De Bruijn–Newman constant: Difference between revisions

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
imported>CRau080
Upper bounds: adding authorlink field to one ref.
 
imported>InternetArchiveBot
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5
 
Line 8: Line 8:
and <math>\Lambda</math> is the unique real number with the property that <math>H</math> has only real zeros [[if and only if]] <math>\lambda\geq \Lambda</math>.
and <math>\Lambda</math> is the unique real number with the property that <math>H</math> has only real zeros [[if and only if]] <math>\lambda\geq \Lambda</math>.


The constant is closely connected with [[Riemann hypothesis]]. Indeed, the Riemann hypothesis is equivalent to the [[conjecture]] that <math>\Lambda\leq 0</math>.<ref name="tao2">{{cite web|url=https://terrytao.wordpress.com/2018/01/19/the-de-bruijn-newman-constant-is-non-negativ/|title=The De Bruijn-Newman constant is non-negative|date=19 January 2018|access-date=2018-01-19}} (announcement post)</ref> Brad Rodgers and [[Terence Tao]] [[mathematical proof|proved]] that <math>\Lambda\geq 0</math>, so the Riemann hypothesis is equivalent to <math>\Lambda=0</math>.<ref name=":0">{{Cite journal|last1=Rodgers|first1=Brad|last2=Tao|first2=Terence|author-link2=Terence Tao|title=The de Bruijn–Newman Constant is Non-Negative|date=2020|journal=Forum of Mathematics, Pi|language=en|volume=8|pages=e6|doi=10.1017/fmp.2020.6|issn=2050-5086|doi-access=free|arxiv=1801.05914}}</ref>  A simplified proof of the Rodgers–Tao result was later given by Alexander Dobner.<ref>{{cite arXiv |last1=Dobner |first1=Alexander |date=2020|title=A New Proof of Newman's Conjecture and a Generalization |class=math.NT |eprint=2005.05142}}</ref>
The constant is closely connected with [[Riemann hypothesis]]. Indeed, the Riemann hypothesis is equivalent to the [[conjecture]] that <math>\Lambda\leq 0</math>.<ref name="tao2">{{cite web|url=https://terrytao.wordpress.com/2018/01/19/the-de-bruijn-newman-constant-is-non-negativ/|title=The De Bruijn-Newman constant is non-negative|date=19 January 2018|access-date=2018-01-19}} (announcement post)</ref> Brad Rodgers and [[Terence Tao]] [[mathematical proof|proved]] that <math>\Lambda\geq 0</math>, so the Riemann hypothesis is equivalent to <math>\Lambda=0</math>.<ref name=":0">{{Cite journal|last1=Rodgers|first1=Brad|last2=Tao|first2=Terence|author-link2=Terence Tao|title=The de Bruijn–Newman Constant is Non-Negative|date=2020|journal=Forum of Mathematics, Pi|language=en|volume=8|article-number=e6|doi=10.1017/fmp.2020.6|issn=2050-5086|doi-access=free|arxiv=1801.05914}}</ref>  A simplified proof of the Rodgers–Tao result was later given by Alexander Dobner.<ref>{{cite arXiv |last1=Dobner |first1=Alexander |date=2020|title=A New Proof of Newman's Conjecture and a Generalization |class=math.NT |eprint=2005.05142}}</ref>


