Toeplitz matrix: Difference between revisions

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
imported>JJMC89 bot III
 
imported>Headbomb
m clean up, removed: ®
 
(One intermediate revision by one other user not shown)
Line 44: Line 44:
* Toeplitz matrices are also closely connected with [[Fourier series]], because the [[multiplication operator]] by a [[trigonometric polynomial]], [[compression (functional analysis)|compressed]] to a finite-dimensional space, can be represented by such a matrix. Similarly, one can represent linear convolution as multiplication by a Toeplitz matrix.
* Toeplitz matrices are also closely connected with [[Fourier series]], because the [[multiplication operator]] by a [[trigonometric polynomial]], [[compression (functional analysis)|compressed]] to a finite-dimensional space, can be represented by such a matrix. Similarly, one can represent linear convolution as multiplication by a Toeplitz matrix.
* Toeplitz matrices commute [[asymptotic analysis|asymptotically]]. This means they [[Diagonalizable matrix|diagonalize]] in the same [[basis (linear algebra)|basis]] when the row and column dimension tends to infinity.
* Toeplitz matrices commute [[asymptotic analysis|asymptotically]]. This means they [[Diagonalizable matrix|diagonalize]] in the same [[basis (linear algebra)|basis]] when the row and column dimension tends to infinity.
* For symmetric Toeplitz matrices, there is the decomposition
* For symmetric Toeplitz matrices, there is the decomposition


