Transcendental number: Difference between revisions

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
imported>OAbot
m Open access bot: url-access updated in citation with #oabot.
imported>Catfanaccount
mNo edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{Short description|In mathematics, a non-algebraic number}}
{{Short description|In mathematics, a non-algebraic number}}
{{Redirect|U-number|thermal conductivity|R-value (insulation)#U-value}}
{{Redirect|U-number|thermal conductivity|R-value (insulation)#U-value}}
In [[mathematics]], a '''transcendental number''' is a [[real number|real]] or [[complex number]] that is not [[algebraic number|algebraic]]: that is, not the [[Zero of a function|root]] of a non-zero [[polynomial]] with [[integer]] (or, equivalently, [[rational number|rational]]) [[coefficient]]s. The best-known transcendental numbers are {{mvar|[[Pi|π]]}} and {{mvar|[[e (mathematical constant)|e]]}}.<ref>{{cite web |first=Cliff |last=Pickover |title=The 15&nbsp;most famous transcendental numbers |website=sprott.physics.wisc.edu |url=http://sprott.physics.wisc.edu/pickover/trans.html |access-date=2020-01-23}}</ref><ref>{{cite book |last1=Shidlovskii |first1=Andrei B. |date=June 2011 |title=Transcendental Numbers |publisher=Walter de Gruyter |isbn=9783110889055 |page=1}}</ref> The quality of a number being transcendental is called '''transcendence'''.
In [[mathematics]], a '''transcendental number''' is a [[real number|real]] or [[complex number]] that is not [[algebraic number|algebraic]]: that is, not the [[Zero of a function|root]] of a non-zero [[polynomial]] with [[integer]] (or, equivalently, [[rational number|rational]]) [[coefficient]]s. The best-known transcendental numbers are {{mvar|[[Pi|π]]}} and {{mvar|[[e (mathematical constant)|e]]}}.<ref>{{cite web |first=Cliff |last=Pickover |title=The 15&nbsp;most famous transcendental numbers |website=sprott.physics.wisc.edu |url=http://sprott.physics.wisc.edu/pickover/trans.html |access-date=2020-01-23}}</ref><ref>{{cite book |last1=Shidlovskii |first1=Andrei B. |date=June 2011 |title=Transcendental Numbers |publisher=Walter de Gruyter |isbn=9783110889055 |page=1}}</ref> The quality of a number being transcendental is called '''transcendence'''.


Though only a few classes of transcendental numbers are known, partly because it can be extremely difficult to show that a given number is transcendental. Transcendental numbers are not rare: indeed, [[almost all]] real and complex numbers are transcendental, since the algebraic numbers form a [[countable set]], while the [[set (mathematics)|set]] of [[real numbers]] {{tmath|\R}} and the set of [[complex number]]s {{tmath|\C}} are both [[uncountable set]]s, and therefore larger than any countable set.
Though only a few classes of transcendental numbers are known, partly because it can be extremely difficult to show that a given number is transcendental, transcendental numbers are not rare: indeed, [[almost all]] real and complex numbers are transcendental, since the algebraic numbers form a [[countable set]], while the [[set (mathematics)|set]] of [[real numbers]] {{tmath|\R}} and the set of [[complex number]]s {{tmath|\C}} are both [[uncountable set]]s, and therefore larger than any countable set.


All '''transcendental real numbers''' (also known as '''real transcendental numbers''' or '''transcendental irrational numbers''') are [[irrational number]]s, since all [[rational numbers]] are algebraic.<ref name=numbers>{{cite book |last1=Bunday |first1=B. D. |last2=Mulholland |first2=H. |title=Pure Mathematics for Advanced Level |date=20 May 2014 |publisher=Butterworth-Heinemann |isbn=978-1-4831-0613-7 |url=https://books.google.com/books?id=02_iBQAAQBAJ |access-date=21 March 2021 |language=en}}</ref><ref>{{cite journal |last1=Baker |first1=A. |title=On Mahler's classification of transcendental numbers |journal=Acta Mathematica |date=1964 |volume=111 |pages=97–120 |doi=10.1007/bf02391010 |s2cid=122023355 |doi-access=free }}</ref><ref>{{cite arXiv |last1=Heuer |first1=Nicolaus |last2=Loeh |first2=Clara |title=Transcendental simplicial volumes |date=1 November 2019 |class=math.GT |eprint=1911.06386 }}</ref><ref>{{cite encyclopedia |title=Real number |department=mathematics |url=https://www.britannica.com/science/real-number |access-date=2020-08-11 |encyclopedia=Encyclopædia Britannica |lang=en}}</ref> The [[Converse (logic)|converse]] is not true: Not all irrational numbers are transcendental. Hence, the set of real numbers consists of non-overlapping sets of rational, [[Irrational number#Algebraic|algebraic irrational]], and transcendental real numbers.<ref name=numbers/> For example, the [[square root of 2]] is an irrational number, but it is not a transcendental number as it is a [[Zero_of_a_function#Polynomial_roots|root of the polynomial]] equation {{math|''x''<sup>2</sup> − 2 {{=}} 0}}. The [[golden ratio]] (denoted <math>\varphi</math> or <math>\phi</math>) is another irrational number that is not transcendental, as it is a root of the polynomial equation {{math|''x''<sup>2</sup> − ''x'' − 1 {{=}} 0}}.
All '''transcendental real numbers''' (also known as '''real transcendental numbers''' or '''transcendental irrational numbers''') are [[irrational number]]s, since all [[rational numbers]] are algebraic.<ref name=numbers>{{cite book |last1=Bunday |first1=B. D. |last2=Mulholland |first2=H. |title=Pure Mathematics for Advanced Level |date=20 May 2014 |publisher=Butterworth-Heinemann |isbn=978-1-4831-0613-7 |url=https://books.google.com/books?id=02_iBQAAQBAJ |access-date=21 March 2021 |language=en}}</ref><ref>{{cite journal |last1=Baker |first1=A. |title=On Mahler's classification of transcendental numbers |journal=Acta Mathematica |date=1964 |volume=111 |pages=97–120 |doi=10.1007/bf02391010 |s2cid=122023355 |doi-access=free }}</ref><ref>{{cite arXiv |last1=Heuer |first1=Nicolaus |last2=Loeh |first2=Clara |title=Transcendental simplicial volumes |date=1 November 2019 |class=math.GT |eprint=1911.06386 }}</ref><ref>{{cite encyclopedia |title=Real number |department=mathematics |url=https://www.britannica.com/science/real-number |access-date=2020-08-11 |encyclopedia=Encyclopædia Britannica |lang=en}}</ref> The [[Converse (logic)|converse]] is not true: Not all irrational numbers are transcendental. Hence, the set of real numbers consists of non-overlapping sets of rational, [[Irrational number#Algebraic|algebraic irrational]], and transcendental real numbers.<ref name=numbers/> For example, the [[square root of 2]] is an irrational number, but it is not a transcendental number as it is a [[Zero_of_a_function#Polynomial_roots|root of the polynomial]] equation {{math|''x''<sup>2</sup> − 2 {{=}} 0}}. The [[golden ratio]] (denoted <math>\varphi</math> or <math>\phi</math>) is another irrational number that is not transcendental, as it is a root of the polynomial equation {{math|''x''<sup>2</sup> − ''x'' − 1 {{=}} 0}}.
Line 42: Line 41:
Applying any non-constant single-variable [[algebraic function]] to a transcendental argument yields a transcendental value. For example, from knowing that {{mvar|π}} is transcendental, it can be immediately deduced that numbers such as <math>5\pi</math>, <math>\tfrac{\pi - 3}{\sqrt{2}}</math>, <math>(\sqrt{\pi}-\sqrt{3})^8</math>, and <math>\sqrt[4]{\pi^5+7}</math> are transcendental as well.
Applying any non-constant single-variable [[algebraic function]] to a transcendental argument yields a transcendental value. For example, from knowing that {{mvar|π}} is transcendental, it can be immediately deduced that numbers such as <math>5\pi</math>, <math>\tfrac{\pi - 3}{\sqrt{2}}</math>, <math>(\sqrt{\pi}-\sqrt{3})^8</math>, and <math>\sqrt[4]{\pi^5+7}</math> are transcendental as well.


