Pauson–Khand reaction: Difference between revisions
imported>OAbot m Open access bot: url-access updated in citation with #oabot. |
imported>Fabvill Added bibcode. | Use this tool. Report bugs. | #UCB_Gadget |
||
| Line 7: | Line 7: | ||
== Mechanism == | == Mechanism == | ||
While the mechanism has not yet been fully elucidated, Magnus' 1985 explanation<ref>{{Cite journal |last1=Magnus |first1=Philip |last2=Principe |first2=Lawrence M. |date=January 1985 |title=Origins of 1,2- and 1,3-stereoselectivity in dicobaltoctacarbonyl alkene-alkyne cyclizations for the synthesis of substituted bicyclo[3.3.0]octenones. |url=http://dx.doi.org/10.1016/s0040-4039(00)94968-2 |journal=Tetrahedron Letters |volume=26 |issue=40 |pages=4851–4854 |doi=10.1016/s0040-4039(00)94968-2 |issn=0040-4039|url-access=subscription }}, later expanded to {{Cite journal |last1=Magnus |first1=Philip |last2=Exon |first2=Christopher |last3=Albaugh-Robertson |first3=Pamela |date=1985-01-01 |title=Dicobaltoctacarbonyl-alkyne complexes as intermediates in the synthesis of bicyclo[3.3.0]octenones for the synthesis of coriolin and hirsutic acid |url=https://www.sciencedirect.com/science/article/abs/pii/S0040402001914255 |journal=Tetrahedron |language=en |volume=41 |issue=24 |pages=5861–5869 |doi=10.1016/S0040-4020(01)91425-5 |issn=0040-4020|url-access=subscription }}</ref> is widely accepted for both mono- and dinuclear catalysts, and was corroborated by computational studies published by Nakamura and Yamanaka in 2001.<ref>{{Cite journal |last1=Yamanaka |first1=Masahiro |last2=Nakamura |first2=Eiichi |date=2001-02-01 |title=Density Functional Studies on the Pauson−Khand Reaction |url=https://doi.org/10.1021/ja005565+ |journal=Journal of the American Chemical Society |volume=123 |issue=8 |pages=1703–1708 |doi=10.1021/ja005565+ |issn=0002-7863 |pmid=11456770|url-access=subscription }}</ref> The reaction starts with [[dicobalt hexacarbonyl acetylene complex]]. Binding of an alkene gives a [[Metallacyclopentanes|metallacyclopentene]] complex. CO then [[Migratory insertion|migratorily inserts]] into an M-C bond. [[Reductive elimination]] delivers the [[cyclopentenone]]. Typically, the dissociation of carbon monoxide from the organometallic complex is rate limiting.{{sfn|Hartwig|2010}} | While the mechanism has not yet been fully elucidated, Magnus' 1985 explanation<ref>{{Cite journal |last1=Magnus |first1=Philip |last2=Principe |first2=Lawrence M. |date=January 1985 |title=Origins of 1,2- and 1,3-stereoselectivity in dicobaltoctacarbonyl alkene-alkyne cyclizations for the synthesis of substituted bicyclo[3.3.0]octenones. |url=http://dx.doi.org/10.1016/s0040-4039(00)94968-2 |journal=Tetrahedron Letters |volume=26 |issue=40 |pages=4851–4854 |doi=10.1016/s0040-4039(00)94968-2 |issn=0040-4039|url-access=subscription }}, later expanded to {{Cite journal |last1=Magnus |first1=Philip |last2=Exon |first2=Christopher |last3=Albaugh-Robertson |first3=Pamela |date=1985-01-01 |title=Dicobaltoctacarbonyl-alkyne complexes as intermediates in the synthesis of bicyclo[3.3.0]octenones for the synthesis of coriolin and hirsutic acid |url=https://www.sciencedirect.com/science/article/abs/pii/S0040402001914255 |journal=Tetrahedron |language=en |volume=41 |issue=24 |pages=5861–5869 |doi=10.1016/S0040-4020(01)91425-5 |issn=0040-4020|url-access=subscription }}</ref> is widely accepted for both mono- and dinuclear catalysts, and was corroborated by computational studies published by Nakamura and Yamanaka in 2001.