== History ==
== History ==
Line 16: Line 16:
De Bruijn's upper bound of <math>\Lambda\le 1/2</math> was not improved until 2008, when Ki, Kim and Lee proved <math>\Lambda< 1/2</math>, making the [[inequality (mathematics)|inequality]] strict.<ref name="Ki Kim Lee">{{citation
De Bruijn's upper bound of <math>\Lambda\le 1/2</math> was not improved until 2008, when Ki, Kim and Lee proved <math>\Lambda< 1/2</math>, making the [[inequality (mathematics)|inequality]] strict.<ref name="Ki Kim Lee">{{citation
|title = On the de Bruijn–Newman constant
|title = On the de Bruijn–Newman constant
|mr=2531375
|mr = 2531375
|journal = [[Advances in Mathematics]]
|journal = [[Advances in Mathematics]]
|volume = 222
|volume = 222
Line 24: Line 24:
|issn = 0001-8708
|issn = 0001-8708
|doi = 10.1016/j.aim.2009.04.003
|doi = 10.1016/j.aim.2009.04.003
|doi-access=free
|doi-access = free
|url = http://web.yonsei.ac.kr/haseo/p23-reprint.pdf
|url = http://web.yonsei.ac.kr/haseo/p23-reprint.pdf
|last1 = Ki |first1 = Haseo
|last1 = Ki
|last2 = Kim |first2 = Young-One
|first1 = Haseo
|last3 = Lee |first3 = Jungseob
|last2 = Kim
|first2 = Young-One
|last3 = Lee
|first3 = Jungseob
|access-date = 2018-03-03
|archive-date = 2017-08-09
|archive-url = https://web.archive.org/web/20170809013021/http://web.yonsei.ac.kr/haseo/p23-reprint.pdf
|url-status = dead
}} ([https://terrytao.wordpress.com/2018/01/24/polymath-proposal-upper-bounding-the-de-bruijn-newman-constant/ discussion]).</ref>
}} ([https://terrytao.wordpress.com/2018/01/24/polymath-proposal-upper-bounding-the-de-bruijn-newman-constant/ discussion]).</ref>


Line 71: Line 78:


== Historical bounds ==
== Historical bounds ==
<div style="display:inline-table; padding: 0.5em;>
{| class="wikitable"
{| class="wikitable"


Line 76: Line 84:


|-
|-
!Year !! Lower bound on Λ !! Authors
!Year !! Lower bound on Λ


|-
|-
|1987 ||−50<ref>{{Cite journal|last1=Csordas|first1=G.|last2=Norfolk|first2=T. S.|last3=Varga|first3=R. S.|date=1987-09-01|title=A low bound for the de Bruijn-newman constant Λ|journal=Numerische Mathematik|language=en|volume=52|issue=5|pages=483–497|doi=10.1007/BF01400887|s2cid=124008641|issn=0945-3245}}</ref> || Csordas, G.; Norfolk, T. S.; Varga, R. S. 
|1987 ||−50<ref>{{Cite journal|last1=Csordas|first1=G.|last2=Norfolk|first2=T. S.|last3=Varga|first3=R. S.|date=1987-09-01|title=A low bound for the de Bruijn-newman constant Λ|journal=Numerische Mathematik|language=en|volume=52|issue=5|pages=483–497|doi=10.1007/BF01400887|s2cid=124008641|issn=0945-3245}}</ref>


|-
|-
|1990 ||−5<ref>{{Cite journal|last=te Riele|first=H. J. J.|date=1990-12-01|title=A new lower bound for the de Bruijn-Newman constant|journal=Numerische Mathematik|language=en|volume=58|issue=1|pages=661–667|doi=10.1007/BF01385647|issn=0945-3245}}</ref> || te Riele, H. J. J.
|1990 ||−5<ref>{{Cite journal|last=te Riele|first=H. J. J.|date=1990-12-01|title=A new lower bound for the de Bruijn-Newman constant|journal=Numerische Mathematik|language=en|volume=58|issue=1|pages=661–667|doi=10.1007/BF01385647|issn=0945-3245}}</ref>


|-
|-
|1991
|1991
|−0.0991<ref>{{Cite journal|last1=Csordas|first1=G.|last2=Ruttan|first2=A.|last3=Varga|first3=R. S.|date=1991-06-01|title=The Laguerre inequalities with applications to a problem associated with the Riemann hypothesis|journal=Numerical Algorithms|language=en|volume=1|issue=2|pages=305–329|doi=10.1007/BF02142328|bibcode=1991NuAlg...1..305C|s2cid=22606966|issn=1572-9265}}</ref> || Csordas, G.; Ruttan, A.; Varga, R. S. 
|−0.0991<ref>{{Cite journal|last1=Csordas|first1=G.|last2=Ruttan|first2=A.|last3=Varga|first3=R. S.|date=1991-06-01|title=The Laguerre inequalities with applications to a problem associated with the Riemann hypothesis|journal=Numerical Algorithms|language=en|volume=1|issue=2|pages=305–329|doi=10.1007/BF02142328|bibcode=1991NuAlg...1..305C|s2cid=22606966|issn=1572-9265}}</ref>


