, integrative (phase) synchronization mechanisms in cognitive neuroarchitectures of modern [[connectionism]] that include coupled oscillators (e.g."Oscillatory Networks"<ref>Werning, M. (2012). Non-symbolic compositional representation and its neuronal foundation: Towards an emulative semantics. In M. Werning, W. Hinzen & E. Machery (eds.), The Oxford handbook of compositionality (pp. 633-654). Oxford University Press. Oxford.</ref>) are used to solve the [[binding problem]] of cognitive neuroscience in perceptual cognition ("feature binding") and in language cognition ("variable binding").<ref>Maurer, H. (2021). ''Cognitive science: Integrative synchronization mechanisms in cognitive neuroarchitectures of the modern connectionism''. CRC Press, Boca Raton/FL, {{ISBN|978-1-351-04352-6}}. {{doi|10.1201/9781351043526}}.</ref><ref>Maurer, H. (2016). "[https://computationalcognitivescience.springeropen.com/articles/10.1186/s40469-016-0010-8 Integrative synchronization mechanisms in connectionist cognitive Neuroarchitectures]". ''Computational Cognitive Science''. 2: 3. {{doi|10.1186/s40469-016-0010-8}}.</ref><ref>Marcus, G.F. (2001). ''The algebraic mind. Integrating connectionism and cognitive science. Bradford Book'', The MIT Press, Cambridge, {{ISBN|0-262-13379-2}}. {{doi|10.7551/mitpress/1187.001.0001}}.</ref><ref>Bechtel, W. & Abrahamsen, A.A. (2002). Connectionism and the Mind: Parallel Processing, Dynamics, and Evolution in Networks. 2nd Edition. Blackwell Publishers, Oxford.</ref>
In cognitive science, integrative (phase) synchronization mechanisms in cognitive neuroarchitectures of modern [[connectionism]] that include coupled oscillators (e.g."Oscillatory Networks"<ref>Werning, M. (2012). Non-symbolic compositional representation and its neuronal foundation: Towards an emulative semantics. In M. Werning, W. Hinzen & E. Machery (eds.), The Oxford handbook of compositionality (pp. 633-654). Oxford University Press. Oxford.</ref>) are used to solve the [[binding problem]] of cognitive neuroscience in perceptual cognition ("feature binding") and in language cognition ("variable binding").<ref>Maurer, H. (2021). ''Cognitive science: Integrative synchronization mechanisms in cognitive neuroarchitectures of the modern connectionism''. CRC Press, Boca Raton/FL, {{ISBN|978-1-351-04352-6}}. {{doi|10.1201/9781351043526}}.</ref><ref>{{cite journal | last1=Maurer | first1=Harald | title=Integrative synchronization mechanisms in connectionist cognitive neuroarchitectures | journal=Computational Cognitive Science | date=2016 | volume=2 | article-number=3 | doi=10.1186/s40469-016-0010-8 | doi-access=free }}</ref><ref>Marcus, G.F. (2001). ''The algebraic mind. Integrating connectionism and cognitive science. Bradford Book'', The MIT Press, Cambridge, {{ISBN|0-262-13379-2}}. {{doi|10.7551/mitpress/1187.001.0001}}.</ref><ref>Bechtel, W. & Abrahamsen, A.A. (2002). Connectionism and the Mind: Parallel Processing, Dynamics, and Evolution in Networks. 2nd Edition. Blackwell Publishers, Oxford.</ref>
 