However, an [[algebraic function]] of several variables may yield an algebraic number when applied to transcendental numbers if these numbers are not [[algebraically independent]]. For example, {{mvar|π}} and {{math|(1 − ''π'')}} are both transcendental, but {{math|''π'' + (1 − ''π'') {{=}} 1}} is obviously not. It is unknown whether {{math|''e'' + ''π''}}, for example, is transcendental, though at least one of {{math|''e'' + ''π''}} and {{mvar|eπ}} must be transcendental. More generally, for any two transcendental numbers {{mvar|a}} and {{mvar|b}}, at least one of {{math|''a'' + ''b''}} and {{mvar|ab}} must be transcendental. To see this, consider the polynomial {{math|(''x'' − ''a'')(''x'' − ''b'') {{=}} ''x''<sup>2</sup> − (''a'' + ''b'') ''x'' + ''a b''}}&nbsp;. If {{math| (''a'' + ''b'')}} and {{mvar|a b}} were both algebraic, then this would be a polynomial with algebraic coefficients. Because algebraic numbers form an [[algebraically closed field]], this would imply that the roots of the polynomial, {{mvar|a}} and {{mvar|b}}, must be algebraic. But this is a contradiction, and thus it must be the case that at least one of the coefficients is transcendental.
However, an [[algebraic function]] of several variables may yield an algebraic number when applied to transcendental numbers if these numbers are not [[algebraically independent]]. For example, {{mvar|π}} and {{math|(1 − ''π'')}} are both transcendental, but {{math|''π'' + (1 − ''π'') {{=}} 1}} is not. It is unknown whether {{math|''e'' + ''π''}}, for example, is transcendental, though at least one of {{math|''e'' + ''π''}} and {{mvar|eπ}} must be transcendental. More generally, for any two transcendental numbers {{mvar|a}} and {{mvar|b}}, at least one of {{math|''a'' + ''b''}} and {{mvar|ab}} must be transcendental. To see this, consider the polynomial {{math|(''x'' − ''a'')(''x'' − ''b'') {{=}} ''x''<sup>2</sup> − (''a'' + ''b'') ''x'' + ''a b''}}&nbsp;. If {{math| (''a'' + ''b'')}} and {{mvar|a b}} were both algebraic, then this would be a polynomial with algebraic coefficients. Because algebraic numbers form an [[algebraically closed field]], this would imply that the roots of the polynomial, {{mvar|a}} and {{mvar|b}}, must be algebraic. But this is a contradiction, and thus it must be the case that at least one of the coefficients is transcendental.


The [[non-computable numbers]] are a strict subset of the transcendental numbers.
The [[non-computable numbers]] are a strict subset of the transcendental numbers.
Line 54: Line 53:


* [[pi|{{mvar|π}}]] (by the [[Lindemann–Weierstrass theorem]]).
* [[pi|{{mvar|π}}]] (by the [[Lindemann–Weierstrass theorem]]).
* {{math|<math>e^a</math>}} if {{Math|<math>a</math>}} is [[Algebraic number|algebraic]] and nonzero (by the Lindemann–Weierstrass theorem), in particular [[E (mathematical constant)|Euler's number]] {{mvar|e}}.
* <math>e^a</math> if {{mvar|a}} is [[Algebraic number|algebraic]] and nonzero (by the Lindemann–Weierstrass theorem), in particular [[E (mathematical constant)|Euler's number]] {{mvar|e}}.
* {{math|<math> e^{\pi \sqrt n} </math>}} where {{math|<math>n</math>}} is a positive integer; in particular [[Gelfond's constant]] {{math|<math>e^\pi</math>}} (by the [[Gelfond–Schneider theorem]]).
* <math> e^{\pi \sqrt n} </math> where {{mvar|n}} is a positive integer; in particular [[Gelfond's constant]] <math>e^\pi</math> (by the [[Gelfond–Schneider theorem]]).
* Algebraic combinations of {{math|<math>\pi </math>}} and {{math|<math> e^{\pi \sqrt n} , n\in\mathbb Z^{+}</math>}} such as {{math|<math> \pi + e^{\pi}</math>}} and {{math|<math> \pi  e^{\pi}</math>}} (following from their [[algebraic independence]]).<ref name=":2">{{Cite journal |last=Nesterenko |first=Yu V |date=1996-10-31 |title=Modular functions and transcendence questions |url=https://iopscience.iop.org/article/10.1070/SM1996v187n09ABEH000158 |journal=Sbornik: Mathematics |volume=187 |issue=9 |pages=1319–1348 |doi=10.1070/SM1996v187n09ABEH000158 |bibcode=1996SbMat.187.1319N |issn=1064-5616|url-access=subscription }}</ref>
* Algebraic combinations of {{mvar|π}} and <math> e^{\pi \sqrt n} , n\in\mathbb Z^{+}</math> such as <math> \pi + e^{\pi}</math> and <math> \pi  e^{\pi}</math> (following from their [[algebraic independence]]).<ref name=":2">{{Cite journal |last=Nesterenko |first=Yu V |date=1996-10-31 |title=Modular functions and transcendence questions |url=https://iopscience.iop.org/article/10.1070/SM1996v187n09ABEH000158 |journal=Sbornik: Mathematics |volume=187 |issue=9 |pages=1319–1348 |doi=10.1070/SM1996v187n09ABEH000158 |bibcode=1996SbMat.187.1319N |issn=1064-5616|url-access=subscription }}</ref>
* {{math|<math>a^b</math>}} where {{Math|<math>a</math>}} is algebraic but not 0 or 1, and {{Math|<math>b</math>}} is irrational algebraic, in particular the [[Gelfond–Schneider constant]] <math>2^{\sqrt{2}}</math> (by the Gelfond–Schneider theorem).
* <math>a^b</math> where {{mvar|a}} is algebraic but not 0 or 1, and {{mvar|b}} is irrational algebraic, in particular the [[Gelfond–Schneider constant]] <math>2^{\sqrt{2}}</math> (by the Gelfond–Schneider theorem).
* The [[natural logarithm]] {{math|<math>\ln(a)</math>}} if {{math|<math>a</math>}} is algebraic and not equal to 0 or 1, for any branch of the logarithm function (by the Lindemann–Weierstrass theorem).
* The [[natural logarithm]] {{math|ln(''a'')}} if {{mvar|a}} is algebraic and not equal to 0 or 1, for any branch of the logarithm function (by the Lindemann–Weierstrass theorem).
* {{math|<math>\log_b(a)</math>}} if {{math|<math>a</math>}} and {{math|<math>b</math>}} are positive integers not both powers of the same integer, and {{math|<math>a</math>}} is not equal to 1 (by the Gelfond–Schneider theorem).
* <math>\log_b(a)</math> if {{mvar|a}} and {{mvar|b}} are positive integers not both powers of the same integer, and {{mvar|a}} is not equal to 1 (by the Gelfond–Schneider theorem).
* All numbers of the form <math>\pi + \beta_1 \ln (a_1) + \cdots + \beta_n \ln (a_n)</math> are transcendental, where <math>\beta_j</math> are algebraic for all <math>1 \leq j \leq n</math> and <math>a_j</math> are non-zero algebraic for all <math>1 \leq j \leq n</math> (by [[Baker's theorem]]).
* All numbers of the form <math>\pi + \beta_1 \ln (a_1) + \cdots + \beta_n \ln (a_n)</math> are transcendental, where <math>\beta_j</math> are algebraic for all <math>1 \leq j \leq n</math> and <math>a_j</math> are non-zero algebraic for all <math>1 \leq j \leq n</math> (by [[Baker's theorem]]).


