Arithmetic–geometric mean: Difference between revisions

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
No edit summary
 
 
Line 54: Line 54:
|}
|}


The number of digits in which {{math|''a''<sub>''n''</sub>}} and {{math|''g''<sub>''n''</sub>}} agree (underlined) approximately doubles with each iteration. The arithmetic–geometric mean of 24 and 6 is the common limit of these two sequences, which is approximately {{val|13.4581714817256154207668131569743992430538388544}}.<ref>[http://www.wolframalpha.com/input/?i=agm%2824%2C+6%29 agm(24, 6)] at [[Wolfram Alpha]]</ref>
The number of digits in which {{math|''a''<sub>''n''</sub>}} and {{math|''g''<sub>''n''</sub>}} agree (underlined) approximately doubles with each iteration. The arithmetic–geometric mean of 24 and 6 is the common limit of these two sequences, which is approximately {{val|13.4581714817256154207668131569743992430538388544}}.<ref>[https://www.wolframalpha.com/input/?i=agm%2824%2C+6%29 agm(24, 6)] at [[Wolfram Alpha]]</ref>


== History ==
== History ==
Line 60: Line 60:


==Properties==
==Properties==
Both the geometric mean and arithmetic mean of two positive numbers {{mvar|x}} and {{mvar|y}} are between the two numbers. (They are ''strictly'' between when {{math|''x'' ≠ ''y''}}.) The geometric mean of two positive numbers is [[Inequality of arithmetic and geometric means|never greater than the arithmetic mean]].<ref>{{cite book |last=Bullen |first=P. S. |contribution=The Arithmetic, Geometric and Harmonic Means |date=2003 |url=http://link.springer.com/10.1007/978-94-017-0399-4_2 |title=Handbook of Means and Their Inequalities |pages=60–174 |access-date=2023-12-11 |place=Dordrecht |publisher=Springer Netherlands |language=en |doi=10.1007/978-94-017-0399-4_2 |isbn=978-90-481-6383-0}}</ref> So the geometric means are an increasing sequence {{math|''g''{{sub|0}} ≤ ''g''{{sub|1}} ≤ ''g''{{sub|2}} ≤ ...}}; the arithmetic means are a decreasing sequence {{math|''a''{{sub|0}} ≥ ''a''{{sub|1}} ≥ ''a''{{sub|2}} ≥ ...}}; and {{math|''g<sub>n</sub>'' ≤ ''M''(''x'', ''y'') ≤ ''a<sub>n</sub>''}} for any {{mvar|n}}. These are strict inequalities if {{math|''x'' ≠ ''y''}}.
Both the geometric mean and arithmetic mean of two positive numbers {{mvar|x}} and {{mvar|y}} are between the two numbers. (They are ''strictly'' between when {{math|''x'' ≠ ''y''}}.) The geometric mean of two positive numbers is [[Inequality of arithmetic and geometric means|never greater than the arithmetic mean]].<ref>{{cite book |last=Bullen |first=P. S. |contribution=The Arithmetic, Geometric and Harmonic Means |date=2003 |url=https://link.springer.com/10.1007/978-94-017-0399-4_2 |title=Handbook of Means and Their Inequalities |pages=60–174 |access-date=2023-12-11 |place=Dordrecht |publisher=Springer Netherlands |language=en |doi=10.1007/978-94-017-0399-4_2 |isbn=978-90-481-6383-0}}</ref> So the geometric means are an increasing sequence {{math|''g''{{sub|0}} ≤ ''g''{{sub|1}} ≤ ''g''{{sub|2}} ≤ ...}}; the arithmetic means are a decreasing sequence {{math|''a''{{sub|0}} ≥ ''a''{{sub|1}} ≥ ''a''{{sub|2}} ≥ ...}}; and {{math|''g<sub>n</sub>'' ≤ ''M''(''x'', ''y'') ≤ ''a<sub>n</sub>''}} for any {{mvar|n}}. These are strict inequalities if {{math|''x'' ≠ ''y''}}.


{{math|''M''(''x'', ''y'')}} is thus a number between {{math|''x''}} and {{math|''y''}}; it is also between the geometric and arithmetic mean of {{math|''x''}} and {{math|''y''}}.
{{math|''M''(''x'', ''y'')}} is thus a number between {{math|''x''}} and {{math|''y''}}; it is also between the geometric and arithmetic mean of {{math|''x''}} and {{math|''y''}}.
Line 89: Line 89:
  | jstor = 2007804
  | jstor = 2007804
  }}</ref>
  }}</ref>
The arithmetic–harmonic mean [[Geometric mean#Iterative means|is equivalent to]] the [[geometric mean]].
The arithmetic–harmonic mean [[Geometric mean#Iterative means|is equivalent to the geometric mean]].


