Excavata: Difference between revisions

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
imported>Jako96
Used "Discobids" instead of "Discoba"
 
imported>LuniZunie
m Reverted edits by 176.238.225.16 (talk) (HG) (3.4.13)
 
(One intermediate revision by one other user not shown)
Line 10: Line 10:
| taxon = Excavata
| taxon = Excavata
| authority = ([[Thomas Cavalier-Smith|Cavalier-Smith]]), 2002
| authority = ([[Thomas Cavalier-Smith|Cavalier-Smith]]), 2002
| subdivision_ranks = [[Phylum|Phyla]] and [[Class (biology)|classes]]
| excludes = All of other [[Eukaryote|Eukaryota]]
| subdivision = See text
| includes = See text
| excludes = *[[Amorphea]]
*[[CRuMs]]
*[[Ancyromonadida]]
*[[Hemimastigophora]]
*[[Provora]]
*[[Diaphoretickes]]
*''[[Meteora sporadica|Meteora]]''
*''[[Quasibodo]]''
}}
}}


[[File:Excavata cell schemes.svg|thumb|Three types of excavate cells. Top: [[Jakobida]], 1-nucleus, 2-anterior flagellum, 3-ventral/posterior flagellum, 4-ventral feeding groove. Middle: [[Euglenozoa]], 1-nucleus, 2-flagellar pocket/reservoir, 3-dorsal/anterior flagellum, 4-ventral/posterior flagellum, 5-cytostome/feeding apparatus. Bottom: [[Metamonada]], 1-anterior flagella, 2-parabasal body, 3-undulating membrane, 4-posterior flagellum, 5-nucleus, 6-[[axostyle]].]]
[[File:Excavata cell schemes.svg|thumb|Three types of excavate cells. Top: [[Jakobida]], 1-nucleus, 2-anterior flagellum, 3-ventral/posterior flagellum, 4-ventral feeding groove. Middle: [[Euglenozoa]], 1-nucleus, 2-flagellar pocket/reservoir, 3-dorsal/anterior flagellum, 4-ventral/posterior flagellum, 5-cytostome/feeding apparatus. Bottom: [[Metamonada]], 1-anterior flagella, 2-parabasal body, 3-undulating membrane, 4-posterior flagellum, 5-nucleus, 6-[[axostyle]].]]