|-
|-
|1993 ||−5.895{{e|−9}}<ref>{{cite journal |last1=Csordas | first1=G. |last2=Odlyzko | first2=A.M. | author2-link=Andrew Odlyzko |last3=Smith | first3=W. | last4=Varga | first4=R.S. | author4-link=Richard S. Varga |title=A new Lehmer pair of zeros and a new lower bound for the De Bruijn–Newman constant Lambda |journal=[[Electronic Transactions on Numerical Analysis]] |volume=1 |pages=104–111 |year=1993 |url=http://www.dtc.umn.edu/~odlyzko/doc/arch/debruijn.constant.pdf |access-date=June 1, 2012 | zbl=0807.11059 }}</ref> || Csordas, G.; Odlyzko, A.M.; Smith, W.; Varga, R.S.
|1993 ||−5.895{{e|−9}}<ref>{{cite journal |last1=Csordas | first1=G. |last2=Odlyzko | first2=A.M. | author2-link=Andrew Odlyzko |last3=Smith | first3=W. | last4=Varga | first4=R.S. | author4-link=Richard S. Varga |title=A new Lehmer pair of zeros and a new lower bound for the De Bruijn–Newman constant Lambda |journal=[[Electronic Transactions on Numerical Analysis]] |volume=1 |pages=104–111 |year=1993 |url=http://www.dtc.umn.edu/~odlyzko/doc/arch/debruijn.constant.pdf |access-date=June 1, 2012 | zbl=0807.11059 }}</ref>


|-
|-
|2000 ||−2.7{{e|−9}}<ref>{{cite journal |first1=A.M. |last1=Odlyzko | author-link=Andrew Odlyzko | title=An improved bound for the de Bruijn–Newman constant |journal=Numerical Algorithms |volume=25 |pages=293–303 |year=2000 |issue=1 | zbl=0967.11034 |bibcode=2000NuAlg..25..293O |doi=10.1023/A:1016677511798 |s2cid=5824729 }}</ref> || Odlyzko, A.M.
|2000 ||−2.7{{e|−9}}<ref>{{cite journal |first1=A.M. |last1=Odlyzko | author-link=Andrew Odlyzko | title=An improved bound for the de Bruijn–Newman constant |journal=Numerical Algorithms |volume=25 |pages=293–303 |year=2000 |issue=1 | zbl=0967.11034 |bibcode=2000NuAlg..25..293O |doi=10.1023/A:1016677511798 |s2cid=5824729 }}</ref>


|-
|-
Line 107: Line 115:
| volume = 80
| volume = 80
| year = 2011| doi-access = free
| year = 2011| doi-access = free
}}</ref> || Saouter, Yannick; Gourdon, Xavier; Demichel, Patrick
}}</ref>


|-
|-
|2018 || ≥0<ref name=":0" /> || Rodgers, Brad; Tao, Terence
|2018 || 0<ref name=":0" />


|}
|}</div>


<div style="display:inline-table; padding: 0.5em;>
{| class="wikitable"
{| class="wikitable"