<ref>{{Cite journal |last1=Yamanaka |first1=Masahiro |last2=Nakamura |first2=Eiichi |date=2001-02-01 |title=Density Functional Studies on the Pauson−Khand Reaction |url=https://doi.org/10.1021/ja005565+ |journal=Journal of the American Chemical Society |volume=123 |issue=8 |pages=1703–1708 |doi=10.1021/ja005565+ |issn=0002-7863 |pmid=11456770|bibcode=2001JAChS.123.1703Y |url-access=subscription }}</ref> The reaction starts with [[dicobalt hexacarbonyl acetylene complex]]. Binding of an alkene gives a [[Metallacyclopentanes|metallacyclopentene]] complex. CO then [[Migratory insertion|migratorily inserts]] into an M-C bond. [[Reductive elimination]] delivers the [[cyclopentenone]]. Typically, the dissociation of carbon monoxide from the organometallic complex is rate limiting.{{sfn|Hartwig|2010}} | ||
[[File:Mech_PKR.png|center|thumb|473x473px|<dl> | [[File:Mech_PKR.png|center|thumb|473x473px|<dl> | ||
<dt>1:</dt><dd>[[Coordination complex|Alkyne coordination]], insertion and [[Ligand exchange|ligand dissociation]] to form an [[18-electron rule|18-electron complex]];</dd> | <dt>1:</dt><dd>[[Coordination complex|Alkyne coordination]], insertion and [[Ligand exchange|ligand dissociation]] to form an [[18-electron rule|18-electron complex]];</dd> | ||
| Line 49: | Line 49: | ||
The two most common amine ''N''-oxides are [[N-Methylmorpholine N-oxide|''N''-methylmorpholine ''N''-oxide (NMO)]] and [[Trimethylamine N-oxide|trimethylamine ''N''-oxide (TMANO)]]. It is believed that these additives remove carbon monoxide ligands via nucleophilic attack of the ''N''-oxide onto the CO carbonyl, oxidizing the CO into CO<sub>2</sub>, and generating an unsaturated organometallic complex.<ref>{{Cite journal |last1=Shambayani |first1=Soroosh |last2=Crowe |first2=William E. |last3=Schreiber |first3=Stuart L. |date=1990-01-01 |title=N-oxide promoted pauson-khand cyclizations at room temperature |url=https://www.sciencedirect.com/science/article/abs/pii/S0040403900980523 |journal=Tetrahedron Letters |language=en |volume=31 |issue=37 |pages=5289–5292 |doi=10.1016/S0040-4039(00)98052-3 |issn=0040-4039|url-access=subscription }}</ref><ref>{{Cite journal |last1=Alper |first1=Howard |last2=Edward |first2=J. T. |date=2011-02-03 |title=Reactions of iron pentacarbonyl with compounds containing the N—O linkage |journal=Canadian Journal of Chemistry |language=en |volume=48 |issue=10 |pages=1543–1549 |doi=10.1139/v70-251|doi-access=free }}</ref> This renders the first step of the mechanism irreversible, and allows for more mild conditions. [[Hydrate]]s of the aforementioned amine ''N''-oxides have similar effect.