'''Excavata''' is an obsolete, extensive and diverse [[Paraphyly|paraphyletic]] group of unicellular [[Eukaryote|Eukaryota]].<ref name="pmid19237557">{{cite journal |last1=Hampl |first1=Vladimir |last2=Hug |first2=Laura |last3=Leigh |first3=Jessica W. |last4=Dacks |first4=Joel B. |last5=Lang |first5=B. Franz |last6=Simpson |first6=Alastair G. B. |last7=Roger |first7=Andrew J. |display-authors=3 |title=Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups" |journal=PNAS |volume=106 |issue=10 |pages=3859–3864 |year=2009 |pmid=19237557 |doi=10.1073/pnas.0807880106 |pmc=2656170 |bibcode=2009PNAS..106.3859H |doi-access=free  }}</ref><ref name=simpson>{{Cite journal |last1=Simpson |first1=Alastair G. B. |last2=Inagaki |first2=Yuji |last3=Roger |first3=Andrew J. |doi=10.1093/molbev/msj068 |year=2006 |title=Comprehensive multigene phylogenies of excavate protists reveal the evolutionary positions of "primitive" eukaryotes |volume=23 |issue=3 |pages=615–625 |pmid=16308337 |journal=Molecular Biology and Evolution |doi-access=free  }}</ref> The group was first suggested by Simpson and Patterson in 1999<ref name="Simpson1999">{{Cite journal |date=December 1999 |title=The ultrastructure of Carpediemonas membranifera (Eukaryota) with reference to the 'excavate hypothesis' |journal=European Journal of Protistology |volume=35 |issue=4 |pages=353–370 |doi=10.1016/S0932-4739(99)80044-3 |last1=Simpson |first1=Alastair G.B. |last2=Patterson |first2=David J. }}</ref><ref name="Simpson2003">{{Cite journal |last=Simpson |first=Alastair G. B. |date= November 2003 |title=Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota) |journal=International Journal of Systematic and Evolutionary Microbiology |volume=53 |issue=6 |pages=1759–1777 |doi=10.1099/ijs.0.02578-0 |doi-access=free |pmid=14657103}}</ref> and the name latinized and assigned a rank by [[Thomas Cavalier-Smith]] in 2002. It contains a variety of free-living and symbiotic protists, and includes some important parasites of humans such as ''[[Giardia]]'' and ''[[Trichomonas]]''.<ref name="Ancestor">{{cite book |title=The Ancestor's Tale |isbn=978-0544859937 |last1=Dawkins  |first1=Richard |last2=Wong |first2=Yan |year=2016 |title-link=The Ancestor's Tale |publisher=Houghton Mifflin Harcourt |author1-link=Richard Dawkins }}</ref> Excavates were formerly considered to be included in the now- obsolete [[Protist|Protista]] kingdom.<ref name="pmid11931142">{{cite journal|last1=Cavalier-Smith |first1=Thomas |title=The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa.|journal=International Journal of Systematic and Evolutionary Microbiology |year=2002 |volume=52 |issue=2 |pages=297–354 |doi=10.1099/00207713-52-2-297 |pmid=11931142 }}</ref> They were distinguished from other lineages based on electron-microscopic information about how the cells are arranged (they have a distinctive [[ultrastructural identity]]).<ref name="Simpson2003" /> They are considered to be a [[Basal_(phylogenetics)|basal]] [[flagellate]] lineage.<ref>{{cite journal |last1=Dawson |first1=Scott C. |last2=Paredez |first2=Alexander R. |title=Alternative cytoskeletal landscapes: cytoskeletal novelty and evolution in basal excavate protists|journal=Current Opinion in Cell Biology |year=2013 |volume=25 |issue=1 |pages=134–141 |doi=10.1016/j.ceb.2012.11.005 |pmid=23312067 |pmc=4927265}}</ref>  
'''Excavata''' is an obsolete, extensive and diverse [[Paraphyly|paraphyletic]] group of unicellular [[Eukaryote|Eukaryota]].<ref name="pmid19237557">{{cite journal |last1=Hampl |first1=Vladimir |last2=Hug |first2=Laura |last3=Leigh |first3=Jessica W. |last4=Dacks |first4=Joel B. |last5=Lang |first5=B. Franz |last6=Simpson |first6=Alastair G. B. |last7=Roger |first7=Andrew J. |display-authors=3 |title=Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups" |journal=PNAS |volume=106 |issue=10 |pages=3859–3864 |year=2009 |pmid=19237557 |doi=10.1073/pnas.0807880106 |pmc=2656170 |bibcode=2009PNAS..106.3859H |doi-access=free  }}</ref><ref name=simpson>{{Cite journal |last1=Simpson |first1=Alastair G. B. |last2=Inagaki |first2=Yuji |last3=Roger |first3=Andrew J. |doi=10.1093/molbev/msj068 |year=2006 |title=Comprehensive multigene phylogenies of excavate protists reveal the evolutionary positions of "primitive" eukaryotes |volume=23 |issue=3 |pages=615–625 |pmid=16308337 |journal=Molecular Biology and Evolution |doi-access=free  }}</ref> The group was first suggested by Simpson and Patterson in 1999<ref name="Simpson1999">{{Cite journal |date=December 1999 |title=The ultrastructure of Carpediemonas membranifera (Eukaryota) with reference to the 'excavate hypothesis' |journal=European Journal of Protistology |volume=35 |issue=4 |pages=353–370 |doi=10.1016/S0932-4739(99)80044-3 |last1=Simpson |first1=Alastair G.B. |last2=Patterson |first2=David J. }}</ref><ref name="Simpson2003">{{Cite journal |last=Simpson |first=Alastair G. B. |date= November 2003 |title=Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota) |journal=International Journal of Systematic and Evolutionary Microbiology |volume=53 |issue=6 |pages=1759–1777 |doi=10.1099/ijs.0.02578-0 |doi-access=free |pmid=14657103}}</ref> and the name latinized and assigned a rank by [[Thomas Cavalier-Smith]] in 2002. It contains a variety of free-living and symbiotic [[Protist|protists]], and includes some important parasites of humans such as ''[[Giardia]]'' and ''[[Trichomonas]]''.<ref name="Ancestor">{{cite book |title=The Ancestor's Tale |isbn=978-0-544-85993-7 |last1=Dawkins  |first1=Richard |last2=Wong |first2=Yan |year=2016 |title-link=The Ancestor's Tale |publisher=Houghton Mifflin Harcourt |author1-link=Richard Dawkins }}</ref> Excavates were formerly considered to be included in the now- obsolete [[Protist|Protista]] kingdom.<ref name="pmid11931142">{{cite journal|last1=Cavalier-Smith |first1=Thomas |title=The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa.|journal=International Journal of Systematic and Evolutionary Microbiology |year=2002 |volume=52 |issue=2 |pages=297–354 |doi=10.1099/00207713-52-2-297 |pmid=11931142 }}</ref> They were distinguished from other lineages based on electron-microscopic information about how the cells are arranged (they have a distinctive [[ultrastructural identity]]).<ref name="Simpson2003" /> They are considered to be a [[Basal_(phylogenetics)|basal]] [[flagellate]] lineage.<ref>{{cite journal |last1=Dawson |first1=Scott C. |last2=Paredez |first2=Alexander R. |title=Alternative cytoskeletal landscapes: cytoskeletal novelty and evolution in basal excavate protists|journal=Current Opinion in Cell Biology |year=2013 |volume=25 |issue=1 |pages=134–141 |doi=10.1016/j.ceb.2012.11.005 |pmid=23312067 |pmc=4927265}}</ref>  