The arithmetic–geometric mean can be used to compute – among others – [[Logarithm#Arithmetic–geometric mean approximation|logarithms]],  [[Elliptic integral|complete and incomplete elliptic integrals of the first and second kind]],<ref>{{AS ref|17|598–599}}</ref> and [[Jacobi elliptic functions]].<ref>{{cite book |first=Louis V. |last=King |author-link=Louis Vessot King |url=https://archive.org/details/onthenumerical032686mbp |title=On the Direct Numerical Calculation of Elliptic Functions and Integrals |publisher=Cambridge University Press |year=1924 }}</ref>
The arithmetic–geometric mean can be used to compute – among others – [[Logarithm#Arithmetic–geometric mean approximation|logarithms]],  [[Elliptic integral|complete and incomplete elliptic integrals of the first and second kind]],<ref>{{AS ref|17|598–599}}</ref> and [[Jacobi elliptic functions]].<ref>{{cite book |first=Louis V. |last=King |author-link=Louis Vessot King |url=https://archive.org/details/onthenumerical032686mbp |title=On the Direct Numerical Calculation of Elliptic Functions and Integrals |publisher=Cambridge University Press |year=1924 }}</ref>
Line 108: Line 108:
Changing the variable of integration to <math>\theta'</math>, where
Changing the variable of integration to <math>\theta'</math>, where


<math display="block"> \sin\theta = \frac{2x\sin\theta'}{(x+y)+(x-y)\sin^2\theta'} \Rightarrow d(\sin\theta)=d\left(\frac{2x\sin\theta'}{(x+y)+(x-y)\sin^2\theta'}\right)\Rightarrow \cos\theta\ d\theta =2x  \frac{(x+y)-(x-y)\sin^2\theta'}{((x+y)+(x-y)\sin^2\theta')^2}\ \cos\theta' d\theta' </math>
<math display="block">  
\begin{align}
\sin\theta &= \frac{2x\sin\theta'}{(x+y)+(x-y)\sin^2\theta'} \\
\Rightarrow d(\sin\theta) &= d\left(\frac{2x\sin\theta'}{(x+y)+(x-y)\sin^2\theta'}\right)\\
\Rightarrow \cos\theta\ d\theta &= 2x  \frac{(x+y)-(x-y)\sin^2\theta'}{((x+y)+(x-y)\sin^2\theta')^2}\ \cos\theta' d\theta'  
\end{align}
</math>
 
<math display="block">
\begin{align}
\cos\theta
&= \frac{\sqrt{(x+y)^2-2(x^2+y^2)\sin^2\theta'+(x-y)^2\sin^4\theta'}}{(x+y)+(x-y)\sin^2\theta'}\\
&= \frac{\cos\theta'\sqrt{(x-y)^2\cos^2\theta'+4xy}}{(x+y)+(x-y)\sin^2\theta'}\\
&= \frac{\cos\theta'\sqrt{(x+y)^2\cos^2\theta'+4xy\sin^2\theta'}}{(x+y)+(x-y)\sin^2\theta'},
\end{align}
</math>


<math display="block">\cos\theta = \frac{\sqrt{(x+y)^2-2(x^2+y^2)\sin^2\theta'+(x-y)^2\sin^4\theta'}}{(x+y)+(x-y)\sin^2\theta'}=\frac{\cos\theta'\sqrt{(x-y)^2\cos^2\theta'+4xy}}{(x+y)+(x-y)\sin^2\theta'}=\frac{\cos\theta'\sqrt{(x+y)^2\cos^2\theta'+4xy\sin^2\theta'}}{(x+y)+(x-y)\sin^2\theta'} ,</math>
<math display="block">
\Rightarrow
\cos\theta\ d\theta =\frac{\cos\theta'\sqrt{(x+y)^2\cos^2\theta'+4xy\sin^2\theta'}}{(x+y)+(x-y)\sin^2\theta'}\ d\theta =2x  \frac{(x+y)-(x-y)\sin^2\theta'}{((x+y)+(x-y)\sin^2\theta')^2}\ \cos\theta' d\theta' ,
</math>


