Novikov self-consistency principle: Difference between revisions

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
imported>OAbot
m Open access bot: url-access updated in citation with #oabot.
 
imported>AnomieBOT
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{Short description|Assertion that time-travel paradoxes are impossible, as paradox-causing events cannot occur}}
{{Short description|Time-travel paradoxes are impossible}}


The '''Novikov self-consistency principle''', also known as the '''Novikov self-consistency conjecture''' and [[Larry Niven]]'s '''law of conservation of history''', is a [[principle]] developed by Russian physicist [[Igor Dmitriyevich Novikov]] in the mid-1980s. Novikov intended it to solve the problem of [[Temporal paradox|paradoxes in time travel]], which is theoretically permitted in certain solutions of [[general relativity]] that contain what are known as [[closed timelike curve]]s. The principle asserts that if an event exists that would cause a paradox or any "change" to the past whatsoever, then the [[probability]] of that event is zero. It would thus be impossible to create [[time paradox]]es.
The '''Novikov self-consistency principle''', also known as the '''Novikov self-consistency conjecture''' and [[Larry Niven]]'s '''law of conservation of history''', is a [[principle]] developed by Russian physicist [[Igor Dmitriyevich Novikov]] in the mid-1980s. Novikov intended it to solve the problem of [[Temporal paradox|paradoxes in time travel]], which is theoretically permitted in certain solutions of [[general relativity]] that contain what are known as [[closed timelike curve]]s. The principle asserts that if an event exists that would cause a paradox or any "change" to the past whatsoever, then the [[probability]] of that event is zero. It would thus be impossible to create [[time paradox]]es.
Line 11: Line 11:
}}
}}


Among the co-authors of this 1990 paper were [[Kip Thorne]], [[Mike Morris (physicist)|Mike Morris]], and Ulvi Yurtsever, who in 1988 had stirred up renewed interest in the subject of time travel in general relativity with their paper "Wormholes, Time Machines, and the Weak Energy Condition",<ref>{{cite journal | first=Kip | last=Thorne |author2=Michael Morris |author3=Ulvi Yurtsever | journal=[[Physical Review Letters]] | volume = 61 | issue=13| pages=1446–1449 | doi= 10.1103/PhysRevLett.61.1446 | title= Wormholes, Time Machines, and the Weak Energy Condition | year=1988 | url=http://authors.library.caltech.edu/9262/1/MORprl88.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://authors.library.caltech.edu/9262/1/MORprl88.pdf |archive-date=2022-10-09 |url-status=live | bibcode=1988PhRvL..61.1446M | pmid=10038800}}</ref> which showed that a new general relativity solution known as a [[Wormhole#Traversable wormholes|traversable wormhole]] could lead to closed timelike curves, and unlike previous CTC-containing solutions, it did not require unrealistic conditions for the universe as a whole. After discussions with the lead author of the 1990 paper, John Friedman, they convinced themselves that time travel need not lead to unresolvable paradoxes, regardless of the object sent through the wormhole.<ref name = "time warps">{{cite book| first= Kip S. | last= Thorne|title=Black Holes and Time Warps: Einstein's Outrageous Legacy|url=https://archive.org/details/blackholestimewa0000thor| url-access= registration | quote= Polchinski's paradox. |year=1994|publisher=W. W. Norton|isbn=978-0-393-31276-8|pages=[https://archive.org/details/blackholestimewa0000thor/page/510 510]–}}</ref>{{rp|509}}
Among the co-authors of this 1990 paper were [[Kip Thorne]], [[Mike Morris (physicist)|Mike Morris]], and Ulvi Yurtsever, who in 1988 had stirred up renewed interest in the subject of time travel in general relativity with their paper "Wormholes, Time Machines, and the Weak Energy Condition",<ref>{{cite journal | first=Kip | last=Thorne |author2=Michael Morris |author3=Ulvi Yurtsever | journal=[[Physical Review Letters]] | volume = 61 | issue=13| pages=1446–1449 | doi= 10.1103/PhysRevLett.61.1446 | title= Wormholes, Time Machines, and the Weak Energy Condition | year=1988 | url=http://authors.library.caltech.edu/9262/1/MORprl88.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://authors.library.caltech.edu/9262/1/MORprl88.pdf |archive-date=2022-10-09 |url-status=live | bibcode=1988PhRvL..61.1446M | pmid=10038800}}</ref> which showed that a new general relativity solution known as a [[Wormhole#Traversable wormholes|traversable wormhole]] could lead to closed timelike curves, and unlike previous CTC-containing solutions, it did not require unrealistic conditions for the universe as a whole. After discussions with the lead author of the 1990 paper, John Friedman, they convinced themselves that time travel need not lead to unresolvable paradoxes, regardless of the object sent [[Through the Wormhole|through the wormhole]].<ref name = "time warps">{{cite book| first= Kip S. | last= Thorne|title=Black Holes and Time Warps: Einstein's Outrageous Legacy|url=https://archive.org/details/blackholestimewa0000thor| url-access= registration | quote= Polchinski's paradox. |year=1994|publisher=W. W. Norton|isbn=978-0-393-31276-8|pages=[https://archive.org/details/blackholestimewa0000thor/page/510 510]–}}</ref>{{rp|509}}