<ref>{{Cite journal |last1=Crawford |first1=James J. |last2=Kerr |first2=William J. |last3=McLaughlin |first3=Mark |last4=Morrison |first4=Angus J. |last5=Pauson |first5=Peter L. |last6=Thurston |first6=Graeme J. |date=2006-12-04 |title=Use of a highly effective intramolecular Pauson–Khand cyclisation for the formal total synthesis of (±)-α- and β-cedrene by preparation of cedrone |url=https://www.sciencedirect.com/science/article/abs/pii/S0040402006008192 |journal=Tetrahedron |language=en |volume=62 |issue=49 |pages=11360–11370 |doi=10.1016/j.tet.2006.05.044 |issn=0040-4020|url-access=subscription }}</ref><ref>{{Cite journal |last1=Krafft |first1=Marie E. |last2=Romero |first2=Romulo H. |last3=Scott |first3=Ian L. |date=1992-09-01 |title=Pauson-Khand reaction with electron-deficient alkynes |url=https://doi.org/10.1021/jo00046a001 |journal=The Journal of Organic Chemistry |volume=57 |issue=20 |pages=5277–5278 |doi=10.1021/jo00046a001 |issn=0022-3263|url-access=subscription }}</ref><ref>{{Cite journal |last1=Bernardes |first1=Vania |last2=Kann |first2=Nina |last3=Riera |first3=Antoni |last4=Moyano |first4=Albert |last5=Pericas |first5=Miquel A. |last6=Greene |first6=Andrew E. |date=1995-10-01 |title=Asymmetric Pauson-Khand Cyclization: A Formal Total Synthesis of Natural Brefeldin A |url=https://doi.org/10.1021/jo00126a010 |journal=The Journal of Organic Chemistry |volume=60 |issue=21 |pages=6670–6671 |doi=10.1021/jo00126a010 |issn=0022-3263|url-access=subscription }}</ref> | The two most common amine ''N''-oxides are [[N-Methylmorpholine N-oxide|''N''-methylmorpholine ''N''-oxide (NMO)]] and [[Trimethylamine N-oxide|trimethylamine ''N''-oxide (TMANO)]]. It is believed that these additives remove carbon monoxide ligands via nucleophilic attack of the ''N''-oxide onto the CO carbonyl, oxidizing the CO into CO<sub>2</sub>, and generating an unsaturated organometallic complex.<ref>{{Cite journal |last1=Shambayani |first1=Soroosh |last2=Crowe |first2=William E. |last3=Schreiber |first3=Stuart L. |date=1990-01-01 |title=N-oxide promoted pauson-khand cyclizations at room temperature |url=https://www.sciencedirect.com/science/article/abs/pii/S0040403900980523 |journal=Tetrahedron Letters |language=en |volume=31 |issue=37 |pages=5289–5292 |doi=10.1016/S0040-4039(00)98052-3 |issn=0040-4039|url-access=subscription }}</ref><ref>{{Cite journal |last1=Alper |first1=Howard |last2=Edward |first2=J. T. |date=2011-02-03 |title=Reactions of iron pentacarbonyl with compounds containing the N—O linkage |journal=Canadian Journal of Chemistry |language=en |volume=48 |issue=10 |pages=1543–1549 |doi=10.1139/v70-251|doi-access=free }}</ref> This renders the first step of the mechanism irreversible, and allows for more mild conditions. [[Hydrate]]s of the aforementioned amine ''N''-oxides have similar effect.