*The [[trigonometric functions]] {{math|<math>\sin(x), \cos(x), ...</math>}} and their [[Hyperbolic functions|hyperbolic counterparts]], for any nonzero algebraic number {{math|<math>x</math>}}, expressed in [[radian]]s (by the Lindemann–Weierstrass theorem).
*The [[trigonometric functions]] {{math|sin(''x''), cos(''x'')}} and their [[Hyperbolic functions|hyperbolic counterparts]], for any nonzero algebraic number {{mvar|x}}, expressed in [[radian]]s (by the Lindemann–Weierstrass theorem).
*Non-zero results of the [[inverse trigonometric functions]] {{math|<math>\arcsin(x), \arccos(x), ...</math>}} and their [[Inverse hyperbolic functions|hyperbolic counterparts]], for any algebraic number {{math|<math>x</math>}} (by the Lindemann–Weierstrass theorem).
*Non-zero results of the [[inverse trigonometric functions]] {{math|arcsin(''x''), arccos(''x'')}} and their [[Inverse hyperbolic functions|hyperbolic counterparts]], for any algebraic number {{mvar|x}} (by the Lindemann–Weierstrass theorem).
*<math>\pi^{-1}{\arctan(x)}</math>, for rational {{math|<math>x</math>}} such that <math>x \notin \{0,\pm{1}\}</math>.<ref name=":1">{{Cite web |last=Weisstein |first=Eric W. |title=Transcendental Number |url=https://mathworld.wolfram.com/TranscendentalNumber.html |access-date=2023-08-09 |website=mathworld.wolfram.com |language=en}}</ref>
*<math>\pi^{-1}{\arctan(x)}</math>, for rational {{mvar|x}} such that <math>x \notin \{0,\pm{1}\}</math>.<ref name=":1">{{Cite web |last=Weisstein |first=Eric W. |title=Transcendental Number |url=https://mathworld.wolfram.com/TranscendentalNumber.html |access-date=2023-08-09 |website=mathworld.wolfram.com |language=en}}</ref>
*The [[Fixed-point iteration#Attracting fixed points|fixed point]] of the cosine function (also referred to as the [[Dottie number]] {{math|<math>d</math>}}) – the unique real solution to the equation {{math|<math>\cos(x)=x</math>}}, where {{math|<math>x</math>}} is in radians (by the Lindemann–Weierstrass theorem).<ref name="wolfram_dottie">{{cite web|last1=Weisstein|first1=Eric W.|title=Dottie Number|url=http://mathworld.wolfram.com/DottieNumber.html|website=Wolfram MathWorld|publisher=Wolfram Research, Inc.|access-date=23 July 2016}}</ref>
*The [[Dottie number]] {{mvar|d}} (the [[Fixed-point iteration#Attracting fixed points|fixed point]] of the cosine function) – the unique real solution to the equation <math>\cos(x)=x</math>, where {{mvar|x}} is in radians (by the Lindemann–Weierstrass theorem).<ref name="wolfram_dottie">{{cite web|last1=Weisstein|first1=Eric W.|title=Dottie Number|url=http://mathworld.wolfram.com/DottieNumber.html|website=Wolfram MathWorld|publisher=Wolfram Research, Inc.|access-date=23 July 2016}}</ref>
*{{math|<math>W(a)</math>}} if {{math|<math>a</math>}} is algebraic and nonzero, for any branch of the [[Lambert W function|Lambert W Function]] (by the Lindemann–Weierstrass theorem), in particular the [[omega constant]] {{math|Ω}}.
*<math>W(a)</math> if {{mvar|a}} is algebraic and nonzero, for any branch of the [[Lambert W function]] (by the Lindemann–Weierstrass theorem), in particular the [[omega constant]] {{math|Ω}}.
* {{math|<math>W(r,a)</math>}} if both {{math|<math>a</math>}} and the order {{math|<math>r</math>}} are algebraic such that <math>a \neq 0</math>, for any branch of the generalized Lambert W function.<ref>{{Cite arXiv |eprint=1408.3999 |class=math.CA |first1=István |last1=Mező |first2=Árpád |last2=Baricz |title=On the generalization of the Lambert W function |date=June 22, 2015}}</ref>
* <math>W(r,a)</math> if both {{mvar|a}} and the order {{mvar|r}} are algebraic such that <math>a \neq 0</math>, for any branch of the generalized Lambert W function.<ref>{{Cite arXiv |eprint=1408.3999 |class=math.CA |first1=István |last1=Mező |first2=Árpád |last2=Baricz |title=On the generalization of the Lambert W function |date=June 22, 2015}}</ref>
* {{math|<math>\sqrt x _s</math>}}, the [[Tetration#Square super-root|square super-root]] of any natural number is either an integer or transcendental (by the Gelfond–Schneider theorem).
* <math>\sqrt x _s</math>, the [[Tetration#Square super-root|square super-root]] of any natural number is either an integer or transcendental (by the Gelfond–Schneider theorem).
* Values of the [[gamma function]] of rational numbers that are of the form <math>\Gamma(n/2),\Gamma(n/3),\Gamma(n/4)</math> or <math>\Gamma(n/6)</math>.<ref>{{Cite book |last=Chudnovsky |first=G. |title=Contributions to the theory of transcendental numbers |date=1984 |publisher=American Mathematical Society |isbn=978-0-8218-1500-7 |series=Mathematical surveys and monographs |location=Providence, R.I |language=en, ru}}</ref>
* Values of the [[gamma function]] of rational numbers that are of the form <math>\Gamma(n/2),\Gamma(n/3),\Gamma(n/4)</math> or <math>\Gamma(n/6)</math>.<ref>{{Cite book |last=Chudnovsky |first=G. |title=Contributions to the theory of transcendental numbers |date=1984 |publisher=American Mathematical Society |isbn=978-0-8218-1500-7 |series=Mathematical surveys and monographs |location=Providence, R.I |language=en, ru}}</ref>
* Algebraic combinations of {{math|<math>\pi </math>}} and {{math|<math>\Gamma(1/3)</math>}} or of {{math|<math>\pi </math>}} and {{math|<math>\Gamma(1/4)</math>}} such as the [[lemniscate constant]] <math>\varpi</math> (following from their respective algebraic independences).<ref name=":2" />
* Algebraic combinations of {{mvar|π}} and <math>\Gamma(1/3)</math> or of {{mvar|π}} and <math>\Gamma(1/4)</math> such as the [[lemniscate constant]] <math>\varpi</math> (following from their respective algebraic independences).<ref name=":2" />
* The values of [[Beta function]] <math>\Beta(a,b)</math> if <math>a, b</math> and <math>a+b</math> are non-integer rational numbers.<ref name=":3">{{Cite web |last=Waldschmidt |first=Michel |date=September 7, 2005 |title=Transcendence of Periods: The State of the Art |url=https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/TranscendencePeriods.pdf |website=webusers.imj-prg.fr}}</ref>
* The values of [[Beta function]] <math>\Beta(a,b)</math> if <math>a, b</math> and <math>a+b</math> are non-integer rational numbers.<ref name=":3">{{Cite web |last=Waldschmidt |first=Michel |date=September 7, 2005 |title=Transcendence of Periods: The State of the Art |url=https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/TranscendencePeriods.pdf |website=webusers.imj-prg.fr}}</ref>
* The [[Bessel function|Bessel function of the first kind]] {{math|<math>J_\nu(x)</math>}}, its first derivative, and the quotient <math>\tfrac{J'_\nu (x)}{J_\nu (x)}</math> are transcendental when ''{{math|<math>\nu</math>}}'' is rational and ''{{math|<math>x</math>}}'' is algebraic and nonzero,<ref>{{cite book |last1=Siegel |first1=Carl L. |title=On Some Applications of Diophantine Approximations |chapter=Über einige Anwendungen diophantischer Approximationen: Abhandlungen der Preußischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse 1929, Nr. 1 |date=2014 |publisher=Scuola Normale Superiore |isbn=978-88-7642-520-2 |pages=81–138 |chapter-url=https://doi.org/10.1007/978-88-7642-520-2_2 |language=de |doi=10.1007/978-88-7642-520-2_2 }}</ref> and all nonzero roots of {{math|<math>J_\nu(x)</math>}} and {{math|<math>J'_\nu(x)</math>}} are transcendental when ''{{math|<math>\nu</math>}}'' is rational.<ref>{{cite journal |last1=Lorch |first1=Lee |last2=Muldoon |first2=Martin E. |title=Transcendentality of zeros of higher dereivatives of functions involving Bessel functions |journal=International Journal of Mathematics and Mathematical Sciences |date=1995 |volume=18 |issue=3 |pages=551–560 |doi=10.1155/S0161171295000706 |doi-access=free }}</ref>