[[File:Grandfather paradox billiard ball.svg|thumb|right|upright=0.7|"Polchinski's paradox"]] [[File:Causal loop billiard ball.svg|thumb|right|upright=0.7|Echeverria and Klinkhammer's resolution]]
[[File:Grandfather paradox billiard ball.svg|thumb|right|upright=0.7|"Polchinski's paradox"]] [[File:Causal loop billiard ball.svg|thumb|right|upright=0.7|Echeverria and Klinkhammer's resolution]]
By way of response, physicist [[Joseph Polchinski]] wrote them a letter arguing that one could avoid the issue of free will by employing a potentially paradoxical thought experiment involving a [[billiard ball]] sent back in time through a wormhole. In Polchinski's scenario, the billiard ball is fired into the [[wormhole]] at an angle such that, if it continues along its path, it will exit in the past at just the right angle to collide with its earlier self, knocking it off track and preventing it from entering the wormhole in the first place. Thorne would refer to this scenario as "[[Polchinski's paradox]]" in 1994.<ref name = "timewarps">{{cite book | last = Thorne | first = Kip S. | author-link = Kip Thorne | title = [[Black Holes and Time Warps]] | publisher = W. W. Norton | year= 1994 | isbn = 0-393-31276-3}}</ref>{{rp|510–511}}
By way of response, physicist [[Joseph Polchinski]] wrote them a letter arguing that one could avoid the issue of free will by employing a potentially paradoxical thought experiment involving a [[billiard ball]] sent back in time through a wormhole. In Polchinski's scenario, [[The Billiard Ball|the billiard ball]] is fired into the [[wormhole]] at an angle such that, if it continues along its path, it will exit in the past at just the right angle to collide with its earlier self, knocking it off track and preventing it from entering the wormhole in the first place. Thorne would refer to this scenario as "[[Polchinski's paradox]]" in 1994.<ref name = "timewarps">{{cite book | last = Thorne | first = Kip S. | author-link = Kip Thorne | title = [[Black Holes and Time Warps]] | publisher = W. W. Norton | year= 1994 | isbn = 0-393-31276-3}}</ref>{{rp|510–511}}


Upon considering the scenario, Fernando Echeverria and Gunnar Klinkhammer, two students at [[California Institute of Technology|Caltech]] (where Thorne taught), arrived at a solution to the problem, that lays out the same elements as the solution Feynman and Wheeler<ref>{{cite journal | first1=John | last1=Wheeler | first2=Richard | last2=Feynman | title=Classical Electrodynamics in Terms of Direct Interparticle Action | journal = Reviews of Modern Physics | volume = 21 | year=1949 | issue=3 | pages=425–433| doi=10.1103/RevModPhys.21.425 | bibcode=1949RvMP...21..425W | doi-access=free }}</ref> termed the "glancing blow" solution, to evade inconsistencies arising from causality loops. In the revised scenario, the ball from the future emerges at a different angle than the one that generates the paradox, and delivers its younger self a glancing blow instead of knocking it completely away from the wormhole. This blow alters its trajectory by just the right degree, meaning it will travel back in time with the angle required to deliver its younger self the necessary glancing blow. Echeverria and Klinkhammer actually found that there was more than one self-consistent solution, with slightly different angles for the glancing blow in each situation. Later analysis by Thorne and [[Robert Forward]] illustrated that for certain initial trajectories of the billiard ball, there could actually be an infinite number of self-consistent solutions.<ref name = "timewarps" />{{rp|511–513}}
Upon considering the scenario, Fernando Echeverria and Gunnar Klinkhammer, two students at [[California Institute of Technology|Caltech]] (where Thorne taught), arrived at a solution to the problem, that lays out the same elements as the solution Feynman and Wheeler<ref>{{cite journal | first1=John | last1=Wheeler | first2=Richard | last2=Feynman | title=Classical Electrodynamics in Terms of Direct Interparticle Action | journal = Reviews of Modern Physics | volume = 21 | year=1949 | issue=3 | pages=425–433| doi=10.1103/RevModPhys.21.425 | bibcode=1949RvMP...21..425W | doi-access=free }}</ref> termed the "glancing blow" solution, to evade inconsistencies arising from causality loops. In the revised scenario, the ball from the future emerges at a different angle than the one that generates the paradox, and delivers its younger self a glancing blow instead of knocking it completely away from the wormhole. This blow alters its trajectory by just the right degree, meaning it will travel back in time with the angle required to deliver its younger self the necessary glancing blow. Echeverria and Klinkhammer actually found that there was more than one self-consistent solution, with slightly different angles for the glancing blow in each situation. Later analysis by Thorne and [[Robert Forward]] illustrated that for certain initial trajectories of the billiard ball, there could actually be an infinite number of self-consistent solutions.<ref name = "timewarps" />{{rp|511–513}}