=== Biological networks ===
=== Biological networks ===


There is a concept that the synchronization of biochemical reactions determines biological [[homeostasis]]. According to this theory, all reactions occurring in a living cell are synchronized in terms of quantities and timescales to maintain [[biological network]] functional.<ref>{{cite journal |last1=Hołyst |first1=Robert |last2=Bubak |first2=Grzegorz |last3=Kalwarczyk |first3=Tomasz |last4=Kwapiszewska |first4=Karina |last5=Michalski |first5=Jarosław |last6=Pilz |first6=Marta |title=Living Cell as a Self-Synchronized Chemical Reactor |journal=J. Phys. Chem. Lett. |date=2024 |volume=15 |issue=13 |pages=3559–3570 |doi=10.1021/acs.jpclett.4c00190|doi-access=free |pmid=38526849 |pmc=11000238 }}</ref>
There is a concept that the synchronization of biochemical reactions determines biological [[homeostasis]]. According to this theory, all reactions occurring in a living cell are synchronized in terms of quantities and timescales to maintain [[biological network]] functional.<ref>{{cite journal |last1=Hołyst |first1=Robert |last2=Bubak |first2=Grzegorz |last3=Kalwarczyk |first3=Tomasz |last4=Kwapiszewska |first4=Karina |last5=Michalski |first5=Jarosław |last6=Pilz |first6=Marta |title=Living Cell as a Self-Synchronized Chemical Reactor |journal=J. Phys. Chem. Lett. |date=2024 |volume=15 |issue=13 |pages=3559–3570 |doi=10.1021/acs.jpclett.4c00190|doi-access=free |pmid=38526849 |pmc=11000238 |bibcode=2024JPCL...15.3559H }}</ref>


== Human movement ==
== Human movement ==
Line 63: Line 66:
[[Muscular bonding]] is the idea that moving in time evokes particular emotions.<ref>{{Cite book|url=https://books.google.com/books?id=F5QqSt6umWsC|hdl=2027/heb.04002.0001.001|title=Keeping Together in Time|isbn=978-0-674-50230-7|last1=McNeill|first1=William Hardy|date=30 September 1997|publisher=Harvard University Press }}</ref> This sparked some of the first research into movement synchronization and its effects on human emotion. In groups, synchronization of movement has been shown to increase conformity,<ref>{{Cite journal|last1=Dong|first1=Ping|last2=Dai|first2=Xianchi|last3=Wyer|first3=Robert S.|date=1 January 2015|title=Actors conform, observers react: the effects of behavioral synchrony on conformity|journal=Journal of Personality and Social Psychology|volume=108|issue=1|pages=60–75|doi=10.1037/pspi0000001|issn=1939-1315|pmid=25437130}}</ref> cooperation and trust.<ref>{{Cite web|url=https://pubmed.ncbi.nlm.nih.gov/?term=Synchrony+and+Cooperation|title=Synchrony and Cooperation – PubMed – Search Results|access-date=2017-02-02}}</ref>{{Failed verification|date=October 2019}}
[[Muscular bonding]] is the idea that moving in time evokes particular emotions.<ref>{{Cite book|url=https://books.google.com/books?id=F5QqSt6umWsC|hdl=2027/heb.04002.0001.001|title=Keeping Together in Time|isbn=978-0-674-50230-7|last1=McNeill|first1=William Hardy|date=30 September 1997|publisher=Harvard University Press }}</ref> This sparked some of the first research into movement synchronization and its effects on human emotion. In groups, synchronization of movement has been shown to increase conformity,<ref>{{Cite journal|last1=Dong|first1=Ping|last2=Dai|first2=Xianchi|last3=Wyer|first3=Robert S.|date=1 January 2015|title=Actors conform, observers react: the effects of behavioral synchrony on conformity|journal=Journal of Personality and Social Psychology|volume=108|issue=1|pages=60–75|doi=10.1037/pspi0000001|issn=1939-1315|pmid=25437130}}</ref> cooperation and trust.<ref>{{Cite web|url=https://pubmed.ncbi.nlm.nih.gov/?term=Synchrony+and+Cooperation|title=Synchrony and Cooperation – PubMed – Search Results|access-date=2017-02-02}}</ref>{{Failed verification|date=October 2019}}