On the basis of phylogenomic analyses, the group was shown to contain three widely separated eukaryote groups, the [[discobid]]s, [[metamonad]]s, and [[malawimonad]]s.<ref name="pmid31606140">{{cite journal | last1 = Burki | first1 = Fabien | last2 = Roger | first2 = Andrew J. | last3 = Brown | first3 = Matthew W. | last4 = Simpson | first4 = Alastair G.B. |display-authors=3 | title = The New Tree of Eukaryotes | journal = Trends in Ecology & Evolution | volume = 35 | issue = 1 | pages = 43–55 | date = January 2020 | pmid = 31606140 | doi = 10.1016/j.tree.2019.08.008  | s2cid = 204545629 | doi-access = free }}</ref><ref name = "Brown_2018" /><ref>{{cite journal |last1=Heiss |first1=Aaron A. |last2=Kolisko |first2=Martin |last3=Ekelund |first3=Fleming |last4=Brown |first4=Matthew W. |last5=Roger |first5=Andrew J. |last6=Simpson |first6=Alastair G. B. |display-authors=3 |title=Combined morphological and phylogenomic re-examination of malawimonads, a critical taxon for inferring the evolutionary history of eukaryotes |journal=Royal Society Open Science |date=4 April 2018 |volume=5 |issue=4 |pages=171707 |doi=10.1098/rsos.171707 |pmid=29765641 |pmc=5936906 |bibcode=2018RSOS....571707H }}</ref><ref>{{cite journal |last1=Keeling |first1= Patrick J. |last2=Burki |first2= Fabien |title=Progress towards the Tree of Eukaryotes |journal=Current Biology |date=19 August 2019 |volume=29 |issue=16 |pages=R808–R817 |doi=10.1016/j.cub.2019.07.031 |pmid=31430481 |doi-access=free |bibcode= 2019CBio...29.R808K }}</ref> A current view of the composition of the excavates is given below, indicating that the group is paraphyletic. Except for some [[Euglenozoa]],  all are non-[[Photosynthesis|photosynthetic]].
On the basis of phylogenomic analyses, the group was shown to contain three widely separated eukaryote groups, the [[discobid]]s, [[metamonad]]s, and [[malawimonad]]s.<ref name="pmid31606140">{{cite journal | last1 = Burki | first1 = Fabien | last2 = Roger | first2 = Andrew J. | last3 = Brown | first3 = Matthew W. | last4 = Simpson | first4 = Alastair G.B. |display-authors=3 | title = The New Tree of Eukaryotes | journal = Trends in Ecology & Evolution | volume = 35 | issue = 1 | pages = 43–55 | date = January 2020 | pmid = 31606140 | doi = 10.1016/j.tree.2019.08.008  | s2cid = 204545629 | doi-access = free | bibcode = 2020TEcoE..35...43B }}</ref><ref name = "Brown_2018" /><ref>{{cite journal |last1=Heiss |first1=Aaron A. |last2=Kolisko |first2=Martin |last3=Ekelund |first3=Fleming |last4=Brown |first4=Matthew W. |last5=Roger |first5=Andrew J. |last6=Simpson |first6=Alastair G. B. |display-authors=3 |title=Combined morphological and phylogenomic re-examination of malawimonads, a critical taxon for inferring the evolutionary history of eukaryotes |journal=Royal Society Open Science |date=4 April 2018 |volume=5 |issue=4 |article-number=171707 |doi=10.1098/rsos.171707 |pmid=29765641 |pmc=5936906 |bibcode=2018RSOS....571707H }}</ref><ref>{{cite journal |last1=Keeling |first1= Patrick J. |last2=Burki |first2= Fabien |title=Progress towards the Tree of Eukaryotes |journal=Current Biology |date=19 August 2019 |volume=29 |issue=16 |pages=R808–R817 |doi=10.1016/j.cub.2019.07.031 |pmid=31430481 |doi-access=free |bibcode= 2019CBio...29.R808K }}</ref> A current view of the composition of the excavates is given below, indicating that the group is paraphyletic. Except for some [[Euglenozoa]],  all are non-[[Photosynthesis|photosynthetic]].


==Characteristics==
==Characteristics==
Line 39: Line 31:
{{anchor|Discoba}}
{{anchor|Discoba}}


Excavate relationships were always uncertain, suggesting that they are not a [[monophyletic]] group.<ref>{{cite Q|Q21090155|doi-access=free}}</ref> Phylogenetic analyses often do not place malawimonads on the same branch as the other Excavata.<ref>{{Cite journal |last1=Tice |first1=Alexander K. |last2=Žihala |first2=David |last3=Pánek |first3=Tomáš |last4=Jones |first4=Robert E. |last5=Salomaki |first5=Eric D. |last6=Nenarokov |first6=Serafim |last7=Burki |first7=Fabien |last8=Eliáš |first8=Marek |last9=Eme |first9=Laura |last10=Roger |first10=Andrew J. |last11=Rokas |first11=Antonis |last12=Shen |first12=Xing-Xing |last13=Strassert |first13=Jürgen F. H. |last14=Kolísko |first14=Martin |last15=Brown |first15=Matthew W. | display-authors = 3 |date=2021 |title=PhyloFisher: A phylogenomic package for resolving eukaryotic relationships |journal=PLOS Biology |volume=19 |issue=8 |pages=e3001365 |doi=10.1371/journal.pbio.3001365 |pmc=8345874 |pmid=34358228 |doi-access=free }}</ref>
Excavate relationships were always uncertain, suggesting that they are not a [[monophyletic]] group.<ref>{{cite Q|Q21090155|doi-access=free}}</ref> Phylogenetic analyses often do not place malawimonads on the same branch as the other Excavata.<ref>{{Cite journal |last1=Tice |first1=Alexander K. |last2=Žihala |first2=David |last3=Pánek |first3=Tomáš |last4=Jones |first4=Robert E. |last5=Salomaki |first5=Eric D. |last6=Nenarokov |first6=Serafim |last7=Burki |first7=Fabien |last8=Eliáš |first8=Marek |last9=Eme |first9=Laura |last10=Roger |first10=Andrew J. |last11=Rokas |first11=Antonis |last12=Shen |first12=Xing-Xing |last13=Strassert |first13=Jürgen F. H. |last14=Kolísko |first14=Martin |last15=Brown |first15=Matthew W. | display-authors = 3 |date=2021 |title=PhyloFisher: A phylogenomic package for resolving eukaryotic relationships |journal=PLOS Biology |volume=19 |issue=8 |article-number=e3001365 |doi=10.1371/journal.pbio.3001365 |pmc=8345874 |pmid=34358228 |doi-access=free }}</ref>