Echeverria, Klinkhammer, and Thorne published a paper discussing these results in 1991;<ref>{{cite journal | first=Fernando | last= Echeverria |author2=Gunnar Klinkhammer |author3=Kip Thorne | url=http://authors.library.caltech.edu/6469/ | title=Billiard balls in wormhole spacetimes with closed timelike curves: Classical theory | journal = Physical Review D | volume = 44 | year=1991 | issue=4 | doi= 10.1103/PhysRevD.44.1077 | pages=1077–1099| pmid= 10013968 |bibcode = 1991PhRvD..44.1077E | url-access=subscription }}</ref> in addition, they reported that they had tried to see if they could find ''any'' initial conditions for the billiard ball for which there were no self-consistent extensions, but were unable to do so. Thus, it is plausible that there exist self-consistent extensions for every possible initial trajectory, although this has not been proven.<ref name = "earman">{{cite book | last = Earman | first = John | title = Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic Spacetimes | publisher = Oxford University Press |year= 1995 | isbn = 0-19-509591-X}}</ref>{{rp|184}} This only applies to initial conditions outside of the chronology-violating region of spacetime,<ref name = "earman" />{{rp|187}} which is bounded by a [[Cauchy horizon]].<ref>{{cite book | last = Nahin | first =Paul J. | title = Time Machines: Time Travel in Physics, Metaphysics, and Science Fiction | publisher =American Institute of Physics |year= 1999 | pages = 508 | isbn = 0-387-98571-9}}</ref> This could mean that the Novikov self-consistency principle does not actually place any constraints on systems outside of the region of space-time where time travel is possible, only inside it.
Echeverria, Klinkhammer, and Thorne published a paper discussing these results in 1991;<ref>{{cite journal | first=Fernando | last= Echeverria |author2=Gunnar Klinkhammer |author3=Kip Thorne | url=http://authors.library.caltech.edu/6469/ | title=Billiard balls in wormhole spacetimes with closed timelike curves: Classical theory | journal = Physical Review D | volume = 44 | year=1991 | issue=4 | doi= 10.1103/PhysRevD.44.1077 | pages=1077–1099| pmid= 10013968 |bibcode = 1991PhRvD..44.1077E | url-access=subscription }}</ref> in addition, they reported that they had tried to see if they could find ''any'' initial conditions for the billiard ball for which there were no self-consistent extensions, but were unable to do so. Thus, it is plausible that there exist self-consistent extensions for every possible initial trajectory, although this has not been proven.<ref name = "earman">{{cite book | last = Earman | first = John | title = Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic Spacetimes | publisher = Oxford University Press |year= 1995 | isbn = 0-19-509591-X}}</ref>{{rp|184}} This only applies to initial conditions outside of the chronology-violating region of spacetime,<ref name = "earman" />{{rp|187}} which is bounded by a [[Cauchy horizon]].<ref>{{cite book | last = Nahin | first =Paul J. | title = Time Machines: Time Travel in Physics, Metaphysics, and Science Fiction | publisher =American Institute of Physics |year= 1999 | page = 508 | isbn = 0-387-98571-9}}</ref> This could mean that the Novikov self-consistency principle does not actually place any constraints on systems outside of the region of space-time where time travel is possible, only inside it.


Even if self-consistent extensions can be found for arbitrary initial conditions outside the Cauchy horizon, the finding that there can be multiple distinct self-consistent extensions for the same initial condition—indeed, Echeverria et al. found an infinite number of consistent extensions for every initial trajectory they analyzed<ref name = "earman" />{{rp|184}}—can be seen as problematic, since classically there seems to be no way to decide which extension the laws of physics will choose. To get around this difficulty, Thorne and Klinkhammer analyzed the billiard ball scenario using quantum mechanics,<ref name = "timewarps" />{{rp|514–515}} performing a quantum-mechanical sum over histories ([[path integral formulation|path integral]]) using only the consistent extensions, and found that this resulted in a well-defined probability for each consistent extension. The authors of "Cauchy problem in spacetimes with closed timelike curves" write:
Even if self-consistent extensions can be found for arbitrary initial conditions outside the Cauchy horizon, the finding that there can be multiple distinct self-consistent extensions for the same initial condition—indeed, Echeverria et al. found an infinite number of consistent extensions for every initial trajectory they analyzed<ref name = "earman" />{{rp|184}}—can be seen as problematic, since classically there seems to be no way to decide which extension the laws of physics will choose. To get around this difficulty, Thorne and Klinkhammer analyzed the billiard ball scenario using quantum mechanics,<ref name = "timewarps" />{{rp|514–515}} performing a quantum-mechanical sum over histories ([[path integral formulation|path integral]]) using only the consistent extensions, and found that this resulted in a well-defined probability for each consistent extension. The authors of "Cauchy problem in spacetimes with closed timelike curves" write:
Line 38: Line 38:
Similarly, physicist and astronomer J. Craig Wheeler concludes that:
Similarly, physicist and astronomer J. Craig Wheeler concludes that:


{{quote|According to the consistency conjecture, any complex interpersonal interactions must work themselves out self-consistently so that there is no paradox. That is the resolution. This means, if taken literally, that if time machines exist, there can be no free will. You cannot will yourself to kill your younger self if you travel back in time. You can coexist, take yourself out for a beer, celebrate your birthday together, but somehow circumstances will dictate that you cannot behave in a way that leads to a paradox in time. Novikov supports this point of view with another argument: physics already restricts your free will every day. You may will yourself to fly or to walk through a concrete wall, but gravity and condensed-matter physics dictate that you cannot. Why, Novikov asks, is the consistency restriction placed on a time traveler any different?<ref>{{cite book | last = Wheeler | first = J. Craig  | title = Cosmic Catastrophes: Exploding Stars, Black Holes, and Mapping the Universe | publisher = Cambridge University Press  | edition = 2nd | date = 2007 | pages = 294–295 | isbn = 978-0521857147 }}</ref>}}
{{quote|According to the consistency conjecture, any complex interpersonal interactions must work themselves out self-consistently so that there is no paradox. That is the resolution. This means, if taken literally, that if time machines exist, there can be no free will. You cannot will yourself to kill your younger self if you travel back in time. You can coexist, take yourself out for a beer, celebrate your birthday together, but somehow circumstances will dictate that you cannot behave in a way that leads to a paradox in time. Novikov supports this point of view with another argument: physics already restricts your free will every day. You may will yourself to fly or to walk through a concrete wall, but gravity and condensed-matter physics dictate that you cannot. Why, Novikov asks, is the consistency restriction placed on a time traveler any different?<ref>{{cite book | last = Wheeler | first = J. Craig  | title = Cosmic Catastrophes: Exploding Stars, Black Holes, and Mapping the Universe | publisher = Cambridge University Press  | edition = 2nd | date = 2007 | pages = 294–295 | isbn = 978-0-521-85714-7 }}</ref>}}


==Time-loop logic==
==Time-loop logic==
{{Main|Time loop}}
{{Main|Time loop}}


Time-loop logic, coined by [[roboticist]] and futurist [[Hans Moravec]],<ref>{{cite web|url=http://www.frc.ri.cmu.edu/users/hpm/project.archive/general.articles/1991/TempComp.html|title=Time Travel and Computing|first=Hans|last=Moravec|year=1991|access-date=2008-07-28|author-link=Hans Moravec|archive-url=https://web.archive.org/web/20090129114503/http://www.frc.ri.cmu.edu/users/hpm/project.archive/general.articles/1991/TempComp.html|archive-date=2009-01-29|url-status=dead}}</ref> is a hypothetical system of computation that exploits the Novikov self-consistency principle to compute answers much faster than possible with the standard model of [[computational complexity theory|computational complexity]] using [[Turing machine]]s. In this system, a computer sends a result of a computation [[time travel|backwards through time]] and relies upon the self-consistency principle to force the sent result to be correct, provided the machine can reliably receive information from the future and provided the algorithm and the underlying mechanism are [[Formal verification|formally correct]]. An incorrect result or no result can still be produced if the time travel mechanism or algorithm are not guaranteed to be accurate.
Time-loop logic, coined by [[roboticist]] and futurist [[Hans Moravec]],<ref>{{cite web|url=http://www.frc.ri.cmu.edu/users/hpm/project.archive/general.articles/1991/TempComp.html|title=Time Travel and Computing|first=Hans|last=Moravec|year=1991|access-date=2008-07-28|author-link=Hans Moravec|archive-url=https://web.archive.org/web/20090129114503/http://www.frc.ri.cmu.edu/users/hpm/project.archive/general.articles/1991/TempComp.html|archive-date=2009-01-29}}</ref> is a hypothetical system of computation that exploits the Novikov self-consistency principle to compute answers much faster than possible with the standard model of [[computational complexity theory|computational complexity]] using [[Turing machine]]s. In this system, a computer sends a result of a computation [[time travel|backwards through time]] and relies upon the self-consistency principle to force the sent result to be correct, provided the machine can reliably receive information from the future and provided the algorithm and the underlying mechanism are [[Formal verification|formally correct]]. An incorrect result or no result can still be produced if the time travel mechanism or algorithm are not guaranteed to be accurate.