<ref>{{Cite journal |last1=Crawford |first1=James J. |last2=Kerr |first2=William J. |last3=McLaughlin |first3=Mark |last4=Morrison |first4=Angus J. |last5=Pauson |first5=Peter L. |last6=Thurston |first6=Graeme J. |date=2006-12-04 |title=Use of a highly effective intramolecular Pauson–Khand cyclisation for the formal total synthesis of (±)-α- and β-cedrene by preparation of cedrone |url=https://www.sciencedirect.com/science/article/abs/pii/S0040402006008192 |journal=Tetrahedron |language=en |volume=62 |issue=49 |pages=11360–11370 |doi=10.1016/j.tet.2006.05.044 |issn=0040-4020|url-access=subscription }}</ref><ref>{{Cite journal |last1=Krafft |first1=Marie E. |last2=Romero |first2=Romulo H. |last3=Scott |first3=Ian L. |date=1992-09-01 |title=Pauson-Khand reaction with electron-deficient alkynes |url=https://doi.org/10.1021/jo00046a001 |journal=The Journal of Organic Chemistry |volume=57 |issue=20 |pages=5277–5278 |doi=10.1021/jo00046a001 |issn=0022-3263|url-access=subscription }}</ref><ref>{{Cite journal |last1=Bernardes |first1=Vania |last2=Kann |first2=Nina |last3=Riera |first3=Antoni |last4=Moyano |first4=Albert |last5=Pericas |first5=Miquel A. |last6=Greene |first6=Andrew E. |date=1995-10-01 |title=Asymmetric Pauson-Khand Cyclization: A Formal Total Synthesis of Natural Brefeldin A |url=https://doi.org/10.1021/jo00126a010 |journal=The Journal of Organic Chemistry |volume=60 |issue=21 |pages=6670–6671 |doi=10.1021/jo00126a010 |issn=0022-3263|url-access=subscription }}</ref> | ||
[[File:Additives.png|center|thumb|391x391px|NMO = [[N-Methylmorpholine N-oxide|''N''{{Nbh}}methylmorpholine ''N''{{Nbh}}oxide]], DCM = [[dichloromethane]]]] | [[File:Additives.png|center|thumb|391x391px|NMO = [[N-Methylmorpholine N-oxide|''N''{{Nbh}}methylmorpholine ''N''{{Nbh}}oxide]], DCM = [[dichloromethane]]]] | ||
''N''-oxide additives can also improve enantio- and diastereoselectivity, although the mechanism thereby is not clear.<ref name=":0">{{Cite journal |last1=Jamison |first1=Timothy F. |last2=Shambayati |first2=Soroosh |last3=Crowe |first3=William E. |last4=Schreiber |first4=Stuart L. |date=1997-05-01 |title=Tandem Use of Cobalt-Mediated Reactions to Synthesize (+)-Epoxydictymene, a Diterpene Containing a Trans-Fused 5−5 Ring System |url=https://doi.org/10.1021/ja970022u |journal=Journal of the American Chemical Society |volume=119 |issue=19 |pages=4353–4363 |doi=10.1021/ja970022u |issn=0002-7863|url-access=subscription }}</ref><ref>{{Cite journal |last1=Carbery |first1=David R. |last2=Kerr |first2=William J. |last3=Lindsay |first3=David M. |last4=Scott |first4=James S. |last5=Watson |first5=Stephen P. |date=2000-04-22 |title=Preparation and reaction of desymmetrised cobalt alkyne complexes |url=https://www.sciencedirect.com/science/article/abs/pii/S0040403900003567 |journal=Tetrahedron Letters |language=en |volume=41 |issue=17 |pages=3235–3239 |doi=10.1016/S0040-4039(00)00356-7 |issn=0040-4039|url-access=subscription }}</ref><ref>{{Cite journal |last1=Jończyk |first1=Andrzej |last2=Konarska |first2=Anna |date=July 1999 |title=Generation and Reactions of Ammonium Ylides in Basic Two-Phase Systems: Convenient Synthesis of Cyclopropanes, Oxiranes and Alkenes Substituted with Electron-Withdrawing Groups |url=http://www.thieme-connect.de/DOI/DOI?10.1055/s-1999-2757 |journal=Synlett |language=en |volume=1999 |issue=7 |pages=1085–1087 |doi=10.1055/s-1999-2757 |s2cid=196781210 |issn=0936-5214|url-access=subscription }}</ref> | ''N''-oxide additives can also improve enantio- and diastereoselectivity, although the mechanism thereby is not clear.