Excavates were thought to include multiple groups:  
Excavates were thought to include multiple groups:  
Line 46: Line 38:
! Taxon !! Included taxa !! Representative genera (examples) !! Description
! Taxon !! Included taxa !! Representative genera (examples) !! Description
|-
|-
| rowspan="4" | '''[[Discoba]]&nbsp;or&nbsp;JEH or Eozoa'''||[[Tsukubea]]||''[[Tsukubea|Tsukubamonas]]''||
| rowspan="4" | '''[[Discoba]]&nbsp;or&nbsp;JEH or Eozoa'''||[[Tsukubamonas|Tsukubea]]||''[[Tsukubea|Tsukubamonas]]''||
|-
|-
|[[Euglenozoa]]
|[[Euglenozoa]]
Line 54: Line 46:
|[[Percolozoa]]|| ''[[Naegleria]]'', ''[[Acrasis]]'' || Most alternate between flagellate and [[amoeboid]] forms
|[[Percolozoa]]|| ''[[Naegleria]]'', ''[[Acrasis]]'' || Most alternate between flagellate and [[amoeboid]] forms
|-
|-
|[[Jakobea]] || ''[[Jakoba]]'', ''[[Reclinomonas]]'' || Free-living, sometimes loricate flagellates, with very gene-rich mitochondrial genomes
|[[Jakobid|Jakobea]]|| ''[[Jakoba]]'', ''[[Reclinomonas]]'' || Free-living, sometimes loricate flagellates, with very gene-rich mitochondrial genomes
|-
|-
|rowspan=4|[[Metamonada]]&nbsp;or&nbsp;POD||[[Preaxostyla]] || ''[[Trimastix]]'', ''[[Paratrimastix]]''|| [[Amitochondriate]] flagellates, either free-living (''[[Trimastix]]'', ''Paratrimastix'') or living in the hindguts of insects
|rowspan=4|[[Metamonada]]&nbsp;or&nbsp;POD||[[Anaeromonadea|Preaxostyla]]|| ''[[Trimastix]]'', ''[[Paratrimastix]]''|| [[Amitochondriate]] flagellates, either free-living (''[[Trimastix]]'', ''Paratrimastix'') or living in the hindguts of insects
|-
|-
|[[Fornicata]]|| ''[[Giardia]]'', ''[[Carpediemonas]]'' || Amitochondriate, mostly symbiotes and parasites of animals.
|[[Trichozoa|Fornicata]]|| ''[[Giardia]]'', ''[[Carpediemonas]]'' || Amitochondriate, mostly symbiotes and parasites of animals.
|-
|-
|[[Parabasalia]]|| ''[[Trichomonas]]'' || Amitochondriate flagellates, generally intestinal [[Commensalism|commensals]] of insects. Some human pathogens.
|[[Parabasalid|Parabasalia]]|| ''[[Trichomonas]], [[Cochlosoma]]'' || Amitochondriate flagellates, generally intestinal [[Commensalism|commensals]] of insects. Some human pathogens.
|-
|-
|[[Anaeramoeba|Anaeramoebidae]]|| ''[[Anaeramoeba]]'' ||Anaerobic protists with [[hydrogenosome]]s instead of mitochondria.
|[[Anaeramoeba|Anaeramoebidae]]|| ''[[Anaeramoeba]]'' ||Anaerobic protists with [[hydrogenosome]]s instead of mitochondria.
|-
|-
|[[Malawimonad|Malawimonada]]
|[[Malawimonad|Malawimonada]]
|[[Malawimonad|Malawimonadea]]|| ''[[Malawimonas]]''  
|[[Malawimonad|Malawimonadea]]|| ''[[Malawimonas]], [[Imasa]]''
|
|
|}
|}
Line 71: Line 63:
===Discobids or JEH clade===
===Discobids or JEH clade===