Line 133: Line 132:
*{{citation | last1 = Bojanczyk | first1 = A. W. | last2 = Brent | first2 = R. P. | last3 = de Hoog | first3 = F. R. | last4 = Sweet | first4 = D. R. | year = 1995 | title = On the stability of the Bareiss and related Toeplitz factorization algorithms | journal = [[SIAM Journal on Matrix Analysis and Applications]] | volume = 16 | pages = 40–57 | doi = 10.1137/S0895479891221563| arxiv = 1004.5510 | s2cid = 367586 }}
*{{citation | last1 = Bojanczyk | first1 = A. W. | last2 = Brent | first2 = R. P. | last3 = de Hoog | first3 = F. R. | last4 = Sweet | first4 = D. R. | year = 1995 | title = On the stability of the Bareiss and related Toeplitz factorization algorithms | journal = [[SIAM Journal on Matrix Analysis and Applications]] | volume = 16 | pages = 40–57 | doi = 10.1137/S0895479891221563| arxiv = 1004.5510 | s2cid = 367586 }}
*{{citation|first1=Albrecht| last1= Böttcher| first2=Sergei M. | last2= Grudsky|title=Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis|url=https://books.google.com/books?id=Dmr0BwAAQBAJ&pg=PA1|year=2012|publisher=Birkhäuser|isbn=978-3-0348-8395-5}}
*{{citation|first1=Albrecht| last1= Böttcher| first2=Sergei M. | last2= Grudsky|title=Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis|url=https://books.google.com/books?id=Dmr0BwAAQBAJ&pg=PA1|year=2012|publisher=Birkhäuser|isbn=978-3-0348-8395-5}}
*{{citation | first= R. P. | last= Brent | author-link=Richard P. Brent | year= 1999 | contribution= Stability of fast algorithms for structured linear systems| title= Fast Reliable Algorithms for Matrices with Structure | editor1-first= T. | editor1-last= Kailath | editor2-first= A. H. | editor2-last=Sayed |  publisher= [[Society for Industrial and Applied Mathematics|SIAM]] | pages=103–116|doi=10.1137/1.9781611971354.ch4| hdl= 1885/40746 | s2cid= 13905858 | hdl-access= free }}
*{{citation | first= R. P. | last= Brent | author-link=Richard P. Brent | year= 1999 | contribution= Stability of fast algorithms for structured linear systems| title= Fast Reliable Algorithms for Matrices with Structure | editor1-first= T. | editor1-last= Kailath | editor2-first= A. H. | editor2-last=Sayed |  publisher= [[Society for Industrial and Applied Mathematics|SIAM]] | pages=103–116|doi=10.1137/1.9781611971354.ch4| arxiv= 1005.0671 | hdl= 1885/40746 | isbn= 978-0-89871-431-9 | s2cid= 13905858 | hdl-access= free }}
*{{citation|last1=Chan |first1=R. H.-F.| last2= Jin| first2= X.-Q. | year=2007 | title= An Introduction to Iterative Toeplitz Solvers | publisher= [[Society for Industrial and Applied Mathematics|SIAM]]|doi=10.1137/1.9780898718850|isbn=978-0-89871-636-8 }}
*{{citation|last1=Chan |first1=R. H.-F.| last2= Jin| first2= X.-Q. | year=2007 | title= An Introduction to Iterative Toeplitz Solvers | publisher= [[Society for Industrial and Applied Mathematics|SIAM]]|doi=10.1137/1.9780898718850|isbn=978-0-89871-636-8 }}
*{{citation | last1 = Chandrasekeran | first1 = S. | last2 = Gu | first2 = M. | last3 = Sun | first3 = X. | last4 = Xia | first4 = J. | last5 = Zhu | first5 = J. | year = 2007 | title = A superfast algorithm for Toeplitz systems of linear equations | journal = [[SIAM Journal on Matrix Analysis and Applications]] | volume = 29 | issue = 4| pages = 1247–66 | doi = 10.1137/040617200| citeseerx = 10.1.1.116.3297 }}
*{{citation | last1 = Chandrasekeran | first1 = S. | last2 = Gu | first2 = M. | last3 = Sun | first3 = X. | last4 = Xia | first4 = J. | last5 = Zhu | first5 = J. | year = 2007 | title = A superfast algorithm for Toeplitz systems of linear equations | journal = [[SIAM Journal on Matrix Analysis and Applications]] | volume = 29 | issue = 4| pages = 1247–66 | doi = 10.1137/040617200| citeseerx = 10.1.1.116.3297 }}
Line 150: Line 149:
*{{citation | last = Bareiss | first = E. H. | year = 1969 | title = Numerical solution of linear equations with Toeplitz and vector Toeplitz matrices | journal = [[Numerische Mathematik]] | volume = 13 | issue = 5| pages = 404–424 | doi = 10.1007/BF02163269 | s2cid = 121761517 }}
*{{citation | last = Bareiss | first = E. H. | year = 1969 | title = Numerical solution of linear equations with Toeplitz and vector Toeplitz matrices | journal = [[Numerische Mathematik]] | volume = 13 | issue = 5| pages = 404–424 | doi = 10.1007/BF02163269 | s2cid = 121761517 }}
*{{citation | first1= O. | last1=  Goldreich | first2= A. | last2= Tal | author1-link= Oded Goldreich | title= Matrix rigidity of random Toeplitz matrices | journal= Computational Complexity | year= 2018 | volume= 27 | issue= 2 | pages= 305–350 | doi= 10.1007/s00037-016-0144-9 | s2cid= 253641700 }}
*{{citation | first1= O. | last1=  Goldreich | first2= A. | last2= Tal | author1-link= Oded Goldreich | title= Matrix rigidity of random Toeplitz matrices | journal= Computational Complexity | year= 2018 | volume= 27 | issue= 2 | pages= 305–350 | doi= 10.1007/s00037-016-0144-9 | s2cid= 253641700 }}
*{{citation |author-link=Gene H. Golub |last=Golub |first=G. H. |author2-link=Charles F. Van Loan |last2=van Loan |first2=C. F. |date=1996 |title=Matrix Computations |publisher=[[Johns Hopkins University Press]] |at=§4.7—Toeplitz and Related Systems |isbn=0-8018-5413-X |oclc=34515797 }}
*{{citation |author-link1=Gene H. Golub |last1=Golub |first1=G. H. |author2-link=Charles F. Van Loan |last2=van Loan |first2=C. F. |date=1996 |title=Matrix Computations |publisher=[[Johns Hopkins University Press]] |at=§4.7—Toeplitz and Related Systems |isbn=0-8018-5413-X |oclc=34515797 }}
*{{citation |last=Gray |first=R. M. |url=http://ee.stanford.edu/~gray/toeplitz.pdf |title=Toeplitz and Circulant Matrices: A Review |publisher=Now Publishers |doi=10.1561/0100000006}}
*{{citation |last=Gray |first=R. M. |url=http://ee.stanford.edu/~gray/toeplitz.pdf |title=Toeplitz and Circulant Matrices: A Review |journal=Foundations and Trends in Communications and Information Theory |date=2005 |volume=2 |issue=3 |pages=155–239 |publisher=Now Publishers |doi=10.1561/0100000006}}
*{{citation | last1 =Noor | first1 = F. | last2= Morgera | first2= S. D. | year = 1992 | title = Construction of a Hermitian Toeplitz matrix from an arbitrary set of eigenvalues | journal = [[IEEE Transactions on Signal Processing]] | volume = 40 | issue=8 | pages= 2093–4 |  doi = 10.1109/78.149978 | bibcode= 1992ITSP...40.2093N }}
*{{citation | last1 =Noor | first1 = F. | last2= Morgera | first2= S. D. | year = 1992 | title = Construction of a Hermitian Toeplitz matrix from an arbitrary set of eigenvalues | journal = [[IEEE Transactions on Signal Processing]] | volume = 40 | issue=8 | pages= 2093–4 |  doi = 10.1109/78.149978 | bibcode= 1992ITSP...40.2093N }}
*{{citation | title=Structured Matrices and Polynomials: unified superfast algorithms | first=Victor Y. | last=Pan | author-link=Victor Pan | publisher=[[Birkhäuser]] | year=2001 | isbn=978-0817642402 }}
*{{citation | title=Structured Matrices and Polynomials: unified superfast algorithms | first=Victor Y. | last=Pan | author-link=Victor Pan | publisher=[[Birkhäuser]] | year=2001 | isbn=978-0817642402 }}

Latest revision as of 09:17, 25 June 2025

Template:Short description In linear algebra, a Toeplitz matrix or diagonal-constant matrix, named after Otto Toeplitz, is a matrix in which each descending diagonal from left to right is constant. For instance, the following matrix is a Toeplitz matrix:

[abcdefabcdgfabchgfabihgfa].