In [[Dyad (sociology)|dyads]], groups of two people, synchronization has been demonstrated to increase affiliation,<ref name=":0">{{Cite journal|doi=10.1521/soco.2009.27.6.949 |title=It's All in the Timing: Interpersonal Synchrony Increases Affiliation |journal=Social Cognition |volume=27 |issue=6 |pages=949 |year=2009 |last1=Hove |first1=Michael J. |last2=Risen |first2=Jane L. }}</ref> self-esteem,<ref>{{Cite journal|last1=Lumsden|first1=Joanne|last2=Miles|first2=Lynden K.|last3=Macrae|first3=C. Neil|date=1 January 2014|title=Sync or sink? Interpersonal synchrony impacts self-esteem|journal=Frontiers in Psychology|volume=5|pages=1064|doi=10.3389/fpsyg.2014.01064|pmc=4168669|pmid=25285090|doi-access=free}}</ref> compassion and altruistic behaviour<ref>{{Cite journal|last1=Valdesolo|first1=Piercarlo|last2=Desteno|first2=David|date=1 April 2011|title=Synchrony and the social tuning of compassion|journal=Emotion|volume=11|issue=2|pages=262–266|doi=10.1037/a0021302|issn=1931-1516|pmid=21500895}}</ref> and increase rapport.<ref>{{Cite journal|last1=Vacharkulksemsuk|first1=Tanya|last2=Fredrickson|first2=Barbara L.|date=1 January 2012|title=Strangers in sync: Achieving embodied rapport through shared movements|journal=Journal of Experimental Social Psychology|volume=48|issue=1|pages=399–402|doi=10.1016/j.jesp.2011.07.015|issn=0022-1031|pmc=3290409|pmid=22389521}}</ref> During arguments, synchrony between the arguing pair has been noted to decrease; however, it is not clear whether this is due to the change in emotion or other factors.<ref>{{Cite journal|last1=Paxton|first1=Alexandra|last2=Dale|first2=Rick|date=1 January 2013|title=Argument disrupts interpersonal synchrony|journal=Quarterly Journal of Experimental Psychology  |volume=66|issue=11|pages=2092–2102|doi=10.1080/17470218.2013.853089|issn=1747-0226|pmid=24303888|s2cid=9565508|doi-access=free}}</ref> There is evidence to show that movement synchronization requires other people to cause its beneficial effects, as the effect on affiliation does not occur when one of the dyad is synchronizing their movements to something outside the dyad.<ref name=":0" /> This is known as interpersonal synchrony.
In [[Dyad (sociology)|dyads]], groups of two people, synchronization has been demonstrated to increase affiliation,<ref name=":0">{{Cite journal|doi=10.1521/soco.2009.27.6.949 |title=It's All in the Timing: Interpersonal Synchrony Increases Affiliation |journal=Social Cognition |volume=27 |issue=6 |page=949 |year=2009 |last1=Hove |first1=Michael J. |last2=Risen |first2=Jane L. }}</ref> self-esteem,<ref>{{Cite journal|last1=Lumsden|first1=Joanne|last2=Miles|first2=Lynden K.|last3=Macrae|first3=C. Neil|date=1 January 2014|title=Sync or sink? Interpersonal synchrony impacts self-esteem|journal=Frontiers in Psychology|volume=5|page=1064|doi=10.3389/fpsyg.2014.01064|pmc=4168669|pmid=25285090|doi-access=free}}</ref> compassion and altruistic behaviour<ref>{{Cite journal|last1=Valdesolo|first1=Piercarlo|last2=Desteno|first2=David|date=1 April 2011|title=Synchrony and the social tuning of compassion|journal=Emotion|volume=11|issue=2|pages=262–266|doi=10.1037/a0021302|issn=1931-1516|pmid=21500895}}</ref> and increase rapport.<ref>{{Cite journal|last1=Vacharkulksemsuk|first1=Tanya|last2=Fredrickson|first2=Barbara L.|date=1 January 2012|title=Strangers in sync: Achieving embodied rapport through shared movements|journal=Journal of Experimental Social Psychology|volume=48|issue=1|pages=399–402|doi=10.1016/j.jesp.2011.07.015|issn=0022-1031|pmc=3290409|pmid=22389521}}</ref> During arguments, synchrony between the arguing pair has been noted to decrease; however, it is not clear whether this is due to the change in emotion or other factors.<ref>{{Cite journal|last1=Paxton|first1=Alexandra|last2=Dale|first2=Rick|date=1 January 2013|title=Argument disrupts interpersonal synchrony|journal=Quarterly Journal of Experimental Psychology  |volume=66|issue=11|pages=2092–2102|doi=10.1080/17470218.2013.853089|issn=1747-0226|pmid=24303888|s2cid=9565508|doi-access=free}}</ref> There is evidence to show that movement synchronization requires other people to cause its beneficial effects, as the effect on affiliation does not occur when one of the dyad is synchronizing their movements to something outside the dyad.<ref name=":0" /> This is known as interpersonal synchrony.