Euglenozoa and Heterolobosea (Percolozoa) or Eozoa (as named by Cavalier-Smith<ref name="Cavalier-Smith 2009">{{cite journal |last=Cavalier-Smith |first=Thomas |title=Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree |journal=Biology Letters |publisher=The Royal Society |volume=6 |issue=3 |date=23 December 2009 |issn=1744-9561 |doi=10.1098/rsbl.2009.0948 |pages=342–345|pmid=20031978 |pmc=2880060 }}</ref>) appear to be particularly close relatives, and are united by the presence of discoid [[crista]]e within the [[mitochondrion|mitochondria]] (superphylum [[Discicristata]]). A close relationship has been shown between Discicristata and [[Jakobida]],<ref>{{cite journal |title=Toward Resolving the Eukaryotic Tree: The Phylogenetic Positions of Jakobids and Cercozoans |last1=Rodríguez-Ezpeleta |first1=Naiara |last2=Brinkmann |first2=Henner |last3=Burger |first3=Gertraud |last4=Roger |first4=Andrew J. |last5=Gray |first5=Michael W. |last6=Philippe |first6=Hervé |last7=Lang |first7=B. Franz |display-authors=3 |doi=10.1016/j.cub.2007.07.036 |journal=Current Biology |year=2007 |volume=17 |issue=16 |pages=1420–1425 |pmid=17689961 |doi-access=free  |bibcode=2007CBio...17.1420R }}</ref> the latter having tubular cristae like most other protists, and hence were united under the taxon name '''Discoba''', which was proposed for this supposedly monophyletic group.<ref name="pmid19237557"/> This [[clade]] was defined as a [[Phylogenetic nomenclature##Phylogenetic definitions of clade names|node-based]] clade, receiving the definition "The least inclusive clade containing ''[[Jakoba|Jakoba libera]]'' (Ruinen, 1938) Patterson, 1990; ''[[Andalucia (genus)|Andalucia godoyi]]'', Lara ''et al.'', 2006; ''[[Euglena gracilis]]'' Klebs 1883; and ''[[Naegleria gruberi]]'' (Schardinger, 1899) Alexeieff, 1912." Alternatively, the clade has been termed the jakobid, euglenazoan and heterolobosean group '''JEH'''.<ref>{{cite journal|vauthors=Rodríguez-Ezpeleta N, Brinkmann H, Burger G, Roger AJ, Gray MW, Philippe H, Franz Lang B|title=Toward Resolving the Eukaryotic Tree: The Phylogenetic Positions of Jakobids and Cercozoans|journal=Current Biology|volume=17|issue=16|pages=1420-1425|doi=10.1016/j.cub.2007.07.036|year=2007|doi-access=free|pmid=17689961}}</ref>
Euglenozoa and Heterolobosea (Percolozoa) or Eozoa (as named by Cavalier-Smith<ref name="Cavalier-Smith 2009">{{cite journal |last=Cavalier-Smith |first=Thomas |title=Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree |journal=Biology Letters |publisher=The Royal Society |volume=6 |issue=3 |date=23 December 2009 |issn=1744-9561 |doi=10.1098/rsbl.2009.0948 |pages=342–345|pmid=20031978 |pmc=2880060 }}</ref>) appear to be particularly close relatives, and are united by the presence of discoid [[crista]]e within the [[mitochondrion|mitochondria]] (superphylum [[Discicristata]]). A close relationship has been shown between Discicristata and [[Jakobida]],<ref>{{cite journal |title=Toward Resolving the Eukaryotic Tree: The Phylogenetic Positions of Jakobids and Cercozoans |last1=Rodríguez-Ezpeleta |first1=Naiara |last2=Brinkmann |first2=Henner |last3=Burger |first3=Gertraud |last4=Roger |first4=Andrew J. |last5=Gray |first5=Michael W. |last6=Philippe |first6=Hervé |last7=Lang |first7=B. Franz |display-authors=3 |doi=10.1016/j.cub.2007.07.036 |journal=Current Biology |year=2007 |volume=17 |issue=16 |pages=1420–1425 |pmid=17689961 |doi-access=free  |bibcode=2007CBio...17.1420R }}</ref> the latter having tubular cristae like most other protists, and hence were united under the taxon name '''Discoba''', which was proposed for this supposedly monophyletic group.<ref name="pmid19237557"/> This [[clade]] was defined as a [[Phylogenetic nomenclature##Phylogenetic definitions of clade names|node-based]] clade, receiving the definition "The least inclusive clade containing ''[[Jakoba|Jakoba libera]]'' (Ruinen, 1938) Patterson, 1990; ''[[Andalucia (genus)|Andalucia godoyi]]'', Lara ''et al.'', 2006; ''[[Euglena gracilis]]'' Klebs 1883; and ''[[Naegleria gruberi]]'' (Schardinger, 1899) Alexeieff, 1912." Alternatively, the clade has been termed the jakobid, euglenozoan and heterolobosean group '''JEH'''.<ref>{{cite journal|vauthors=Rodríguez-Ezpeleta N, Brinkmann H, Burger G, Roger AJ, Gray MW, Philippe H, Franz Lang B|title=Toward Resolving the Eukaryotic Tree: The Phylogenetic Positions of Jakobids and Cercozoans|journal=Current Biology|volume=17|issue=16|pages=1420–1425|doi=10.1016/j.cub.2007.07.036|year=2007|doi-access=free|pmid=17689961 |bibcode=2007CBio...17.1420R }}</ref>


===Metamonads===
===Metamonads===
Line 90: Line 82:
{{further|Eukaryogenesis}}
{{further|Eukaryogenesis}}