A simple example is an [[iterative method]] algorithm. Moravec states:
A simple example is an [[iterative method]] algorithm. Moravec states:
Line 70: Line 70:
| last1        = Tolksdorf
| last1        = Tolksdorf
| first1      = Juergen
| first1      = Juergen
| authorlink1  =
| last2        = Verch
| last2        = Verch
| first2      = Rainer
| first2      = Rainer
| authorlink2  =
|date=2021
|date=2021
| title        = The D-CTC condition is generically fulfilled in classical (non-quantum) statistical systems
| title        = The D-CTC condition is generically fulfilled in classical (non-quantum) statistical systems
Line 88: Line 86:
the same authors show that Deutsch's CTC fixed point condition can also be fulfilled in any system
the same authors show that Deutsch's CTC fixed point condition can also be fulfilled in any system
subject to the laws of classical [[statistical mechanics]], even if it is not built up by quantum systems. The authors conclude that hence,  
subject to the laws of classical [[statistical mechanics]], even if it is not built up by quantum systems. The authors conclude that hence,  
Deutsch's condition is not specific to quantum physics, nor does it depend on the quantum nature of a physical system so that it can be fulfilled.
Deutsch's condition is not specific to quantum physics, nor does it depend on the quantum nature of a [[physical system]] so that it can be fulfilled.
In consequence, Tolksdorf and Verch argue that Deutsch's condition is not sufficiently specific to allow statements about time travel scenarios or their hypothetical realization by quantum physics.
In consequence, Tolksdorf and Verch argue that Deutsch's condition is not sufficiently specific to allow statements about time travel scenarios or their hypothetical realization by quantum physics.