There has been dispute regarding the true effect of synchrony in these studies. Research in this area detailing the positive effects of synchrony, have attributed this to synchrony alone; however, many of the experiments incorporate a shared intention to achieve synchrony. Indeed, the Reinforcement of Cooperation Model suggests that perception of synchrony leads to reinforcement that cooperation is occurring, which leads to the pro-social effects of synchrony.<ref>{{Cite journal|last1=Reddish|first1=Paul|last2=Fischer|first2=Ronald|last3=Bulbulia|first3=Joseph|date=1 January 2013|title=Let's dance together: synchrony, shared intentionality and cooperation|journal=PLOS ONE|volume=8|issue=8|pages=e71182|doi=10.1371/journal.pone.0071182|issn=1932-6203|pmc=3737148|pmid=23951106|bibcode=2013PLoSO...871182R|doi-access=free}}</ref> More research is required to separate the effect of intentionality from the beneficial effect of synchrony.<ref>{{Cite journal|last1=Ellamil|first1=Melissa|last2=Berson|first2=Josh|last3=Margulies|first3=Daniel S.|date=1 January 2016|title=Influences on and Measures of Unintentional Group Synchrony|journal=Frontiers in Psychology|volume=7|pages=1744|doi=10.3389/fpsyg.2016.01744|pmc=5101201|pmid=27881968|doi-access=free}}</ref>
There has been dispute regarding the true effect of synchrony in these studies. Research in this area detailing the positive effects of synchrony, have attributed this to synchrony alone; however, many of the experiments incorporate a shared intention to achieve synchrony. Indeed, the Reinforcement of Cooperation Model suggests that perception of synchrony leads to reinforcement that cooperation is occurring, which leads to the pro-social effects of synchrony.<ref>{{Cite journal|last1=Reddish|first1=Paul|last2=Fischer|first2=Ronald|last3=Bulbulia|first3=Joseph|date=1 January 2013|title=Let's dance together: synchrony, shared intentionality and cooperation|journal=PLOS ONE|volume=8|issue=8|article-number=e71182|doi=10.1371/journal.pone.0071182|issn=1932-6203|pmc=3737148|pmid=23951106|bibcode=2013PLoSO...871182R|doi-access=free}}</ref> More research is required to separate the effect of intentionality from the beneficial effect of synchrony.<ref>{{Cite journal|last1=Ellamil|first1=Melissa|last2=Berson|first2=Josh|last3=Margulies|first3=Daniel S.|date=1 January 2016|title=Influences on and Measures of Unintentional Group Synchrony|journal=Frontiers in Psychology|volume=7|page=1744|doi=10.3389/fpsyg.2016.01744|pmc=5101201|pmid=27881968|doi-access=free}}</ref>


== Uses ==
== Uses ==

Latest revision as of 23:12, 20 October 2025

Template:Short description Script error: No such module "other uses". Template:Use dmy dates

File:Rockettes 2239918515 96df95270e.jpg
Synchronized dancers

Synchronization is the coordination of events to operate a system in unison. For example, the conductor of an orchestra keeps the orchestra synchronized or in time. Systems that operate with all parts in synchrony are said to be synchronous or in sync—and those that are not are asynchronous.

Today, time synchronization can occur between systems around the world through satellite navigation signals and other time and frequency transfer techniques.

Navigation and railways

Time-keeping and synchronization of clocks is a critical problem in long-distance ocean navigation. Before radio navigation and satellite-based navigation, navigators required accurate time in conjunction with astronomical observations to determine how far east or west their vessel traveled. The invention of an accurate marine chronometer revolutionized marine navigation. By the end of the 19th century, important ports provided time signals in the form of a signal gun, flag, or dropping time ball so that mariners could check and correct their chronometers for error.

Synchronization was important in the operation of 19th-century railways, these being the first major means of transport fast enough for differences in local mean time between nearby towns to be noticeable. Each line handled the problem by synchronizing all its stations to headquarters as a standard railway time. In some territories, companies shared a single railroad track and needed to avoid collisions. The need for strict timekeeping led the companies to settle on one standard, and civil authorities eventually abandoned local mean time in favor of railway time.