The conventional explanation for the origin of the eukaryotes is that a [[heimdallarchaeia]]n or another Archaea acquired an [[Alphaproteobacteria|alphaproteobacterium]]<ref>{{cite journal |last1=Tria |first1=F.D.K. |last2=Brueckner |first2=J. |last3=Skejo |first3=J. |last4=Xavier |first4=J.C. |last5=Kapust |first5=N. |last6=Knopp |first6=M. |last7=Wimmer |first7=J.L.E. |last8=Nagies |first8=F.S.P. |last9=Zimorski |first9=V. |last10=Gould |first10=S.B. |last11=Garg |first11=S.G. |last12=Martin |first12=W.F. |display-authors=6 |title=Gene Duplications Trace Mitochondria to the Onset of Eukaryote Complexity. |journal=Genome Biology and Evolution |date=7 May 2021 |volume=13 |issue=5 |doi=10.1093/gbe/evab055 |pmid=33739376|pmc=8175051 }}</ref> as an [[Endosymbiont hypothesis|endosymbiont]], and that this became the [[mitochondrion]], the [[organelle]] providing [[Citric acid cycle|oxidative respiration]] to the eukaryotic cell.<ref name="Eme 2023">{{Cite journal |last1=Eme |first1=Laura |last2=Tamarit |first2=Daniel |last3=Caceres |first3=Eva F. |last4=Stairs |first4=Courtney W. |last5=Anda |first5=Valerie De |last6=Schön |first6=Max E. |last7=Seitz |first7=Kiley W. |last8=Dombrowski |first8=Nina |last9=Lewis |first9=William H. |last10=Homa |first10=Felix |last11=Saw |first11=Jimmy H. |last12=Lombard |first12=Jonathan |last13=Nunoura |first13=Takuro |last14=Li |first14=Wen-Jun |last15=Hua |first15=Zheng-Shuang |display-authors=3 |date=2023-03-09 |title=Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes |journal=Nature |volume=618 |issue=7967 |pages=992–999 |doi=10.1038/s41586-023-06186-2|biorxiv=10.1101/2023.03.07.531504|pmid=37316666 |pmc=10307638 }}</ref>
The conventional explanation for the origin of the eukaryotes is that a [[heimdallarchaeia]]n or another Archaea acquired an [[Alphaproteobacteria|alphaproteobacterium]]<ref>{{cite journal |last1=Tria |first1=F.D.K. |last2=Brueckner |first2=J. |last3=Skejo |first3=J. |last4=Xavier |first4=J.C. |last5=Kapust |first5=N. |last6=Knopp |first6=M. |last7=Wimmer |first7=J.L.E. |last8=Nagies |first8=F.S.P. |last9=Zimorski |first9=V. |last10=Gould |first10=S.B. |last11=Garg |first11=S.G. |last12=Martin |first12=W.F. |display-authors=6 |title=Gene Duplications Trace Mitochondria to the Onset of Eukaryote Complexity. |journal=Genome Biology and Evolution |date=7 May 2021 |volume=13 |issue=5 |doi=10.1093/gbe/evab055 |pmid=33739376|pmc=8175051 }}</ref> as an [[Endosymbiont hypothesis|endosymbiont]], and that this became the [[mitochondrion]], the [[organelle]] providing [[Citric acid cycle|oxidative respiration]] to the eukaryotic cell.<ref name="Eme 2023">{{Cite journal |last1=Eme |first1=Laura |last2=Tamarit |first2=Daniel |last3=Caceres |first3=Eva F. |last4=Stairs |first4=Courtney W. |last5=Anda |first5=Valerie De |last6=Schön |first6=Max E. |last7=Seitz |first7=Kiley W. |last8=Dombrowski |first8=Nina |last9=Lewis |first9=William H. |last10=Homa |first10=Felix |last11=Saw |first11=Jimmy H. |last12=Lombard |first12=Jonathan |last13=Nunoura |first13=Takuro |last14=Li |first14=Wen-Jun |last15=Hua |first15=Zheng-Shuang |display-authors=3 |date=2023-03-09 |title=Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes |journal=Nature |volume=618 |issue=7967 |pages=992–999 |doi=10.1038/s41586-023-06186-2|biorxiv=10.1101/2023.03.07.531504|pmid=37316666 |pmc=10307638 |bibcode=2023Natur.618..992E }}</ref>


Caesar al Jewari and Sandra Baldauf argue instead that the eukaryotes possibly started with an endosymbiosis event of a [[Deltaproteobacterium]] or [[Gammaproteobacterium]], accounting for the otherwise unexplained presence of anaerobic bacterial enzymes in Metamonada. The sister of the Preaxostyla within Metamonada represents the rest of the eukaryotes which acquired an Alphaproteobacterium. In their scenario, the [[hydrogenosome]] and [[mitosome]], both conventionally considered "mitochondrion-derived organelles", would predate the mitochondrion, and instead be derived from the earlier symbiotic bacterium.<ref name="Al Jewari Baldauf 2023">{{Cite journal |last1=Al Jewari |first1=Caesar |last2=Baldauf |first2=Sandra L. |date=2023-04-28 |title=An excavate root for the eukaryote tree of life |journal=Science Advances |volume=9 |issue=17 |pages=eade4973 |doi=10.1126/sciadv.ade4973 |issn=2375-2548 |pmc=10146883 |pmid=37115919 |bibcode=2023SciA....9E4973A }}</ref>
Caesar al Jewari and Sandra Baldauf argue instead that the eukaryotes possibly started with an endosymbiosis event of a [[Deltaproteobacterium]] or [[Gammaproteobacterium]], accounting for the otherwise unexplained presence of anaerobic bacterial enzymes in Metamonada. The sister of the Preaxostyla within Metamonada represents the rest of the eukaryotes which acquired an Alphaproteobacterium. In their scenario, the [[hydrogenosome]] and [[mitosome]], both conventionally considered "mitochondrion-derived organelles", would predate the mitochondrion, and instead be derived from the earlier symbiotic bacterium.<ref name="Al Jewari Baldauf 2023">{{Cite journal |last1=Al Jewari |first1=Caesar |last2=Baldauf |first2=Sandra L. |date=2023-04-28 |title=An excavate root for the eukaryote tree of life |journal=Science Advances |volume=9 |issue=17 |article-number=eade4973 |doi=10.1126/sciadv.ade4973 |issn=2375-2548 |pmc=10146883 |pmid=37115919 |bibcode=2023SciA....9E4973A }}</ref>