Line 119: Line 128:


|-
|-
!Year !! Upper bound on Λ !! Authors
!Year !! Upper bound on Λ


|-
|-
|1950 ||≤ 1/2<ref name="de Bruijn roots" /> || de Bruijn, N.G.
|1950 ||0.5<ref name="de Bruijn roots" />
|-
|-
|2008 ||< 1/2<ref name="Ki Kim Lee" /> || Ki, H.; Kim, Y-O.; Lee, J.
|2008 ||< 0.5<ref name="Ki Kim Lee" />


|-
|-
|2019 ||0.22<ref name="Polymath15" /> || Polymath, D.H.J.
|2019 ||0.22<ref name="Polymath15" />


|-
|-
|2020 ||0.2<ref name="Platt+Trudgian" /> || Platt, D.;  Trudgian, T.
|2020 ||0.2<ref name="Platt+Trudgian" />


|}
|}</div>


==References==
==References==

Latest revision as of 01:38, 1 November 2025

Template:Short description Script error: No such module "Distinguish".Script error: No such module "For". Template:Lowercase title The de Bruijn–Newman constant, denoted by Λ and named after Nicolaas Govert de Bruijn and Charles Michael Newman, is a mathematical constant defined via the zeros of a certain function H(λ,z), where λ is a real parameter and z is a complex variable. More precisely,

H(λ,z):=0eλu2Φ(u)cos(zu)du,

where Φ is the super-exponentially decaying function

Φ(u)=n=1(2π2n4e9u3πn2e5u)eπn2e4u

and Λ is the unique real number with the property that H has only real zeros if and only if λΛ.

The constant is closely connected with Riemann hypothesis. Indeed, the Riemann hypothesis is equivalent to the conjecture that Λ0.[1] Brad Rodgers and Terence Tao proved that Λ0, so the Riemann hypothesis is equivalent to Λ=0.[2] A simplified proof of the Rodgers–Tao result was later given by Alexander Dobner.[3]

History

De Bruijn showed in 1950 that H has only real zeros if λ1/2, and moreover, that if H has only real zeros for some λ, H also has only real zeros if λ is replaced by any larger value.[4] Newman proved in 1976 the existence of a constant Λ for which the "if and only if" claim holds; and this then implies that Λ is unique. Newman also conjectured that Λ0,[5] which was proven forty years later, by Brad Rodgers and Terence Tao in 2018.

Upper bounds

De Bruijn's upper bound of Λ1/2 was not improved until 2008, when Ki, Kim and Lee proved Λ<1/2, making the inequality strict.[6]

In December 2018, the 15th Polymath project improved the bound to Λ0.22.[7][8][9] A manuscript of the Polymath work was submitted to arXiv in late April 2019,[10] and was published in the journal Research In the Mathematical Sciences in August 2019.[11]

This bound was further slightly improved in April 2020 by Platt and Trudgian to Λ0.2.[12]

Historical bounds

Historical lower bounds
Year Lower bound on Λ
1987 −50[13]
1990 −5[14]
1991 −0.0991[15]
1993 −5.895Template:E[16]
2000 −2.7Template:E[17]
2011 −1.1Template:E[18]
2018 0[2]
Historical upper bounds
Year Upper bound on Λ
1950 0.5[4]
2008 < 0.5[6]
2019 0.22[7]
2020 0.2[12]

References

Template:Reflist

External links

  • Script error: No such module "Template wrapper".
  1. Script error: No such module "citation/CS1". (announcement post)
  2. a b Script error: No such module "Citation/CS1".
  3. Script error: No such module "citation/CS1".
  4. a b Script error: No such module "Citation/CS1".
  5. Script error: No such module "Citation/CS1".
  6. a b Script error: No such module "citation/CS1". (discussion).
  7. a b Script error: No such module "citation/CS1".
  8. Script error: No such module "citation/CS1".
  9. Script error: No such module "citation/CS1".
  10. Script error: No such module "citation/CS1".(preprint)
  11. Script error: No such module "citation/CS1".
  12. a b Script error: No such module "Citation/CS1".(preprint)
  13. Script error: No such module "Citation/CS1".
  14. Script error: No such module "Citation/CS1".
  15. Script error: No such module "Citation/CS1".
  16. Script error: No such module "Citation/CS1".
  17. Script error: No such module "Citation/CS1".
  18. Script error: No such module "Citation/CS1".