* The [[Bessel function|Bessel function of the first kind]] <math>J_\nu(x)</math>, its first derivative, and the quotient <math>\tfrac{J'_\nu (x)}{J_\nu (x)}</math> are transcendental when {{mvar|ν}} is rational and {{mvar|x}} is algebraic and nonzero,<ref>{{cite book |last1=Siegel |first1=Carl L. |title=On Some Applications of Diophantine Approximations |chapter=Über einige Anwendungen diophantischer Approximationen: Abhandlungen der Preußischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse 1929, Nr. 1 |date=2014 |publisher=Scuola Normale Superiore |isbn=978-88-7642-520-2 |pages=81–138 |chapter-url=https://doi.org/10.1007/978-88-7642-520-2_2 |language=de |doi=10.1007/978-88-7642-520-2_2 }}</ref> and all nonzero roots of <math>J_\nu(x)</math> and <math>J'_\nu(x)</math> are transcendental when {{mvar|ν}} is rational.<ref>{{cite journal |last1=Lorch |first1=Lee |last2=Muldoon |first2=Martin E. |title=Transcendentality of zeros of higher dereivatives of functions involving Bessel functions |journal=International Journal of Mathematics and Mathematical Sciences |date=1995 |volume=18 |issue=3 |pages=551–560 |doi=10.1155/S0161171295000706 |doi-access=free }}</ref>
* The number <math>\tfrac{\pi}{2} \tfrac{Y_0 (2)}{J_0 (2)} - \gamma</math>, where {{math|<math>Y_\alpha(x)</math>}} and {{math|<math>J_\alpha(x)</math>}} are Bessel functions and {{math|<math>\gamma</math>}} is the [[Euler–Mascheroni constant]].<ref>{{Cite journal |last1=Mahler |first1=Kurt |last2=Mordell |first2=Louis Joel |date=1968-06-04 |title=Applications of a theorem by A. B. Shidlovski |url=https://royalsocietypublishing.org/doi/10.1098/rspa.1968.0111 |journal=Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences |volume=305 |issue=1481 |pages=149–173 |bibcode=1968RSPSA.305..149M |doi=10.1098/rspa.1968.0111 |s2cid=123486171|url-access=subscription }}</ref><ref>{{Cite journal |last=Lagarias |first=Jeffrey C. |date=2013-07-19 |title=Euler's constant: Euler's work and modern developments |journal=Bulletin of the American Mathematical Society |volume=50 |issue=4 |pages=527–628 |arxiv=1303.1856 |doi=10.1090/S0273-0979-2013-01423-X |issn=0273-0979 |doi-access=free}}</ref>
* The number <math>\tfrac{\pi}{2} \tfrac{Y_0 (2)}{J_0 (2)} - \gamma</math>, where <math>Y_\alpha(x)</math> and <math>J_\alpha(x)</math> are Bessel functions and {{mvar|γ}} is the [[Euler–Mascheroni constant]].<ref>{{Cite journal |last1=Mahler |first1=Kurt |last2=Mordell |first2=Louis Joel |date=1968-06-04 |title=Applications of a theorem by A. B. Shidlovski |url=https://royalsocietypublishing.org/doi/10.1098/rspa.1968.0111 |journal=Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences |volume=305 |issue=1481 |pages=149–173 |bibcode=1968RSPSA.305..149M |doi=10.1098/rspa.1968.0111 |s2cid=123486171|url-access=subscription }}</ref><ref>{{Cite journal |last=Lagarias |first=Jeffrey C. |date=2013-07-19 |title=Euler's constant: Euler's work and modern developments |journal=Bulletin of the American Mathematical Society |volume=50 |issue=4 |pages=527–628 |arxiv=1303.1856 |doi=10.1090/S0273-0979-2013-01423-X |issn=0273-0979 |doi-access=free}}</ref>
* Values of the [[Reciprocal Fibonacci constant|Fibonacci zeta function]] at the positive even argument.<ref name="Murty2013">{{citation  
* Values of the [[Reciprocal Fibonacci constant|Fibonacci zeta function]] at positive even arguments.<ref name="Murty2013">{{citation  
|last = Murty | first = M. Ram
|last = Murty | first = M. Ram
  | editor1-last = Prasad | editor1-first = D.
  | editor1-last = Prasad | editor1-first = D.
Line 86: Line 85:
  | volume = 22 | year = 2013}}</ref>
  | volume = 22 | year = 2013}}</ref>
* Any [[Liouville number]], in particular: Liouville's constant <math>\sum_{k=1}^\infty\frac1{10^{k!}}</math>.
* Any [[Liouville number]], in particular: Liouville's constant <math>\sum_{k=1}^\infty\frac1{10^{k!}}</math>.
* Numbers with [[irrationality measure]] larger than 2, such as the [[Champernowne constant]] <math>C_{10}</math> (by [[Roth's theorem]]).
* Numbers with [[irrationality measure]] larger than 2, such as the [[Champernowne constant]] <math>C_{10}</math> and [[Cahen's constant]] (by [[Roth's theorem]]).
* Numbers artificially constructed not to be [[Period (algebraic geometry)|algebraic periods]].<ref>{{cite arXiv |eprint=0805.0349 |class=math.AG |first=Masahiko |last=Yoshinaga |title=Periods and elementary real numbers |date=2008-05-03}}</ref>
* Numbers artificially constructed not to be [[Period (algebraic geometry)|algebraic periods]].<ref>{{cite arXiv |eprint=0805.0349 |class=math.AG |first=Masahiko |last=Yoshinaga |title=Periods and elementary real numbers |date=2008-05-03}}</ref>
* Any [[non-computable number]], in particular: [[Chaitin's constant]].
* Any [[non-computable number]], in particular: [[Chaitin's constant]].
Line 104: Line 103:
==Conjectured transcendental numbers==
==Conjectured transcendental numbers==
Numbers which have yet to be proven to be either transcendental or algebraic:
Numbers which have yet to be proven to be either transcendental or algebraic:
* Most nontrivial combinations of two or more transcendental numbers are themselves not known to be transcendental or even irrational: {{mvar|eπ}}, {{math|''e'' + ''π''}}, {{mvar|π}}<sup>{{mvar|π}}</sup>, {{math|''e''<sup>''e''</sup>}}, {{math|''π''<sup>''e''</sup>}}, {{math|''π''{{sup|{{sqrt|2}}}}}}, {{math|''e''<sup>''π''<sup>2</sup></sup>}}. It has been shown that both {{math|''e'' + ''π''}} and {{math|''π''/''e''}} do not satisfy any [[polynomial equation]] of degree {{math|<math>\leq 8</math>}} and integer coefficients of average size 10<sup>9</sup>.<ref>{{Cite journal |last=Bailey |first=David H. |date=1988 |title=Numerical Results on the Transcendence of Constants Involving $\pi, e$, and Euler's Constant |url=https://www.jstor.org/stable/2007931 |journal=Mathematics of Computation |volume=50 |issue=181 |pages=275–281 |doi=10.2307/2007931 |jstor=2007931 |issn=0025-5718|url-access=subscription }}</ref><ref>{{Cite web |last=Weisstein |first=Eric W. |title=e |url=https://mathworld.wolfram.com/e.html |access-date=2023-08-12 |website=mathworld.wolfram.com |language=en}}</ref> At least one of the numbers {{math|''e''<sup>''e''</sup>}} and {{math|''e''<sup>''e''<sup>2</sup></sup>}} is transcendental.<ref>{{Cite journal |last=Brownawell |first=W. Dale |date=1974-02-01 |title=The algebraic independence of certain numbers related by the exponential function |journal=Journal of Number Theory |volume=6 |issue=1 |pages=22–31 |doi=10.1016/0022-314X(74)90005-5 |issn=0022-314X|doi-access=free |bibcode=1974JNT.....6...22B }}</ref> [[Schanuel's conjecture]] would imply that all of the above numbers are transcendental and [[Algebraic independence|algebraically independent]].<ref name=":12">{{Cite web |last=Waldschmidt |first=Michel |date=2021 |title=Schanuel's Conjecture: algebraic independence of transcendental numbers |url=https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/SchanuelEn.pdf}}</ref>