Line 95: Line 93:
| last1        = Lloyd
| last1        = Lloyd
| first1      = Seth
| first1      = Seth
| authorlink1 = Seth Lloyd
| author-link1 = Seth Lloyd
| last2        = Maccone
| last2        = Maccone
| first2      = Lorenzo
| first2      = Lorenzo
Line 116: Line 114:
| last11        = Steinberg
| last11        = Steinberg
| first11      = Aephraim M.
| first11      = Aephraim M.
| authorlink11 = Aephraim M. Steinberg
| author-link11 = Aephraim M. Steinberg
| date        = 27 January 2011
| date        = 27 January 2011
| title        = Closed Timelike Curves via Postselection: Theory and Experimental Test of Consistency
| title        = Closed Timelike Curves via Postselection: Theory and Experimental Test of Consistency
Line 122: Line 120:
| volume      = 106
| volume      = 106
| issue        = 4
| issue        = 4
| pages       = 040403
| article-number       = 040403
| doi          = 10.1103/PhysRevLett.106.040403
| doi          = 10.1103/PhysRevLett.106.040403
|bibcode = 2011PhRvL.106d0403L
|bibcode = 2011PhRvL.106d0403L
Line 131: Line 129:
| last1        = Lloyd
| last1        = Lloyd
| first1      = Seth
| first1      = Seth
| authorlink1 = Seth Lloyd
| author-link1 = Seth Lloyd
| last2        = Maccone
| last2        = Maccone
| first2      = Lorenzo
| first2      = Lorenzo
Line 146: Line 144:
| volume=84
| volume=84
| issue=2
| issue=2
| pages = 025007
| article-number = 025007
| journal=Physical Review D
| journal=Physical Review D
| bibcode= 2011PhRvD..84b5007L
| bibcode= 2011PhRvD..84b5007L
Line 156: Line 154:
* The story ''[[The Merchant and the Alchemist's Gate]]'' (2007) by [[Ted Chiang]] explores the interplay between free will and self-consistent time-travel.  
* The story ''[[The Merchant and the Alchemist's Gate]]'' (2007) by [[Ted Chiang]] explores the interplay between free will and self-consistent time-travel.  
* ''[[Steins;Gate]]'' (2009): Cited by Makise Kurisu during her presentation on time travel.
* ''[[Steins;Gate]]'' (2009): Cited by Makise Kurisu during her presentation on time travel.
* ''[[Harry Potter and the Methods of Rationality]]'': In Eliezer Yudkowsky's exposition on rationality, framed as a piece of Harry Potter fanfiction, Harry attempts to use his Time Turner to influence the past and comes to the conclusion that the Novikov self-consistency principle applies.
* ''[[Harry Potter and the Methods of Rationality]]'': In [[Eliezer Yudkowsky]]'s exposition on rationality, framed as a piece of Harry Potter fanfiction, Harry attempts to use his Time Turner to influence the past and comes to the conclusion that the Novikov self-consistency principle applies.
* ''[[Orthogonal (series)|Orthogonal]]'': A science-fiction novel series by [[Greg Egan]] that applies the principle.
* ''[[Orthogonal (series)|Orthogonal]]'': A science-fiction novel series by [[Greg Egan]] that applies the principle.
* The Netflix series ''[[Dark (TV series)|Dark]]'' is largely based on the notion that the possibility of time travel tempts the characters to try to change the past, which only leads them to cause the events they were trying to prevent in the first place.
* The [[Netflix]] series ''[[Dark (TV series)|Dark]]'' is largely based on the notion that the possibility of time travel tempts the characters to try to change the past, which only leads them to cause the events they were trying to prevent in the first place.
* ''[[Quantum Break]]'' (2016): A video game by [[Remedy Entertainment]], centers heavily on the question whether the past can be changed or not. Some of the characters in the plot are driven to change it, whereas others, who have already tried doing so in vain, have resigned themselves to come to the conclusion that the Novikov self-consistency principle seemingly applies.
* ''[[Quantum Break]]'' (2016): A video game by [[Remedy Entertainment]], centers heavily on the question whether the past can be changed or not. Some of the characters in the plot are driven to change it, whereas others, who have already tried doing so in vain, have resigned themselves to come to the conclusion that the Novikov self-consistency principle seemingly applies.
* ''[[Outer Wilds]]'' (2019): A video game involving time travel which does not follow the principle, causing a game over if the player experiments to test it.
* ''[[Outer Wilds]]'' (2019): A video game involving time travel which does not follow the principle, causing a game over if the player experiments to test it.
Line 181: Line 179:
* [https://web.archive.org/web/20060410183346/http://www2.iap.fr/eas/EAS18/time18/ontime.html Notion of the Past & Can We Change It?] – speech by Novikov
* [https://web.archive.org/web/20060410183346/http://www2.iap.fr/eas/EAS18/time18/ontime.html Notion of the Past & Can We Change It?] – speech by Novikov
* [https://arxiv.org/abs/hep-th/9202090 From wormhole to time machine: Comments on Hawking's Chronology Protection Conjecture], which also addresses the Novikov self-consistency principle
* [https://arxiv.org/abs/hep-th/9202090 From wormhole to time machine: Comments on Hawking's Chronology Protection Conjecture], which also addresses the Novikov self-consistency principle
* [http://news.bbc.co.uk/2/hi/science/nature/4097258.stm Einstein Physics prevent paradoxical time travel]
* [https://news.bbc.co.uk/2/hi/science/nature/4097258.stm Einstein Physics prevent paradoxical time travel]
* [http://plato.stanford.edu/entries/time-travel-phys/ Time Travel and Modern Physics]
* [http://plato.stanford.edu/entries/time-travel-phys/ Time Travel and Modern Physics]



Latest revision as of 10:45, 4 October 2025

Template:Short description

The Novikov self-consistency principle, also known as the Novikov self-consistency conjecture and Larry Niven's law of conservation of history, is a principle developed by Russian physicist Igor Dmitriyevich Novikov in the mid-1980s. Novikov intended it to solve the problem of paradoxes in time travel, which is theoretically permitted in certain solutions of general relativity that contain what are known as closed timelike curves. The principle asserts that if an event exists that would cause a paradox or any "change" to the past whatsoever, then the probability of that event is zero. It would thus be impossible to create time paradoxes.

History

Physicists have long known that some solutions to the theory of general relativity contain closed timelike curves—for example the Gödel metric. Novikov discussed the possibility of closed timelike curves (CTCs) in books he wrote in 1975 and 1983,[1] offering the opinion that only self-consistent trips back in time would be permitted.[2] In a 1990 paper by Novikov and several others, "Cauchy problem in spacetimes with closed timelike curves",[3] the authors state:

Template:Quote

Among the co-authors of this 1990 paper were Kip Thorne, Mike Morris, and Ulvi Yurtsever, who in 1988 had stirred up renewed interest in the subject of time travel in general relativity with their paper "Wormholes, Time Machines, and the Weak Energy Condition",[4] which showed that a new general relativity solution known as a traversable wormhole could lead to closed timelike curves, and unlike previous CTC-containing solutions, it did not require unrealistic conditions for the universe as a whole. After discussions with the lead author of the 1990 paper, John Friedman, they convinced themselves that time travel need not lead to unresolvable paradoxes, regardless of the object sent through the wormhole.[5]Template:Rp