Any n×n matrix A of the form

A=[a0a1a2a(n1)a1a0a1a2a1a1a2a1a0a1an1a2a1a0]

is a Toeplitz matrix. If the i,j element of A is denoted Ai,j then we have

Ai,j=Ai+1,j+1=aij.

A Toeplitz matrix is not necessarily square.

Solving a Toeplitz system

A matrix equation of the form

Ax=b

is called a Toeplitz system if A is a Toeplitz matrix. If A is an n×n Toeplitz matrix, then the system has at most only 2n1 unique values, rather than n2. We might therefore expect that the solution of a Toeplitz system would be easier, and indeed that is the case.

Toeplitz systems can be solved by algorithms such as the Schur algorithm or the Levinson algorithm in O(n2) time.[1][2] Variants of the latter have been shown to be weakly stable (i.e. they exhibit numerical stability for well-conditioned linear systems).[3] The algorithms can also be used to find the determinant of a Toeplitz matrix in O(n2) time.[4]

A Toeplitz matrix can also be decomposed (i.e. factored) in O(n2) time.[5] The Bareiss algorithm for an LU decomposition is stable.[6] An LU decomposition gives a quick method for solving a Toeplitz system, and also for computing the determinant.

Properties

  • An n×n Toeplitz matrix may be defined as a matrix A where Ai,j=cij, for constants c1n,,cn1. The set of n×n Toeplitz matrices is a subspace of the vector space of n×n matrices (under matrix addition and scalar multiplication).
  • Two Toeplitz matrices may be added in O(n) time (by storing only one value of each diagonal) and multiplied in O(n2) time.
  • Toeplitz matrices are persymmetric. Symmetric Toeplitz matrices are both centrosymmetric and bisymmetric.
  • Toeplitz matrices are also closely connected with Fourier series, because the multiplication operator by a trigonometric polynomial, compressed to a finite-dimensional space, can be represented by such a matrix. Similarly, one can represent linear convolution as multiplication by a Toeplitz matrix.
  • Toeplitz matrices commute asymptotically. This means they diagonalize in the same basis when the row and column dimension tends to infinity.
  • For symmetric Toeplitz matrices, there is the decomposition
1a0A=GGT(GI)(GI)T
where G is the lower triangular part of 1a0A.
A1=1α0(BBTCCT)
where B and C are lower triangular Toeplitz matrices and C is a strictly lower triangular matrix.[7]

Discrete convolution

The convolution operation can be constructed as a matrix multiplication, where one of the inputs is converted into a Toeplitz matrix. For example, the convolution of h and x can be formulated as:

y=hx=[h1000h2h1h3h200h3h10hm1h2h1hmhm1h20hmhm200hm1hm2hmhm1000hm][x1x2x3xn]
yT=[h1h2h3hm1hm][x1x2x3xn00000x1x2x3xn00000x1x2x3xn00000x1xn2xn1xn00000x1xn2xn1xn].

This approach can be extended to compute autocorrelation, cross-correlation, moving average etc.

Infinite Toeplitz matrix

Script error: No such module "Labelled list hatnote". A bi-infinite Toeplitz matrix (i.e. entries indexed by ×) A induces a linear operator on 2.

A=[a0a1a2a3a1a0a1a2a2a1a0a1a3a2a1a0].

The induced operator is bounded if and only if the coefficients of the Toeplitz matrix A are the Fourier coefficients of some essentially bounded function f.

In such cases, f is called the symbol of the Toeplitz matrix A, and the spectral norm of the Toeplitz matrix A coincides with the L norm of its symbol. The proof can be found as Theorem 1.1 of Böttcher and Grudsky.[8]

See also

Notes

Template:Reflist

References

Template:Refbegin

  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".

Template:Refend

Further reading

Template:Refbegin

  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".

Template:Refend

Template:Matrix classes Template:Authority control

  1. Script error: No such module "Footnotes".
  2. Script error: No such module "Footnotes".
  3. Script error: No such module "Footnotes".
  4. Script error: No such module "Footnotes".
  5. Script error: No such module "Footnotes".
  6. Script error: No such module "Footnotes".
  7. Script error: No such module "Footnotes".
  8. Script error: No such module "Footnotes".