* Most nontrivial combinations of two or more transcendental numbers are themselves not known to be transcendental or even irrational: {{mvar|eπ}}, {{math|''e'' + ''π''}}, {{mvar|π}}<sup>{{mvar|π}}</sup>, {{math|''e''<sup>''e''</sup>}}, {{math|''π''<sup>''e''</sup>}}, {{math|''π''{{sup|{{sqrt|2}}}}}}, {{math|''e''<sup>''π''<sup>2</sup></sup>}}. It has been shown that both {{math|''e'' + ''π''}} and {{math|''π''/''e''}} do not satisfy any [[polynomial equation]] of degree {{math|8}} and integer coefficients of average size 10<sup>9</sup>.<ref>{{Cite journal |last=Bailey |first=David H. |date=1988 |title=Numerical Results on the Transcendence of Constants Involving $\pi, e$, and Euler's Constant |url=https://www.jstor.org/stable/2007931 |journal=Mathematics of Computation |volume=50 |issue=181 |pages=275–281 |doi=10.2307/2007931 |jstor=2007931 |issn=0025-5718|url-access=subscription }}</ref><ref>{{Cite web |last=Weisstein |first=Eric W. |title=e |url=https://mathworld.wolfram.com/e.html |access-date=2023-08-12 |website=mathworld.wolfram.com |language=en}}</ref> At least one of the numbers {{math|''e''<sup>''e''</sup>}} and {{math|''e''<sup>''e''<sup>2</sup></sup>}} is transcendental.<ref>{{Cite journal |last=Brownawell |first=W. Dale |date=1974-02-01 |title=The algebraic independence of certain numbers related by the exponential function |journal=Journal of Number Theory |volume=6 |issue=1 |pages=22–31 |doi=10.1016/0022-314X(74)90005-5 |issn=0022-314X|doi-access=free |bibcode=1974JNT.....6...22B }}</ref> Since the field of algebraic numbers is algebraically closed and {{mvar|e}} and {{mvar|π}} are roots of the polynomial {{math|''x''<sup>2</sup> - (''e'' + ''π'')''x'' + ''eπ''}}, at least one of the numbers {{mvar|eπ}} and {{math|''e'' + ''π''}} is transcendental. [[Schanuel's conjecture]] would imply that all of the above numbers are transcendental and [[Algebraic independence|algebraically independent]].<ref name=":12">{{Cite web |last=Waldschmidt |first=Michel |date=2021 |title=Schanuel's Conjecture: algebraic independence of transcendental numbers |url=https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/SchanuelEn.pdf}}</ref>
* The [[Euler–Mascheroni constant]] {{mvar|γ}}'':'' In 2010 it has been shown that an infinite list of [[Euler–Lehmer constants|Euler-Lehmer constants]] (which includes {{math|{{var|γ}}/4}}) contains at most one algebraic number.<ref>{{Cite journal |last1=Murty |first1=M. Ram |last2=Saradha |first2=N. |date=2010-12-01 |title=Euler–Lehmer constants and a conjecture of Erdös |journal=[[Journal of Number Theory]] |language=en |volume=130 |issue=12 |pages=2671–2682 |doi=10.1016/j.jnt.2010.07.004 |doi-access=free |issn=0022-314X}}</ref><ref>{{Cite journal |last1=Murty |first1=M. Ram |last2=Zaytseva |first2=Anastasia |date=2013-01-01 |title=Transcendence of generalized Euler constants |journal=[[The American Mathematical Monthly]] |volume=120 |issue=1 |pages=48–54 |doi=10.4169/amer.math.monthly.120.01.048 |s2cid=20495981 |issn=0002-9890}}</ref> In 2012 it was shown that at least one of {{mvar|γ}} and the [[Gompertz constant]] {{mvar|δ}} is transcendental.<ref>{{Cite journal |last=Rivoal |first=Tanguy |date=2012 |title=On the arithmetic nature of the values of the gamma function, Euler's constant, and Gompertz's constant|journal=Michigan Mathematical Journal |language=en |volume=61 |issue=2 |pages=239–254 |doi=10.1307/mmj/1339011525 |doi-access=free |issn=0026-2285 |url=https://projecteuclid.org/euclid.mmj/1339011525|url-access=subscription }}</ref>
* The [[Euler–Mascheroni constant]] {{mvar|γ}}'':'' In 2010 it has been shown that an infinite list of [[Euler–Lehmer constants|Euler-Lehmer constants]] (which includes {{math|{{var|γ}}/4}}) contains at most one algebraic number.<ref>{{Cite journal |last1=Murty |first1=M. Ram |last2=Saradha |first2=N. |date=2010-12-01 |title=Euler–Lehmer constants and a conjecture of Erdös |journal=[[Journal of Number Theory]] |language=en |volume=130 |issue=12 |pages=2671–2682 |doi=10.1016/j.jnt.2010.07.004 |doi-access=free |issn=0022-314X}}</ref><ref>{{Cite journal |last1=Murty |first1=M. Ram |last2=Zaytseva |first2=Anastasia |date=2013-01-01 |title=Transcendence of generalized Euler constants |journal=[[The American Mathematical Monthly]] |volume=120 |issue=1 |pages=48–54 |doi=10.4169/amer.math.monthly.120.01.048 |s2cid=20495981 |issn=0002-9890}}</ref> In 2012 it was shown that at least one of {{mvar|γ}} and the [[Gompertz constant]] {{mvar|δ}} is transcendental.<ref>{{Cite journal |last=Rivoal |first=Tanguy |date=2012 |title=On the arithmetic nature of the values of the gamma function, Euler's constant, and Gompertz's constant|journal=Michigan Mathematical Journal |language=en |volume=61 |issue=2 |pages=239–254 |doi=10.1307/mmj/1339011525 |doi-access=free |issn=0026-2285 |url=https://projecteuclid.org/euclid.mmj/1339011525|url-access=subscription }}</ref>
* The values of the [[Riemann zeta function]] {{math|''ζ''(n)}} at odd positive integers <math>n\geq3</math>; in particular [[Apéry's constant]] {{math|''ζ''(3)}}, which is known to be irrational. For the other numbers {{math|''ζ''(5), ''ζ''(7), ''ζ''(9), ...}} even this is not known.  
* The values of the [[Riemann zeta function]] {{math|''ζ''(n)}} at odd positive integers <math>n\geq3</math>; in particular [[Apéry's constant]] {{math|''ζ''(3)}}, which is known to be irrational. For the other numbers {{math|''ζ''(5), ''ζ''(7), ''ζ''(9), ...}} even this is not known.  
* The values of the [[Dirichlet beta function]] {{math|''β''(n)}} at even positive integers <math>n\geq2</math>; in particular [[Catalan's constant|Catalan's Constant]] {{math|''β''(2)}}. (none of them are known to be irrational).<ref>{{Cite journal |last1=Rivoal |first1=T. |last2=Zudilin |first2=W. |date=2003-08-01 |title=Diophantine properties of numbers related to Catalan's constant |url=https://doi.org/10.1007/s00208-003-0420-2 |journal=Mathematische Annalen |language=en |volume=326 |issue=4 |pages=705–721 |doi=10.1007/s00208-003-0420-2 |issn=1432-1807 |s2cid=59328860 |hdl-access=free |hdl=1959.13/803688|url-access=subscription }}</ref>
* The values of the [[Dirichlet beta function]] {{math|''β''(''n'')}} at even positive integers <math>n\geq2</math>; in particular [[Catalan's constant|Catalan's Constant]] {{math|''β''(2)}}. (None of them are known to be irrational.)<ref>{{Cite journal |last1=Rivoal |first1=T. |last2=Zudilin |first2=W. |date=2003-08-01 |title=Diophantine properties of numbers related to Catalan's constant |url=https://doi.org/10.1007/s00208-003-0420-2 |journal=Mathematische Annalen |language=en |volume=326 |issue=4 |pages=705–721 |doi=10.1007/s00208-003-0420-2 |issn=1432-1807 |s2cid=59328860 |hdl-access=free |hdl=1959.13/803688|url-access=subscription }}</ref>
* Values of the [[Gamma function|Gamma Function]] {{math|''Γ''(1/n)}} for positive integers <math>n=5</math> and <math>n\geq7</math> are not known to be irrational, let alone transcendental.<ref name=":0">{{cite web |title=Mathematical constants |url=https://www.cambridge.org/us/academic/subjects/mathematics/recreational-mathematics/mathematical-constants |access-date=2022-09-22 |website=Cambridge University Press |language=en |department=Mathematics (general)}}</ref><ref name=":4">{{Cite web |last=Waldschmidt |first=Michel |date=2022 |title=Transcendental Number Theory: recent results and open problems. |url=https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/TNTOpenPbs |website=Michel Waldschmidt}}</ref> For <math>n\geq2</math> at least one the numbers {{math|''Γ''(1/n)}} and {{math|''Γ''(2/n)}} is transcendental.<ref name=":3" />
* Values of the [[Gamma function|Gamma Function]] {{math|''Γ''(1/''n'')}} for positive integers <math>n=5</math> and <math>n\geq7</math> are not known to be irrational, let alone transcendental.<ref name=":0">{{cite web |title=Mathematical constants |url=https://www.cambridge.org/us/academic/subjects/mathematics/recreational-mathematics/mathematical-constants |access-date=2022-09-22 |website=Cambridge University Press |language=en |department=Mathematics (general)}}</ref><ref name=":4">{{Cite web |last=Waldschmidt |first=Michel |date=2022 |title=Transcendental Number Theory: recent results and open problems. |url=https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/TNTOpenPbs |website=Michel Waldschmidt}}</ref> For <math>n\geq2</math> at least one the numbers {{math|Γ(1/''n'')}} and {{math|Γ(2/''n'')}} is transcendental.<ref name=":3" />
* Any number given by some kind of [[Limit (mathematics)|limit]] that is not obviously algebraic.<ref name=":4" />
* Any number given by some kind of [[Limit (mathematics)|limit]] that is not obviously algebraic.<ref name=":4" />