<ref name=":0">{{Cite journal |last1=Jamison |first1=Timothy F. |last2=Shambayati |first2=Soroosh |last3=Crowe |first3=William E. |last4=Schreiber |first4=Stuart L. |date=1997-05-01 |title=Tandem Use of Cobalt-Mediated Reactions to Synthesize (+)-Epoxydictymene, a Diterpene Containing a Trans-Fused 5−5 Ring System |url=https://doi.org/10.1021/ja970022u |journal=Journal of the American Chemical Society |volume=119 |issue=19 |pages=4353–4363 |doi=10.1021/ja970022u |bibcode=1997JAChS.119.4353J |issn=0002-7863|url-access=subscription }}</ref><ref>{{Cite journal |last1=Carbery |first1=David R. |last2=Kerr |first2=William J. |last3=Lindsay |first3=David M. |last4=Scott |first4=James S. |last5=Watson |first5=Stephen P. |date=2000-04-22 |title=Preparation and reaction of desymmetrised cobalt alkyne complexes |url=https://www.sciencedirect.com/science/article/abs/pii/S0040403900003567 |journal=Tetrahedron Letters |language=en |volume=41 |issue=17 |pages=3235–3239 |doi=10.1016/S0040-4039(00)00356-7 |issn=0040-4039|url-access=subscription }}</ref><ref>{{Cite journal |last1=Jończyk |first1=Andrzej |last2=Konarska |first2=Anna |date=July 1999 |title=Generation and Reactions of Ammonium Ylides in Basic Two-Phase Systems: Convenient Synthesis of Cyclopropanes, Oxiranes and Alkenes Substituted with Electron-Withdrawing Groups |url=http://www.thieme-connect.de/DOI/DOI?10.1055/s-1999-2757 |journal=Synlett |language=en |volume=1999 |issue=7 |pages=1085–1087 |doi=10.1055/s-1999-2757 |s2cid=196781210 |issn=0936-5214|url-access=subscription }}</ref> | ||
[[File:Screiber_example.png|center|thumb|430x430px|(NMO = [[N-Methylmorpholine N-oxide|''N''{{Nbh}}methylmorpholine ''N''{{Nbh}}oxide]], DCM = [[dichloromethane]]) | [[File:Screiber_example.png|center|thumb|430x430px|(NMO = [[N-Methylmorpholine N-oxide|''N''{{Nbh}}methylmorpholine ''N''{{Nbh}}oxide]], DCM = [[dichloromethane]]) | ||
| Line 55: | Line 55: | ||
== Alternative catalysts == | == Alternative catalysts == | ||
[[Tetracobalt dodecacarbonyl|(Co)<sub>4</sub>(CO)<sub>12</sub>]] and [[Co3(CO)9(CH)|Co<sub>3</sub>(CO)<sub>9</sub>(μ<sup>3</sup>-CH)]] also catalyze the PK reaction<ref>{{Cite journal |last1=Kim |first1=Jong Wook |last2=Chung |first2=Young Keun |date=February 1998 |title=Pauson-Khand Reaction Catalyzed by Co4(CO)12 |url=http://dx.doi.org/10.1055/s-1998-2016 |journal=Synthesis |volume=1998 |issue=2 |pages=142–144 |doi=10.1055/s-1998-2016 |s2cid=196736582 |issn=0039-7881|url-access=subscription }}</ref><ref>{{Cite journal |last1=Sugihara |first1=Takumichi |last2=Yamaguchi |first2=Masahiko |date=1998-10-01 |title=The Pauson−Khand Reaction Catalyzed by the Methylidynetricobalt Nonacarbonyl Cluster |url=http://dx.doi.org/10.1021/ja982635s |journal=Journal of the American Chemical Society |volume=120 |issue=41 |pages=10782–10783 |doi=10.1021/ja982635s |issn=0002-7863|url-access=subscription }}</ref> although Takayama ''et al'' detail a reaction catalyzed by [[dicobalt octacarbonyl]].