=== Phylogeny ===
=== Phylogeny ===
Line 101: Line 93:
|grouplabel1={{clade labels|label1="Excavata"|top=32%}}
|grouplabel1={{clade labels|label1="Excavata"|top=32%}}
|1={{clade
|1={{clade
|1=[[Heimdallarchaeia|Hodarchaeales]]<ref name="Eme 2023"/>
|1="[[Hodarchaeales]]"<ref name="Eme 2023"/>
|label2=[[Eukaryota]]
|label2=[[Eukaryota]]
|sublabel2=+ &delta;/&gamma;-proteobacterium
|sublabel2=+ &delta;/&gamma;-proteobacterium
Line 114: Line 106:
             |label1=[[Discoba]] |barend1=red
             |label1=[[Discoba]] |barend1=red
             |1={{clade
             |1={{clade
               |1=[[Jakoba|Jakobida]]
               |1=[[Jakobea|Jakobida]]
               |2={{clade
               |2={{clade
                   |1=[[Percolozoa|Heterolobosea]]
                   |1=[[Percolozoa|Heterolobosea]]

Latest revision as of 16:45, 24 October 2025

Template:Short description Script error: No such module "For". Template:Paraphyletic group

File:Excavata cell schemes.svg
Three types of excavate cells. Top: Jakobida, 1-nucleus, 2-anterior flagellum, 3-ventral/posterior flagellum, 4-ventral feeding groove. Middle: Euglenozoa, 1-nucleus, 2-flagellar pocket/reservoir, 3-dorsal/anterior flagellum, 4-ventral/posterior flagellum, 5-cytostome/feeding apparatus. Bottom: Metamonada, 1-anterior flagella, 2-parabasal body, 3-undulating membrane, 4-posterior flagellum, 5-nucleus, 6-axostyle.

Excavata is an obsolete, extensive and diverse paraphyletic group of unicellular Eukaryota.[1][2] The group was first suggested by Simpson and Patterson in 1999[3][4] and the name latinized and assigned a rank by Thomas Cavalier-Smith in 2002. It contains a variety of free-living and symbiotic protists, and includes some important parasites of humans such as Giardia and Trichomonas.[5] Excavates were formerly considered to be included in the now- obsolete Protista kingdom.[6] They were distinguished from other lineages based on electron-microscopic information about how the cells are arranged (they have a distinctive ultrastructural identity).[4] They are considered to be a basal flagellate lineage.[7]

On the basis of phylogenomic analyses, the group was shown to contain three widely separated eukaryote groups, the discobids, metamonads, and malawimonads.[8][9][10][11] A current view of the composition of the excavates is given below, indicating that the group is paraphyletic. Except for some Euglenozoa, all are non-photosynthetic.

Characteristics

Most excavates are unicellular, heterotrophic flagellates. Only some Euglenozoa are photosynthetic. In some (particularly anaerobic intestinal parasites), the mitochondria have been greatly reduced.[5] Some excavates lack "classical" mitochondria, and are called "amitochondriate", although most retain a mitochondrial organelle in greatly modified form (e.g. a hydrogenosome or mitosome). Among those with mitochondria, the mitochondrial cristae may be tubular, discoidal, or in some cases, laminar. Most excavates have two, four, or more flagella.[4] Many have a conspicuous ventral feeding groove with a characteristic ultrastructure, supported by microtubules—the "excavated" appearance of this groove giving the organisms their name.[3][6] However, various groups that lack these traits are considered to be derived excavates based on genetic evidence (primarily phylogenetic trees of molecular sequences).[6]

The Acrasidae slime molds are the only excavates to exhibit limited multicellularity. Like other cellular slime molds, they live most of their life as single cells, but will sometimes assemble into larger clusters.

Proposed group

Script error: No such module "Labelled list hatnote". Script error: No such module "anchor".