<math display="block">\Rightarrow \cos\theta\ d\theta =\frac{\cos\theta'\sqrt{(x+y)^2\cos^2\theta'+4xy\sin^2\theta'}}{(x+y)+(x-y)\sin^2\theta'}\ d\theta =2x  \frac{(x+y)-(x-y)\sin^2\theta'}{((x+y)+(x-y)\sin^2\theta')^2}\ \cos\theta' d\theta' ,</math>
<math display="block">
\Rightarrow  
d\theta = \frac{x((x+y)-(x-y)\sin^2\theta')}{((x+y)+(x-y)\sin^2\theta')} \frac{2 d\theta'}{\sqrt{(x+y)^2\cos^2\theta'+4xy\sin^2\theta'}
\ ,
</math>


<math display="block"> \Rightarrow d\theta = \frac{x((x+y)-(x-y)\sin^2\theta')}{((x+y)+(x-y)\sin^2\theta')} \frac{2 d\theta'}{\sqrt{(x+y)^2\cos^2\theta'+4xy\sin^2\theta'}} 
<math display="block">  
\ ,</math>
\begin{align}
<math display="block"> \sqrt{x^2\cos^2\theta+y^2\sin^2\theta} = \frac{\sqrt{{x^2 ((x+y)^2-2(x^2+y^2)\sin^2\theta'+(x-y)^2\sin^4\theta')+4x^2y^2\sin^2\theta'}}}{((x+y)+(x-y)\sin^2\theta')}= \frac{x ((x+y)-(x-y)\sin^2\theta')}{((x+y)+(x-y)\sin^2\theta')}</math>
\sqrt{x^2\cos^2\theta+y^2\sin^2\theta}  
&= \frac{\sqrt{{x^2 ((x+y)^2-2(x^2+y^2)\sin^2\theta'+(x-y)^2\sin^4\theta')+4x^2y^2\sin^2\theta'}}}{((x+y)+(x-y)\sin^2\theta')}\\
&= \frac{x ((x+y)-(x-y)\sin^2\theta')}{((x+y)+(x-y)\sin^2\theta')}
\end{align}
</math>


This yields  
This yields  
<math display="block">  \frac{d\theta}{\sqrt{x^2\cos^2\theta+y^2\sin^2\theta}} = \frac{2 d\theta'}{\sqrt{(x+y)^2\cos^2\theta'+4xy\sin^2\theta'}} = \frac{d\theta'}{\sqrt{((\frac{x+y}{2})^2\cos^2\theta'+(\sqrt{xy})^2\sin^2\theta'}}
<math display="block">  \frac{d\theta}{\sqrt{x^2\cos^2\theta+y^2\sin^2\theta}} = \frac{2 d\theta'}{\sqrt{(x+y)^2\cos^2\theta'+4xy\sin^2\theta'}} = \frac{d\theta'}{\sqrt{((\frac{x+y}{2})^2\cos^2\theta'+(\sqrt{xy})^2\sin^2\theta'}},
 
</math>
  ,</math>


gives
gives
Line 147: Line 172:


===The number ''π''===
===The number ''π''===
According to the [[Gauss–Legendre algorithm]],<ref>{{cite journal |first=Eugene |last=Salamin |author-link=Eugene Salamin (mathematician) |title=Computation of π using arithmetic–geometric mean |journal=[[Mathematics of Computation]] |url=https://link.springer.com/chapter/10.1007/978-3-319-32377-0_1 |volume=30 |issue=135 |year=1976 <!-- |month=July -->|pages=565–570 |doi=10.2307/2005327 |jstor=2005327 |mr=0404124 }}</ref>
According to the [[Gauss–Legendre algorithm]],<ref>{{cite journal |first=Eugene |last=Salamin |author-link=Eugene Salamin (mathematician) |title=Computation of π using arithmetic–geometric mean |journal=[[Mathematics of Computation]] |url=https://link.springer.com/chapter/10.1007/978-3-319-32377-0_1 |volume=30 |issue=135 |year=1976 <!-- |month=July -->|pages=565–570 |doi=10.2307/2005327 |jstor=2005327 |mr=0404124 |url-access=subscription }}</ref>


<math display=block>\pi = \frac{4\,M(1,1/\sqrt{2})^2} {1 - \displaystyle\sum_{j=1}^\infty 2^{j+1} c_j^2} ,</math>
<math display=block>\pi = \frac{4\,M(1,1/\sqrt{2})^2} {1 - \displaystyle\sum_{j=1}^\infty 2^{j+1} c_j^2} ,</math>

Latest revision as of 08:24, 23 October 2025

Template:Short description Script error: No such module "about".

File:Generalized means + agm.png
Plot of the arithmetic–geometric mean agm(1,x) among several generalized means.