Line 240: Line 239:
* [[Diophantine approximation]]
* [[Diophantine approximation]]
* [[Ring of periods|Periods]], a countable set of numbers (including all algebraic and some transcendental numbers) which may be defined by integral equations.
* [[Ring of periods|Periods]], a countable set of numbers (including all algebraic and some transcendental numbers) which may be defined by integral equations.
* [[Hartmanis–Stearns conjecture]], a conjectural transcendence criterion based on complexity of computing the number's expansion
{{Classification of numbers}}
{{Classification of numbers}}



Latest revision as of 21:51, 21 October 2025

Template:Short description Script error: No such module "redirect hatnote". In mathematics, a transcendental number is a real or complex number that is not algebraic: that is, not the root of a non-zero polynomial with integer (or, equivalently, rational) coefficients. The best-known transcendental numbers are Template:Mvar and Template:Mvar.[1][2] The quality of a number being transcendental is called transcendence.

Though only a few classes of transcendental numbers are known, partly because it can be extremely difficult to show that a given number is transcendental, transcendental numbers are not rare: indeed, almost all real and complex numbers are transcendental, since the algebraic numbers form a countable set, while the set of real numbers Template:Tmath and the set of complex numbers Template:Tmath are both uncountable sets, and therefore larger than any countable set.

All transcendental real numbers (also known as real transcendental numbers or transcendental irrational numbers) are irrational numbers, since all rational numbers are algebraic.[3][4][5][6] The converse is not true: Not all irrational numbers are transcendental. Hence, the set of real numbers consists of non-overlapping sets of rational, algebraic irrational, and transcendental real numbers.[3] For example, the square root of 2 is an irrational number, but it is not a transcendental number as it is a root of the polynomial equation Template:Math. The golden ratio (denoted φ or ϕ) is another irrational number that is not transcendental, as it is a root of the polynomial equation Template:Math.