Excavate relationships were always uncertain, suggesting that they are not a monophyletic group.[12] Phylogenetic analyses often do not place malawimonads on the same branch as the other Excavata.[13]

Excavates were thought to include multiple groups:

Taxon Included taxa Representative genera (examples) Description
Discoba or JEH or Eozoa Tsukubea Tsukubamonas
Euglenozoa Euglena, Trypanosoma Many important parasites, one large group with plastids (chloroplasts)
Percolozoa Naegleria, Acrasis Most alternate between flagellate and amoeboid forms
Jakobea Jakoba, Reclinomonas Free-living, sometimes loricate flagellates, with very gene-rich mitochondrial genomes
Metamonada or POD Preaxostyla Trimastix, Paratrimastix Amitochondriate flagellates, either free-living (Trimastix, Paratrimastix) or living in the hindguts of insects
Fornicata Giardia, Carpediemonas Amitochondriate, mostly symbiotes and parasites of animals.
Parabasalia Trichomonas, Cochlosoma Amitochondriate flagellates, generally intestinal commensals of insects. Some human pathogens.
Anaeramoebidae Anaeramoeba Anaerobic protists with hydrogenosomes instead of mitochondria.
Malawimonada Malawimonadea Malawimonas, Imasa

Discobids or JEH clade

Euglenozoa and Heterolobosea (Percolozoa) or Eozoa (as named by Cavalier-Smith[14]) appear to be particularly close relatives, and are united by the presence of discoid cristae within the mitochondria (superphylum Discicristata). A close relationship has been shown between Discicristata and Jakobida,[15] the latter having tubular cristae like most other protists, and hence were united under the taxon name Discoba, which was proposed for this supposedly monophyletic group.[1] This clade was defined as a node-based clade, receiving the definition "The least inclusive clade containing Jakoba libera (Ruinen, 1938) Patterson, 1990; Andalucia godoyi, Lara et al., 2006; Euglena gracilis Klebs 1883; and Naegleria gruberi (Schardinger, 1899) Alexeieff, 1912." Alternatively, the clade has been termed the jakobid, euglenozoan and heterolobosean group JEH.[16]

Metamonads

Metamonads are unusual in not having classical mitochondria—instead they have hydrogenosomes, mitosomes or uncharacterised organelles. The oxymonad Monocercomonoides is reported to have completely lost homologous organelles. There are competing explanations.[17][18]

Malawimonads

The malawimonads have been proposed to be members of Excavata owing to their typical excavate morphology, and phylogenetic affinity to other excavate groups in some molecular phylogenies. However, their position among eukaryotes remains elusive.[2]

Ancyromonads

Ancyromonads are small free-living cells with a narrow longitudinal groove down one side of the cell. The ancyromonad groove is not used for "suspension feeding", unlike in "typical excavates" (e.g. malawimonads, jakobids, Trimastix, Carpediemonas, Kiperferlia, etc). Ancyromonads instead capture prokaryotes attached to surfaces. The phylogenetic placement of ancyromonads is poorly understood (in 2020), however some phylogenetic analyses place them as close relatives of malawimonads.[9]

Evolution

Origin of the eukaryotes

Script error: No such module "labelled list hatnote".

The conventional explanation for the origin of the eukaryotes is that a heimdallarchaeian or another Archaea acquired an alphaproteobacterium[19] as an endosymbiont, and that this became the mitochondrion, the organelle providing oxidative respiration to the eukaryotic cell.[20]

Caesar al Jewari and Sandra Baldauf argue instead that the eukaryotes possibly started with an endosymbiosis event of a Deltaproteobacterium or Gammaproteobacterium, accounting for the otherwise unexplained presence of anaerobic bacterial enzymes in Metamonada. The sister of the Preaxostyla within Metamonada represents the rest of the eukaryotes which acquired an Alphaproteobacterium. In their scenario, the hydrogenosome and mitosome, both conventionally considered "mitochondrion-derived organelles", would predate the mitochondrion, and instead be derived from the earlier symbiotic bacterium.[18]

Phylogeny

In 2023, using molecular phylogenetic analysis of 186 taxa, Al Jewari and Baldauf proposed a phylogenetic tree with the metamonad Parabasalia as basal eukaryotes. Discoba and the rest of the Eukaryota appear to have emerged as sister taxon to the Preaxostyla, incorporating a single alphaproteobacterium as mitochondria by endosymbiosis. Thus the Fornicata are more closely related to e.g. animals than to Parabasalia. The rest of the eukaryotes emerged within the Excavata as sister of the Discoba; as they are within the same clade but are not cladistically considered part of the Excavata yet, the Excavata in this analysis is highly paraphyletic.[18]

Template:Clade

The Anaeramoeba are associated with Parabasalia, but could turn out to be more basal as the root of a tree is often difficult to pinpoint.[21]

See also

Metakaryota

Gallery

Script error: No such module "Gallery".

References

Template:Reflist

External links

Template:Eukaryota Template:Excavata Template:Protozoal diseases Template:Taxonbar

  1. a b Script error: No such module "Citation/CS1".
  2. a b Script error: No such module "Citation/CS1".
  3. a b Script error: No such module "Citation/CS1".
  4. a b c Script error: No such module "Citation/CS1".
  5. a b Script error: No such module "citation/CS1".
  6. a b c Script error: No such module "Citation/CS1".
  7. Script error: No such module "Citation/CS1".
  8. Script error: No such module "Citation/CS1".
  9. a b Script error: No such module "Citation/CS1".
  10. Script error: No such module "Citation/CS1".
  11. Script error: No such module "Citation/CS1".
  12. Template:Cite Q
  13. Script error: No such module "Citation/CS1".
  14. Script error: No such module "Citation/CS1".
  15. Script error: No such module "Citation/CS1".
  16. Script error: No such module "Citation/CS1".
  17. Script error: No such module "Citation/CS1".
  18. a b c Script error: No such module "Citation/CS1".
  19. Script error: No such module "Citation/CS1".
  20. Script error: No such module "Citation/CS1".
  21. Script error: No such module "Citation/CS1".