Communication

Script error: No such module "labelled list hatnote". In electrical engineering terms, for digital logic and data transfer, a synchronous circuit requires a clock signal. A clock signal simply signals the start or end of some time period, often measured in microseconds or nanoseconds, that has an arbitrary relationship to any other system of measurement of the passage of minutes, hours, and days.

In a different sense, electronic systems are sometimes synchronized to make events at points far apart appear simultaneous or near-simultaneous from a certain perspective.Template:Efn Timekeeping technologies such as the GPS satellites and Network Time Protocol (NTP) provide real-time access to a close approximation to the UTC timescale and are used for many terrestrial synchronization applications of this kind.

In computer science (especially parallel computing), synchronization is the coordination of simultaneous threads or processes to complete a task with correct runtime order and no unexpected race conditions; see synchronization (computer science) for details.

Synchronization is also an important concept in the following fields:

Dynamical systems

File:Wesphysdemo - Synchronized Metronomes.webm
A mechanical demonstration of synchronization of oscillators: metronomes, initially out of phase, synchronize through small motions of the base on which they are placed

Script error: No such module "Labelled list hatnote".

Synchronization of multiple interacting dynamical systems can occur when the systems are autonomous oscillators. Poincaré phase oscillators are model systems that can interact and partially synchronize within random or regular networks.[1] In the case of global synchronization of phase oscillators, an abrupt transition from unsynchronized to full synchronization takes place when the coupling strength exceeds a critical threshold. This is known as the Kuramoto model phase transition.[2] Synchronization is an emergent property that occurs in a broad range of dynamical systems, including neural signaling, the beating of the heart and the synchronization of fire-fly light waves [3][4]. A unified approach that quantifies synchronization in chaotic systems can be derived from the statistical analysis of measured data.[5]

Applications

Network physiology

Synchronization and global synchronization phenomena play essential role in the field of Network Physiology [6][7] with focus on whole-body research to understand the mechanisms through which physiological systems and sub-systems — from sub-cellular, metabolic and genomic scale to cellular and neuronal networks, to organs and the organism level — synchronize their dynamics to coordinate functions and generate distinct physiological states in health and disease. Amplitude, frequency, and phase synchronization, as forms of coupling and interaction, underlie biological/physiological network mechanisms through which global states, functions and behaviors emerge at the system and organism level [3][4]. Synchronization has been reported across physiological systems and levels of integration, including cardio-respiratory coupling [8][9]; maternal-fetal cardiac phase-synchronization [10][11]; brain blood flow velocity vs. peripheral blood pressure in stroke [12]; synchronization in neuron synaptic function [13]; organ networks [14][15]; EEG-synchronization and EEG-desynchronization in NREM and REM sleep [16][17]; brain waves synchronization and anti-synchronization during rest, exercise, cognitive tasks, sleep and wake [18][19][20][21]; cortio-muscular synchronization [22][23]; synchronization in pancreatic cells and metabolism [24][25][26]; inter-muscular muscle fibers synchronization in exercise and fatigue [27][28]; neuromodulation and Parkinson's, dystonia and epilepsy [29][30][31][32]; circadian synchrony of sleep, nutrition and physical activity [33].

Neuroscience

In cognitive neuroscience, (stimulus-dependent) (phase-)synchronous oscillations of neuron populations serve to solve the general binding problem. According to the so-called Binding-By-Synchrony (BBS) Hypothesis[34][35][36][37][38][39][40] a precise temporal correlation between the impulses of neurons ("cross-correlation analysis"[41]) and thus a stimulus-dependent temporal synchronization of the coherent activity of subpopulations of neurons emerges. Moreover, this synchronization mechanism circumvents the superposition problem[42] by more effectively identifying the signature of synchronous neuronal signals as belonging together for subsequent (sub-)cortical information processing areas.