In mathematics, the arithmetic–geometric mean (AGM or agM[1]) of two positive real numbers Template:Math and Template:Math is the mutual limit of a sequence of arithmetic means and a sequence of geometric means. The arithmetic–geometric mean is used in fast algorithms for exponential, trigonometric functions, and other special functions, as well as some mathematical constants, in particular, [[computing π|computing Template:Mvar]].

The AGM is defined as the limit of the interdependent sequences ai and gi. Assuming xy0, we write:a0=x,g0=yan+1=12(an+gn),gn+1=angn.These two sequences converge to the same number, the arithmetic–geometric mean of Template:Math and Template:Math; it is denoted by Template:Math, or sometimes by Template:Math or Template:Math.

The arithmetic–geometric mean can be extended to complex numbers and, when the branches of the square root are allowed to be taken inconsistently, it is a multivalued function.[1]

Example

To find the arithmetic–geometric mean of Template:Math and Template:Math, iterate as follows:a1=12(24+6)=15g1=246=12a2=12(15+12)=13.5g2=1512=13.416 407 8649The first five iterations give the following values:

Template:Math Template:Math Template:Math
0 24 6
1 Template:Underline5 Template:Underline2
2 Template:Underline.5 Template:Underline.416 407 864 998 738 178 455 042...
3 Template:Underline 203 932 499 369 089 227 521... Template:Underline 139 030 990 984 877 207 090...
4 Template:Underline45 176 983 217 305... Template:Underline06 053 858 316 334...
5 Template:Underline20... Template:Underline06...

The number of digits in which Template:Math and Template:Math agree (underlined) approximately doubles with each iteration. The arithmetic–geometric mean of 24 and 6 is the common limit of these two sequences, which is approximately Template:Val.[2]

History

The first algorithm based on this sequence pair appeared in the works of Lagrange. Its properties were further analyzed by Gauss.[1]

Properties

Both the geometric mean and arithmetic mean of two positive numbers Template:Mvar and Template:Mvar are between the two numbers. (They are strictly between when Template:Math.) The geometric mean of two positive numbers is never greater than the arithmetic mean.[3] So the geometric means are an increasing sequence Template:Math; the arithmetic means are a decreasing sequence Template:Math; and Template:Math for any Template:Mvar. These are strict inequalities if Template:Math.

Template:Math is thus a number between Template:Math and Template:Math; it is also between the geometric and arithmetic mean of Template:Math and Template:Math.

If Template:Math then Template:Math.

There is an integral-form expression for Template:Math:[4]M(x,y)=π2(0π2dθx2cos2θ+y2sin2θ)1=π(0dtt(t+x2)(t+y2))1=π4x+yK(xyx+y)where Template:Math is the complete elliptic integral of the first kind:K(k)=0π2dθ1k2sin2θSince the arithmetic–geometric process converges so quickly, it provides an efficient way to compute elliptic integrals, which are used, for example, in elliptic filter design.[5]


The arithmetic–geometric mean is connected to the Jacobi theta function θ3 by[6]M(1,x)=θ32(exp(πM(1,x)M(1,1x2)))=(nexp(n2πM(1,x)M(1,1x2)))2,which upon setting x=1/2 givesM(1,1/2)=(nen2π)2.

Related concepts

The reciprocal of the arithmetic–geometric mean of 1 and the square root of 2 is Gauss's constant.1M(1,2)=G=0.8346268In 1799, Gauss proved[note 1] thatM(1,2)=πϖwhere ϖ is the lemniscate constant.


In 1941, M(1,2) (and hence G) was proved transcendental by Theodor Schneider.[note 2][7][8] The set {π,M(1,1/2)} is algebraically independent over ,[9][10] but the set {π,M(1,1/2),M(1,1/2)} (where the prime denotes the derivative with respect to the second variable) is not algebraically independent over . In fact,[11]π=22M3(1,1/2)M(1,1/2).The geometric–harmonic mean GH can be calculated using analogous sequences of geometric and harmonic means, and in fact Template:Math.[12] The arithmetic–harmonic mean is equivalent to the geometric mean.

The arithmetic–geometric mean can be used to compute – among others – logarithms, complete and incomplete elliptic integrals of the first and second kind,[13] and Jacobi elliptic functions.[14]

Proof of existence

The inequality of arithmetic and geometric means implies thatgnanand thusgn+1=gnangngn=gnthat is, the sequence Template:Math is nondecreasing and bounded above by the larger of Template:Math and Template:Math. By the monotone convergence theorem, the sequence is convergent, so there exists a Template:Math such that:limngn=gHowever, we can also see that:an=gn+12gn and so: limnan=limngn+12gn=g2g=g

Q.E.D.