<ref name="Huperzine-Q2">{{cite journal |last1=Nakayama |first1=Atsushi |last2=Kogure |first2=Noriyuki |last3=Kitajima |first3=Mariko |last4=Takayama |first4=Hiromitsu |year=2011 |title=Asymmetric Total Synthesis of a Pentacyclic ''Lycopodium'' Alkaloid: Huperzine-Q |journal=[[Angew. Chem. Int. Ed.]] |volume=50 |issue=35 |pages=8025–8028 |doi=10.1002/anie.201103550 |pmid=21751323 |s2cid=10947595}}</ref> | [[Tetracobalt dodecacarbonyl|(Co)<sub>4</sub>(CO)<sub>12</sub>]] and [[Co3(CO)9(CH)|Co<sub>3</sub>(CO)<sub>9</sub>(μ<sup>3</sup>-CH)]] also catalyze the PK reaction<ref>{{Cite journal |last1=Kim |first1=Jong Wook |last2=Chung |first2=Young Keun |date=February 1998 |title=Pauson-Khand Reaction Catalyzed by Co4(CO)12 |url=http://dx.doi.org/10.1055/s-1998-2016 |journal=Synthesis |volume=1998 |issue=2 |pages=142–144 |doi=10.1055/s-1998-2016 |s2cid=196736582 |issn=0039-7881|url-access=subscription }}</ref><ref>{{Cite journal |last1=Sugihara |first1=Takumichi |last2=Yamaguchi |first2=Masahiko |date=1998-10-01 |title=The Pauson−Khand Reaction Catalyzed by the Methylidynetricobalt Nonacarbonyl Cluster |url=http://dx.doi.org/10.1021/ja982635s |journal=Journal of the American Chemical Society |volume=120 |issue=41 |pages=10782–10783 |doi=10.1021/ja982635s |bibcode=1998JAChS.12010782S |issn=0002-7863|url-access=subscription }}</ref> although Takayama ''et al'' detail a reaction catalyzed by [[dicobalt octacarbonyl]].<ref name="Huperzine-Q2">{{cite journal |last1=Nakayama |first1=Atsushi |last2=Kogure |first2=Noriyuki |last3=Kitajima |first3=Mariko |last4=Takayama |first4=Hiromitsu |year=2011 |title=Asymmetric Total Synthesis of a Pentacyclic ''Lycopodium'' Alkaloid: Huperzine-Q |journal=[[Angew. Chem. Int. Ed.]] |volume=50 |issue=35 |pages=8025–8028 |doi=10.1002/anie.201103550 |pmid=21751323 |s2cid=10947595}}</ref> | ||
[[File:Syn_ex.png|center|thumb|736x736px|The key step in Takayama ''et al''<nowiki/>'s [[Asymmetric synthesis|asymmetric]] [[total synthesis]] of the ''[[Lycopodium]]'' [[alkaloid]] [[huperzine-Q]]: [[Dicobalt octacarbonyl|Co<sub>2</sub>(CO)<sub>8</sub>]] catalyzes an [[enyne]] cyclization.<ref name="Huperzine-Q2" /> The [[siloxane]] ring ensures<ref>{{cite book |last=Ho |first=Tse-Lok |title=Fiesers' Reagents for Organic Synthesis |publisher=[[John Wiley & Sons]] |year=2016 |isbn=9781118942819 |volume=28 |pages=251–252 |chapter=Dicobalt Octacarbonyl |chapter-url=https://books.google.com/books?id=AO3bCwAAQBAJ&pg=PA251}}</ref> that only a single product [[enantiomer]] forms.<ref name="Huperzine-Q2" />]] | [[File:Syn_ex.png|center|thumb|736x736px|The key step in Takayama ''et al''<nowiki/>'s [[Asymmetric synthesis|asymmetric]] [[total synthesis]] of the ''[[Lycopodium]]'' [[alkaloid]] [[huperzine-Q]]: [[Dicobalt octacarbonyl|Co<sub>2</sub>(CO)<sub>8</sub>]] catalyzes an [[enyne]] cyclization.<ref name="Huperzine-Q2" /> The [[siloxane]] ring ensures<ref>{{cite book |last=Ho |first=Tse-Lok |title=Fiesers' Reagents for Organic Synthesis |publisher=[[John Wiley & Sons]] |year=2016 |isbn=9781118942819 |volume=28 |pages=251–252 |chapter=Dicobalt Octacarbonyl |chapter-url=https://books.google.com/books?id=AO3bCwAAQBAJ&pg=PA251}}</ref> that only a single product [[enantiomer]] forms.<ref name="Huperzine-Q2" />]] | ||