Cognitive science

In cognitive science, integrative (phase) synchronization mechanisms in cognitive neuroarchitectures of modern connectionism that include coupled oscillators (e.g."Oscillatory Networks"[43]) are used to solve the binding problem of cognitive neuroscience in perceptual cognition ("feature binding") and in language cognition ("variable binding").[44][45][46][47]

Biological networks

There is a concept that the synchronization of biochemical reactions determines biological homeostasis. According to this theory, all reactions occurring in a living cell are synchronized in terms of quantities and timescales to maintain biological network functional.[48]

Human movement

Template:Primary sources section

File:Prinses Irene Brigade in training in een kamp in de Midlands. . Een van de manie, Bestanddeelnr 934-9508.jpg
Troops use synchronization to learn teamwork

Synchronization of movement is defined as similar movements between two or more people who are temporally aligned.[49] This is different from mimicry, which occurs after a short delay.[50] Line dance and military step are examples.

Muscular bonding is the idea that moving in time evokes particular emotions.[51] This sparked some of the first research into movement synchronization and its effects on human emotion. In groups, synchronization of movement has been shown to increase conformity,[52] cooperation and trust.[53]Script error: No such module "Unsubst".

In dyads, groups of two people, synchronization has been demonstrated to increase affiliation,[54] self-esteem,[55] compassion and altruistic behaviour[56] and increase rapport.[57] During arguments, synchrony between the arguing pair has been noted to decrease; however, it is not clear whether this is due to the change in emotion or other factors.[58] There is evidence to show that movement synchronization requires other people to cause its beneficial effects, as the effect on affiliation does not occur when one of the dyad is synchronizing their movements to something outside the dyad.[54] This is known as interpersonal synchrony.

There has been dispute regarding the true effect of synchrony in these studies. Research in this area detailing the positive effects of synchrony, have attributed this to synchrony alone; however, many of the experiments incorporate a shared intention to achieve synchrony. Indeed, the Reinforcement of Cooperation Model suggests that perception of synchrony leads to reinforcement that cooperation is occurring, which leads to the pro-social effects of synchrony.[59] More research is required to separate the effect of intentionality from the beneficial effect of synchrony.[60]

Uses

Synchronization is important in digital telephony, video and digital audio where streams of sampled data are manipulated. Synchronization of image and sound was an important technical problem in sound film. More sophisticated film, video, and audio applications use time code to synchronize audio and video.[2] In movie and television production it is necessary to synchronize video frames from multiple cameras. In addition to enabling basic editing, synchronization can also be used for 3D reconstruction[61]

In electric power systems, alternator synchronization is required when multiple generators are connected to an electrical grid.

Arbiters are needed in digital electronic systems such as microprocessors to deal with asynchronous inputs. There are also electronic digital circuits called synchronizers that attempt to perform arbitration in one clock cycle. Synchronizers, unlike arbiters, are prone to failure. (See metastability in electronics).

Encryption systems usually require some synchronization mechanism to ensure that the receiving cipher is decoding the right bits at the right time.

Automotive transmissions contain synchronizers that bring the toothed rotating parts (gears and splined shaft) to the same rotational velocity before engaging the teeth.

Flash synchronization synchronizes the flash with the shutter.

Some systems may be only approximately synchronized, or plesiochronous. Some applications require that relative offsets between events be determined. For others, only the order of the event is important.[1]