Proof of the integral-form expression

This proof is given by Gauss.[1] Let

I(x,y)=0π/2dθx2cos2θ+y2sin2θ,

Changing the variable of integration to θ, where

sinθ=2xsinθ(x+y)+(xy)sin2θd(sinθ)=d(2xsinθ(x+y)+(xy)sin2θ)cosθ dθ=2x(x+y)(xy)sin2θ((x+y)+(xy)sin2θ)2 cosθdθ

cosθ=(x+y)22(x2+y2)sin2θ+(xy)2sin4θ(x+y)+(xy)sin2θ=cosθ(xy)2cos2θ+4xy(x+y)+(xy)sin2θ=cosθ(x+y)2cos2θ+4xysin2θ(x+y)+(xy)sin2θ,

cosθ dθ=cosθ(x+y)2cos2θ+4xysin2θ(x+y)+(xy)sin2θ dθ=2x(x+y)(xy)sin2θ((x+y)+(xy)sin2θ)2 cosθdθ,

dθ=x((x+y)(xy)sin2θ)((x+y)+(xy)sin2θ)2dθ(x+y)2cos2θ+4xysin2θ ,

x2cos2θ+y2sin2θ=x2((x+y)22(x2+y2)sin2θ+(xy)2sin4θ)+4x2y2sin2θ((x+y)+(xy)sin2θ)=x((x+y)(xy)sin2θ)((x+y)+(xy)sin2θ)

This yields dθx2cos2θ+y2sin2θ=2dθ(x+y)2cos2θ+4xysin2θ=dθ((x+y2)2cos2θ+(xy)2sin2θ,

gives

I(x,y)=0π/2dθ((x+y2)2cos2θ+(xy)2sin2θ=I(x+y2,xy).

Thus, we have

I(x,y)=I(a1,g1)=I(a2,g2)==I(M(x,y),M(x,y))=π/(2M(x,y)). The last equality comes from observing that I(z,z)=π/(2z).

Finally, we obtain the desired result

M(x,y)=π/(2I(x,y)).

Applications

The number π

According to the Gauss–Legendre algorithm,[15]

π=4M(1,1/2)21j=12j+1cj2,

where

cj=12(aj1gj1),

with a0=1 and g0=1/2, which can be computed without loss of precision using

cj=cj124aj.

Complete elliptic integral K(sinα)

Taking a0=1 and g0=cosα yields the AGM

M(1,cosα)=π2K(sinα),

where Template:Math is a complete elliptic integral of the first kind:

K(k)=0π/2(1k2sin2θ)1/2dθ.

That is to say that this quarter period may be efficiently computed through the AGM, K(k)=π2M(1,1k2).

Other applications

Using this property of the AGM along with the ascending transformations of John Landen,[16] Richard P. Brent[17] suggested the first AGM algorithms for the fast evaluation of elementary transcendental functions (Template:Math, Template:Math, Template:Math). Subsequently, many authors went on to study the use of the AGM algorithms.[18]

See also

References

Notes

Template:Reflist

Citations

Template:Reflist

Sources

Template:Refbegin

  • Script error: No such module "Citation/CS1".
  • Script error: No such module "Template wrapper".Template:Main other
  • Script error: No such module "Template wrapper".

Template:Refend Template:Statistics

  1. a b c d Script error: No such module "Citation/CS1".
  2. agm(24, 6) at Wolfram Alpha
  3. Script error: No such module "citation/CS1".
  4. Template:Dlmf
  5. Script error: No such module "citation/CS1".
  6. Script error: No such module "citation/CS1". pages 35, 40
  7. Script error: No such module "Citation/CS1".
  8. Script error: No such module "Citation/CS1".
  9. G. V. Choodnovsky: Algebraic independence of constants connected with the functions of analysis, Notices of the AMS 22, 1975, p. A-486
  10. G. V. Chudnovsky: Contributions to The Theory of Transcendental Numbers, American Mathematical Society, 1984, p. 6
  11. Script error: No such module "citation/CS1". p. 45
  12. Script error: No such module "Citation/CS1".
  13. Template:AS ref
  14. Script error: No such module "citation/CS1".
  15. Script error: No such module "Citation/CS1".
  16. Script error: No such module "Citation/CS1".
  17. Script error: No such module "Citation/CS1".
  18. Script error: No such module "citation/CS1".


Cite error: <ref> tags exist for a group named "note", but no corresponding <references group="note"/> tag was found