History

The name "transcendental" comes Template:Ety,[7] and was first used for the mathematical concept in Leibniz's 1682 paper in which he proved that Template:Math is not an algebraic function of Template:Mvar.[8] Euler, in the eighteenth century, was probably the first person to define transcendental numbers in the modern sense.[9]

Johann Heinrich Lambert conjectured that Template:Mvar and [[Pi|Template:Mvar]] were both transcendental numbers in his 1768 paper proving the number Template:Mvar is irrational, and proposed a tentative sketch proof that Template:Mvar is transcendental.[10]

Joseph Liouville first proved the existence of transcendental numbers in 1844,[11] and in 1851 gave the first decimal examples such as the Liouville constant

Lb=n=110n!=101+102+106+1024+10120+10720+105040+1040320+=0.11000100000000000000000100000000000000000000000000000000000000000000000000000 

in which the Template:Mvarth digit after the decimal point is Template:Math if Template:Mvar = Template:MvarTemplate:Math (Template:Mvar factorial) for some Template:Mvar and Template:Math otherwise.[12] In other words, the Template:Mvarth digit of this number is 1 only if Template:Mvar is one of Template:Math, etc. Liouville showed that this number belongs to a class of transcendental numbers that can be more closely approximated by rational numbers than can any irrational algebraic number, and this class of numbers is called the Liouville numbers. Liouville showed that all Liouville numbers are transcendental.[13]

The first number to be proven transcendental without having been specifically constructed for the purpose of proving transcendental numbers' existence was Template:Mvar, by Charles Hermite in 1873.

In 1874 Georg Cantor proved that the algebraic numbers are countable and the real numbers are uncountable. He also gave a new method for constructing transcendental numbers.[14] Although this was already implied by his proof of the countability of the algebraic numbers, Cantor also published a construction that proves there are as many transcendental numbers as there are real numbers.Template:Efn Cantor's work established the ubiquity of transcendental numbers.

In 1882 Ferdinand von Lindemann published the first complete proof that Template:Mvar is transcendental. He first proved that Template:Math is transcendental if Template:Mvar is a non-zero algebraic number. Then, since Template:Math is algebraic (see Euler's identity), Template:Math must be transcendental. But since Template:Math is algebraic, Template:Mvar must therefore be transcendental. This approach was generalized by Karl Weierstrass to what is now known as the Lindemann–Weierstrass theorem. The transcendence of Template:Mvar implies that geometric constructions involving compass and straightedge only cannot produce certain results, for example squaring the circle.

In 1900 David Hilbert posed a question about transcendental numbers, Hilbert's seventh problem: If Template:Mvar is an algebraic number that is not 0 or 1, and Template:Mvar is an irrational algebraic number, is Template:Math necessarily transcendental? The affirmative answer was provided in 1934 by the Gelfond–Schneider theorem. This work was extended by Alan Baker in the 1960s in his work on lower bounds for linear forms in any number of logarithms (of algebraic numbers).[15]

Properties

A transcendental number is a (possibly complex) number that is not the root of any integer polynomial. Every real transcendental number must also be irrational, since every rational number is the root of some integer polynomial of degree one.[16] The set of transcendental numbers is uncountably infinite. Since the polynomials with rational coefficients are countable, and since each such polynomial has a finite number of zeroes, the algebraic numbers must also be countable. However, Cantor's diagonal argument proves that the real numbers (and therefore also the complex numbers) are uncountable. Since the real numbers are the union of algebraic and transcendental numbers, it is impossible for both subsets to be countable. This makes the transcendental numbers uncountable.

No rational number is transcendental and all real transcendental numbers are irrational. The irrational numbers contain all the real transcendental numbers and a subset of the algebraic numbers, including the quadratic irrationals and other forms of algebraic irrationals.

Applying any non-constant single-variable algebraic function to a transcendental argument yields a transcendental value. For example, from knowing that Template:Mvar is transcendental, it can be immediately deduced that numbers such as 5π, π32, (π3)8, and π5+74 are transcendental as well.

However, an algebraic function of several variables may yield an algebraic number when applied to transcendental numbers if these numbers are not algebraically independent. For example, Template:Mvar and Template:Math are both transcendental, but Template:Math is not. It is unknown whether Template:Math, for example, is transcendental, though at least one of Template:Math and Template:Mvar must be transcendental. More generally, for any two transcendental numbers Template:Mvar and Template:Mvar, at least one of Template:Math and Template:Mvar must be transcendental. To see this, consider the polynomial Template:Math . If Template:Math and Template:Mvar were both algebraic, then this would be a polynomial with algebraic coefficients. Because algebraic numbers form an algebraically closed field, this would imply that the roots of the polynomial, Template:Mvar and Template:Mvar, must be algebraic. But this is a contradiction, and thus it must be the case that at least one of the coefficients is transcendental.

The non-computable numbers are a strict subset of the transcendental numbers.

All Liouville numbers are transcendental, but not vice versa. Any Liouville number must have unbounded partial quotients in its simple continued fraction expansion. Using a counting argument one can show that there exist transcendental numbers which have bounded partial quotients and hence are not Liouville numbers.

Using the explicit continued fraction expansion of Template:Mvar, one can show that Template:Mvar is not a Liouville number (although the partial quotients in its continued fraction expansion are unbounded). Kurt Mahler showed in 1953 that Template:Mvar is also not a Liouville number. It is conjectured that all infinite continued fractions with bounded terms, that have a "simple" structure, and that are not eventually periodic are transcendental[17] (in other words, algebraic irrational roots of at least third degree polynomials do not have apparent pattern in their continued fraction expansions, since eventually periodic continued fractions correspond to quadratic irrationals, see Hermite's problem).

Numbers proven to be transcendental

Numbers proven to be transcendental:

Conjectured transcendental numbers

Numbers which have yet to be proven to be either transcendental or algebraic:

Proofs for specific numbers

A proof that Template:Mvar is transcendental

The first proof that [[E (mathematical constant)|the base of the natural logarithms, Template:Mvar]], is transcendental dates from 1873. We will now follow the strategy of David Hilbert (1862–1943) who gave a simplification of the original proof of Charles Hermite. The idea is the following:

Assume, for purpose of finding a contradiction, that Template:Mvar is algebraic. Then there exists a finite set of integer coefficients Template:Math satisfying the equation: c0+c1e+c2e2++cnen=0,c0,cn0. It is difficult to make use of the integer status of these coefficients when multiplied by a power of the irrational Template:Mvar, but we can absorb those powers into an integral which “mostly” will assume integer values. For a positive integer Template:Mvar, define the polynomial fk(x)=xk[(x1)(xn)]k+1, and multiply both sides of the above equation by 0fk(x)exdx , to arrive at the equation: c0(0fk(x)exdx)+c1e(0fk(x)exdx)++cnen(0fk(x)exdx)=0.

By splitting respective domains of integration, this equation can be written in the form P+Q=0 where P=c0(0fk(x)exdx)+c1e(1fk(x)exdx)+c2e2(2fk(x)exdx)++cnen(nfk(x)exdx)Q=c1e(01fk(x)exdx)+c2e2(02fk(x)exdx)++cnen(0nfk(x)exdx) Here Template:Mvar will turn out to be an integer, but more importantly it grows quickly with Template:Mvar.

Lemma 1

There are arbitrarily large Template:Mvar such that  Pk!  is a non-zero integer.