See also

Template:Cmn

Notes

Template:Notelist

References

Template:Reflist

External links

Template:Sister project

Template:Film editing Template:Authority control

Template:Nonverbal communication

  1. a b Script error: No such module "citation/CS1".
  2. a b Script error: No such module "citation/CS1".
  3. a b Script error: No such module "citation/CS1".
  4. a b Script error: No such module "citation/CS1".
  5. Script error: No such module "Citation/CS1".
  6. Script error: No such module "citation/CS1".
  7. Script error: No such module "Citation/CS1".
  8. Script error: No such module "Citation/CS1".
  9. Script error: No such module "Citation/CS1".
  10. Script error: No such module "Citation/CS1".
  11. Script error: No such module "Citation/CS1".
  12. Script error: No such module "Citation/CS1".
  13. Script error: No such module "Citation/CS1".
  14. Script error: No such module "Citation/CS1".
  15. Script error: No such module "Citation/CS1".
  16. Script error: No such module "citation/CS1".
  17. Script error: No such module "Citation/CS1".
  18. Script error: No such module "Citation/CS1".
  19. Script error: No such module "Citation/CS1".
  20. Script error: No such module "Citation/CS1".
  21. Script error: No such module "Citation/CS1".
  22. Script error: No such module "Citation/CS1".
  23. Script error: No such module "Citation/CS1".
  24. Script error: No such module "Citation/CS1".
  25. Script error: No such module "Citation/CS1".
  26. Script error: No such module "Citation/CS1".
  27. Script error: No such module "Citation/CS1".
  28. Script error: No such module "Citation/CS1".
  29. Script error: No such module "Citation/CS1".
  30. Script error: No such module "Citation/CS1".
  31. Script error: No such module "Citation/CS1".
  32. Script error: No such module "Citation/CS1".
  33. Script error: No such module "Citation/CS1".
  34. Singer, W. (1999). Neuronal synchrony: A versatile code for the definition of relations. Neuron, 24, 49-65.
  35. Singer, W. (1999a). Binding by neural synchrony. In R. A. Wilson & F. C. Keil (eds.): The MIT encyclopedia of the cognitive sciences (pp. 81-84). Cambridge, MA, London: The MIT Press.
  36. Singer, W. (2009a). Consciousness and neuronal synchronization. In S. Laureys & G. Tononi: The neurology of consciousness: Cognitive neuroscience and neuropathology (pp. 43-52). Amsterdam: Elsevier.
  37. Singer, W. (2009b). Neural synchrony and feature binding. In L.R. Squire (Ed.) Encyclopedia of Neuroscience. Vol. 6 (pp. 253-259). Oxford: Academic Press.
  38. Singer, W. (2013a). The neuronal correlate of consciousness: Unity in time rather than space? Neurosciences and the Human Person: New Perspectives on Human Activities Pontifical Academy of Sciences. Scripta Varia. Vol. 121. Vatican City. 2013. From: www.casinapioiv.va/content/dam/accademia/pdf/sv121/sv121-singer.pdf
  39. Singer, W. (2013b). Cortical dynamics revisited. Trends in Cognitive Sciences 17, 616-626.
  40. Singer, W. (2018). Neuronal oscillations: unavoidable and useful? European Journal of Neuroscience 48, 2389-2399.
  41. Engel, A. K., König, P., Gray, C. M. & Singer, W. (1990). Stimulus-dependent neuronal oscillations in cat visual cortex: Intercolumnar interaction as determined by cross-correlation analysis. European Journal of Neuroscience, 2, 588-606.
  42. Malsburg, C. von der (1999). The what and why of binding: The modeler's perspective. Neuron, 24, 95-104.
  43. Werning, M. (2012). Non-symbolic compositional representation and its neuronal foundation: Towards an emulative semantics. In M. Werning, W. Hinzen & E. Machery (eds.), The Oxford handbook of compositionality (pp. 633-654). Oxford University Press. Oxford.
  44. Maurer, H. (2021). Cognitive science: Integrative synchronization mechanisms in cognitive neuroarchitectures of the modern connectionism. CRC Press, Boca Raton/FL, Template:ISBN. Script error: No such module "doi"..
  45. Script error: No such module "Citation/CS1".
  46. Marcus, G.F. (2001). The algebraic mind. Integrating connectionism and cognitive science. Bradford Book, The MIT Press, Cambridge, Template:ISBN. Script error: No such module "doi"..
  47. Bechtel, W. & Abrahamsen, A.A. (2002). Connectionism and the Mind: Parallel Processing, Dynamics, and Evolution in Networks. 2nd Edition. Blackwell Publishers, Oxford.
  48. Script error: No such module "Citation/CS1".
  49. Script error: No such module "Citation/CS1".
  50. Script error: No such module "Citation/CS1".
  51. Script error: No such module "citation/CS1".
  52. Script error: No such module "Citation/CS1".
  53. Script error: No such module "citation/CS1".
  54. a b Script error: No such module "Citation/CS1".
  55. Script error: No such module "Citation/CS1".
  56. Script error: No such module "Citation/CS1".
  57. Script error: No such module "Citation/CS1".
  58. Script error: No such module "Citation/CS1".
  59. Script error: No such module "Citation/CS1".
  60. Script error: No such module "Citation/CS1".
  61. Moore, Carl, et al. "Synchronization of images from multiple cameras to reconstruct a moving human." 2010 IEEE/ACM 14th International Symposium on Distributed Simulation and Real Time Applications. IEEE, 2010.