File:Grandfather paradox billiard ball.svg
"Polchinski's paradox"
File:Causal loop billiard ball.svg
Echeverria and Klinkhammer's resolution

By way of response, physicist Joseph Polchinski wrote them a letter arguing that one could avoid the issue of free will by employing a potentially paradoxical thought experiment involving a billiard ball sent back in time through a wormhole. In Polchinski's scenario, the billiard ball is fired into the wormhole at an angle such that, if it continues along its path, it will exit in the past at just the right angle to collide with its earlier self, knocking it off track and preventing it from entering the wormhole in the first place. Thorne would refer to this scenario as "Polchinski's paradox" in 1994.[6]Template:Rp

Upon considering the scenario, Fernando Echeverria and Gunnar Klinkhammer, two students at Caltech (where Thorne taught), arrived at a solution to the problem, that lays out the same elements as the solution Feynman and Wheeler[7] termed the "glancing blow" solution, to evade inconsistencies arising from causality loops. In the revised scenario, the ball from the future emerges at a different angle than the one that generates the paradox, and delivers its younger self a glancing blow instead of knocking it completely away from the wormhole. This blow alters its trajectory by just the right degree, meaning it will travel back in time with the angle required to deliver its younger self the necessary glancing blow. Echeverria and Klinkhammer actually found that there was more than one self-consistent solution, with slightly different angles for the glancing blow in each situation. Later analysis by Thorne and Robert Forward illustrated that for certain initial trajectories of the billiard ball, there could actually be an infinite number of self-consistent solutions.[6]Template:Rp

Echeverria, Klinkhammer, and Thorne published a paper discussing these results in 1991;[8] in addition, they reported that they had tried to see if they could find any initial conditions for the billiard ball for which there were no self-consistent extensions, but were unable to do so. Thus, it is plausible that there exist self-consistent extensions for every possible initial trajectory, although this has not been proven.[9]Template:Rp This only applies to initial conditions outside of the chronology-violating region of spacetime,[9]Template:Rp which is bounded by a Cauchy horizon.[10] This could mean that the Novikov self-consistency principle does not actually place any constraints on systems outside of the region of space-time where time travel is possible, only inside it.

Even if self-consistent extensions can be found for arbitrary initial conditions outside the Cauchy horizon, the finding that there can be multiple distinct self-consistent extensions for the same initial condition—indeed, Echeverria et al. found an infinite number of consistent extensions for every initial trajectory they analyzed[9]Template:Rp—can be seen as problematic, since classically there seems to be no way to decide which extension the laws of physics will choose. To get around this difficulty, Thorne and Klinkhammer analyzed the billiard ball scenario using quantum mechanics,[6]Template:Rp performing a quantum-mechanical sum over histories (path integral) using only the consistent extensions, and found that this resulted in a well-defined probability for each consistent extension. The authors of "Cauchy problem in spacetimes with closed timelike curves" write:

Template:Quote

Assumptions

The Novikov consistency principle assumes certain conditions about what sort of time travel is possible. Specifically, it assumes either that there is only one timeline, or that any alternative timelines (such as those postulated by the many-worlds interpretation of quantum mechanics) are not accessible.

Given these assumptions, the constraint that time travel must not lead to inconsistent outcomes could be seen merely as a tautology, a self-evident truth that cannot possibly be false. However, the Novikov self-consistency principle is intended to go beyond just the statement that history must be consistent, making the additional nontrivial assumption that the universe obeys the same local laws of physics in situations involving time travel that it does in regions of space-time that lack closed timelike curves. This is clarified in the above-mentioned "Cauchy problem in spacetimes with closed timelike curves",[3] where the authors write:

Template:Quote

Implications for time travelers

The assumptions of the self-consistency principle can be extended to hypothetical scenarios involving intelligent time travelers as well as unintelligent objects such as billiard balls. The authors of "Cauchy problem in spacetimes with closed timelike curves" commented on the issue in the paper's conclusion, writing:

Template:Quote

Similarly, physicist and astronomer J. Craig Wheeler concludes that:

Template:Quote

Time-loop logic

Script error: No such module "Labelled list hatnote".

Time-loop logic, coined by roboticist and futurist Hans Moravec,[11] is a hypothetical system of computation that exploits the Novikov self-consistency principle to compute answers much faster than possible with the standard model of computational complexity using Turing machines. In this system, a computer sends a result of a computation backwards through time and relies upon the self-consistency principle to force the sent result to be correct, provided the machine can reliably receive information from the future and provided the algorithm and the underlying mechanism are formally correct. An incorrect result or no result can still be produced if the time travel mechanism or algorithm are not guaranteed to be accurate.