Proof. Recall the standard integral (case of the Gamma function) 0tjetdt=j! valid for any natural number j. More generally,

if g(t)=j=0mbjtj then 0g(t)etdt=j=0mbjj!.

This would allow us to compute P exactly, because any term of P can be rewritten as caeaafk(x)exdx=caafk(x)e(xa)dx={t=xax=t+adx=dt}=ca0fk(t+a)etdt through a change of variables. Hence P=a=0nca0fk(t+a)etdt=0(a=0ncafk(t+a))etdt That latter sum is a polynomial in t with integer coefficients, i.e., it is a linear combination of powers tj with integer coefficients. Hence the number P is a linear combination (with those same integer coefficients) of factorials j!; in particular P is an integer.

Smaller factorials divide larger factorials, so the smallest j! occurring in that linear combination will also divide the whole of P. We get that j! from the lowest power tj term appearing with a nonzero coefficient in a=0ncafk(t+a), but this smallest exponent j is also the multiplicity of t=0 as a root of this polynomial. fk(x) is chosen to have multiplicity k of the root x=0 and multiplicity k+1 of the roots x=a for a=1,,n, so that smallest exponent is tk for fk(t) and tk+1 for fk(t+a) with a>0. Therefore k! divides P.

To establish the last claim in the lemma, that P is nonzero, it is sufficient to prove that k+1 does not divide P. To that end, let k+1 be any prime larger than n and |c0|. We know from the above that (k+1)! divides each of ca0fk(t+a)etdt for 1an, so in particular all of those are divisible by k+1. It comes down to the first term c00fk(t)etdt. We have (see falling and rising factorials) fk(t)=tk[(t1)(tn)]k+1=[(1)n(n!)]k+1tk+higher degree terms and those higher degree terms all give rise to factorials (k+1)! or larger. Hence Pc00fk(t)etdtc0[(1)n(n!)]k+1k!(mod(k+1)) That right hand side is a product of nonzero integer factors less than the prime k+1, therefore that product is not divisible by k+1, and the same holds for P; in particular P cannot be zero.

Lemma 2

For sufficiently large Template:Mvar, |Qk!|<1.

Proof. Note that

fkex=xk[(x1)(x2)(xn)]k+1ex=(x(x1)(xn))k((x1)(xn)ex)=u(x)kv(x)

where Template:Math are continuous functions of Template:Mvar for all Template:Mvar, so are bounded on the interval Template:Math. That is, there are constants Template:Math such that

 |fkex||u(x)|k|v(x)|<GkH for 0xn.

So each of those integrals composing Template:Mvar is bounded, the worst case being

|0nfkex d x|0n|fkex| d x0nGkH d x=nGkH.

It is now possible to bound the sum Template:Mvar as well:

|Q|<GknH(|c1|e+|c2|e2++|cn|en)=GkM ,

where Template:Mvar is a constant not depending on Template:Mvar. It follows that

 |Qk!|<MGkk!0 as k ,

finishing the proof of this lemma.

Conclusion

Choosing a value of Template:Mvar that satisfies both lemmas leads to a non-zero integer (Pk!) added to a vanishingly small quantity (Qk!) being equal to zero: an impossibility. It follows that the original assumption, that Template:Mvar can satisfy a polynomial equation with integer coefficients, is also impossible; that is, Template:Mvar is transcendental.

The transcendence of Template:Mvar

A similar strategy, different from Lindemann's original approach, can be used to show that the [[Pi|number Template:Mvar]] is transcendental. Besides the gamma-function and some estimates as in the proof for Template:Mvar, facts about symmetric polynomials play a vital role in the proof.

For detailed information concerning the proofs of the transcendence of Template:Mvar and Template:Mvar, see the references and external links.

See also

Script error: No such module "Portal".

Template:Classification of numbers

Notes

Template:Notelist

References

Template:Reflist

Sources

Template:Refbegin

  • Script error: No such module "Citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "Citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "Citation/CS1".
  • Script error: No such module "Citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "Citation/CS1".
  • Script error: No such module "Citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "Citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "Citation/CS1".
  • Script error: No such module "Citation/CS1".
  • Script error: No such module "Citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "Citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "Citation/CS1".
  • Script error: No such module "Citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".

Template:Refend

External links

Template:Wikisource/outer coreScript error: No such module "Check for unknown parameters".

  • Script error: No such module "Template wrapper".
  • Script error: No such module "Template wrapper".
  • Script error: No such module "Template wrapper".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1".
  • Script error: No such module "citation/CS1". — Proof that Template:Mvar is transcendental, in German.
  • Script error: No such module "Citation/CS1".

Template:Irrational number Template:Number systems Template:Number theory Template:Authority control

  1. Script error: No such module "citation/CS1".
  2. Script error: No such module "citation/CS1".
  3. a b Script error: No such module "citation/CS1".
  4. Script error: No such module "Citation/CS1".
  5. Script error: No such module "citation/CS1".
  6. Script error: No such module "citation/CS1".
  7. Script error: No such module "citation/CS1". s.v.
  8. Script error: No such module "Footnotes".; Script error: No such module "Footnotes".
  9. Script error: No such module "Footnotes".
  10. Script error: No such module "Footnotes".
  11. a b Script error: No such module "Footnotes".
  12. Script error: No such module "citation/CS1".
  13. Script error: No such module "Footnotes".
  14. Script error: No such module "Footnotes".; Script error: No such module "Footnotes".
  15. Template:Cite report
  16. Script error: No such module "Footnotes".
  17. Script error: No such module "Footnotes".
  18. a b Script error: No such module "Citation/CS1".
  19. Script error: No such module "citation/CS1".
  20. Script error: No such module "citation/CS1".
  21. Script error: No such module "citation/CS1".
  22. Script error: No such module "citation/CS1".
  23. a b Script error: No such module "citation/CS1".
  24. Script error: No such module "citation/CS1".
  25. Script error: No such module "Citation/CS1".
  26. Script error: No such module "Citation/CS1".
  27. Script error: No such module "Citation/CS1".
  28. Script error: No such module "citation/CS1".
  29. Script error: No such module "citation/CS1".
  30. Script error: No such module "Footnotes".
  31. Script error: No such module "Footnotes".; Script error: No such module "Footnotes".
  32. Script error: No such module "citation/CS1".
  33. Script error: No such module "citation/CS1".
  34. Script error: No such module "citation/CS1".
  35. Script error: No such module "citation/CS1".
  36. Script error: No such module "Citation/CS1".
  37. Script error: No such module "citation/CS1".
  38. Script error: No such module "Footnotes".
  39. Script error: No such module "Citation/CS1".
  40. Script error: No such module "Footnotes".
  41. Script error: No such module "Footnotes".
  42. Script error: No such module "Footnotes".
  43. Script error: No such module "Citation/CS1".
  44. Script error: No such module "Citation/CS1".
  45. Script error: No such module "citation/CS1".
  46. Script error: No such module "Citation/CS1".
  47. Script error: No such module "citation/CS1".
  48. Script error: No such module "Citation/CS1".
  49. Script error: No such module "citation/CS1".
  50. Script error: No such module "Citation/CS1".
  51. Script error: No such module "Citation/CS1".
  52. Script error: No such module "Citation/CS1".
  53. Script error: No such module "Citation/CS1".
  54. Script error: No such module "citation/CS1".
  55. a b Script error: No such module "citation/CS1".