A simple example is an iterative method algorithm. Moravec states:

Template:Quote

Quantum computation with a negative delay

Physicist David Deutsch showed in 1991 that this model of computation could solve NP problems in polynomial time,[12] and Scott Aaronson later extended this result to show that the model could also be used to solve PSPACE problems in polynomial time.[13][14] Deutsch shows that quantum computation with a negative delay—backwards time travel—produces only self-consistent solutions, and the chronology-violating region imposes constraints that are not apparent through classical reasoning.[12] Researchers published in 2014 a simulation in which they claim to have validated Deutsch's model with photons.[15] However, it was shown in an article by Tolksdorf and Verch that Deutsch's self-consistency condition can be fulfilled to arbitrary precision in any quantum system described according to relativistic quantum field theory even on spacetimes which do not admit closed timelike curves, casting doubts on whether Deutsch's model is really characteristic of quantum processes simulating closed timelike curves in the sense of general relativity.[16] In a later article,[17] the same authors show that Deutsch's CTC fixed point condition can also be fulfilled in any system subject to the laws of classical statistical mechanics, even if it is not built up by quantum systems. The authors conclude that hence, Deutsch's condition is not specific to quantum physics, nor does it depend on the quantum nature of a physical system so that it can be fulfilled. In consequence, Tolksdorf and Verch argue that Deutsch's condition is not sufficiently specific to allow statements about time travel scenarios or their hypothetical realization by quantum physics.

Lloyd's prescription

An alternative proposal was later presented by Seth Lloyd[18][19] based upon post-selection and path integrals. In particular, the path integral is over single-valued fields, leading to self-consistent histories.

In popular culture

  • The Final Countdown (1980): A science-fiction time-travel movie in which the aircraft carrier USS Nimitz passes through a wormhole back to the eve of the Japanese attack on Pearl Harbor. The anomaly returns and sends it back into the present, before it has a chance to affect the outcome.
  • The story The Merchant and the Alchemist's Gate (2007) by Ted Chiang explores the interplay between free will and self-consistent time-travel.
  • Steins;Gate (2009): Cited by Makise Kurisu during her presentation on time travel.
  • Harry Potter and the Methods of Rationality: In Eliezer Yudkowsky's exposition on rationality, framed as a piece of Harry Potter fanfiction, Harry attempts to use his Time Turner to influence the past and comes to the conclusion that the Novikov self-consistency principle applies.
  • Orthogonal: A science-fiction novel series by Greg Egan that applies the principle.
  • The Netflix series Dark is largely based on the notion that the possibility of time travel tempts the characters to try to change the past, which only leads them to cause the events they were trying to prevent in the first place.
  • Quantum Break (2016): A video game by Remedy Entertainment, centers heavily on the question whether the past can be changed or not. Some of the characters in the plot are driven to change it, whereas others, who have already tried doing so in vain, have resigned themselves to come to the conclusion that the Novikov self-consistency principle seemingly applies.
  • Outer Wilds (2019): A video game involving time travel which does not follow the principle, causing a game over if the player experiments to test it.
  • All time travel in the Hallmark Channel original series The Way Home follows the Novikov self-consistency principle. Two of the main characters can travel backwards in time by jumping into a pond, but they are unable to change anything in the past. All of their actions become part of history, and they actually end up causing the tragic events they were trying to prevent in the first place.
  • Doctor Who: a British science fiction television series that sometimes follows the Novikov self-consistency principle.

See also

References

Template:Reflist

External links

Template:Time travel

  1. See note 10 on p. 42 of Friedman et al., "Cauchy problem in space-times with closed timelike curves"
  2. On p. 169 of Novikov's Evolution of the Universe (1983), which was a translation of his Russian book Evolyutsiya Vselennoĭ (1979), Novikov's comment on the issue is rendered by translator M. M. Basko as "The close of time curves does not necessarily imply a violation of causality, since the events along such a closed line may be all 'self-adjusted'—they all affect one another through the closed cycle and follow one another in a self-consistent way."
  3. a b Script error: No such module "Citation/CS1".
  4. Script error: No such module "Citation/CS1".
  5. Script error: No such module "citation/CS1".
  6. a b c Script error: No such module "citation/CS1".
  7. Script error: No such module "Citation/CS1".
  8. Script error: No such module "Citation/CS1".
  9. a b c Script error: No such module "citation/CS1".
  10. Script error: No such module "citation/CS1".
  11. Script error: No such module "citation/CS1".
  12. a b Script error: No such module "Citation/CS1".
  13. Script error: No such module "Citation/CS1".
  14. Script error: No such module "Citation/CS1".
  15. Script error: No such module "Citation/CS1".
  16. Script error: No such module "Citation/CS1".
  17. Script error: No such module "Citation/CS1".
  18. Script error: No such module "Citation/CS1".
  19. Script error: No such module "Citation/CS1".