One stabilization method is to generate the catalyst ''in situ''. Chung reports that [[Tris(acetylacetonato)cobalt(III)|Co(acac)<sub>2</sub>]] can serve as a [[precatalyst]], activated by [[sodium borohydride]].<ref>{{Cite journal |last1=Lee |first1=Nam Young |last2=Chung |first2=Young Keun |date=April 1996 |title=Synthesis of cyclopentenones: The new catalytic cocyclization reaction of alkyne, alkene, and carbon monoxide employing catalytic Co(acac)2 and NaBH4 |url=http://dx.doi.org/10.1016/0040-4039(96)00513-8 |journal=Tetrahedron Letters |volume=37 |issue=18 |pages=3145–3148 |doi=10.1016/0040-4039(96)00513-8 |issn=0040-4039|url-access=subscription }}</ref> | One stabilization method is to generate the catalyst ''in situ''. Chung reports that [[Tris(acetylacetonato)cobalt(III)|Co(acac)<sub>2</sub>]] can serve as a [[precatalyst]], activated by [[sodium borohydride]].<ref>{{Cite journal |last1=Lee |first1=Nam Young |last2=Chung |first2=Young Keun |date=April 1996 |title=Synthesis of cyclopentenones: The new catalytic cocyclization reaction of alkyne, alkene, and carbon monoxide employing catalytic Co(acac)2 and NaBH4 |url=http://dx.doi.org/10.1016/0040-4039(96)00513-8 |journal=Tetrahedron Letters |volume=37 |issue=18 |pages=3145–3148 |doi=10.1016/0040-4039(96)00513-8 |issn=0040-4039|url-access=subscription }}</ref> | ||
| Line 63: | Line 63: | ||
[[File:Ex_1_var.png|center|407x407px|PK reaction with Wilkinson's catalyst]] | [[File:Ex_1_var.png|center|407x407px|PK reaction with Wilkinson's catalyst]] | ||
[[Molybdenum hexacarbonyl]] is a carbon monoxide donor in PK-type reactions between [[allene]]s and [[alkyne]]s with [[dimethyl sulfoxide]] in toluene.<ref>{{cite journal |last1=Kent |first1=J |year=1995 |title=A new allenic Pauson-Khand cycloaddition for the preparation of α-methylene cyclopentenones |journal=Tetrahedron Letters |volume=36 |issue=14 |pages=2407–2410 |doi=10.1016/0040-4039(95)00315-4}}</ref> Titanium, nickel,<ref>Titanium: | [[Molybdenum hexacarbonyl]] is a carbon monoxide donor in PK-type reactions between [[allene]]s and [[alkyne]]s with [[dimethyl sulfoxide]] in toluene.<ref>{{cite journal |last1=Kent |first1=J |year=1995 |title=A new allenic Pauson-Khand cycloaddition for the preparation of α-methylene cyclopentenones |journal=Tetrahedron Letters |volume=36 |issue=14 |pages=2407–2410 |doi=10.1016/0040-4039(95)00315-4}}</ref> Titanium, nickel,<ref>Titanium: | ||
* {{Cite journal |last1=Hicks |first1=Frederick A. |last2=Buchwald |first2=Stephen L. |date=1996-01-01 |title=Highly Enantioselective Catalytic Pauson−Khand Type Formation of Bicyclic Cyclopentenones |url=http://dx.doi.org/10.1021/ja9630452 |journal=Journal of the American Chemical Society |volume=118 |issue=46 |pages=11688–11689 |doi=10.1021/ja9630452 |issn=0002-7863|url-access=subscription }} | * {{Cite journal |last1=Hicks |first1=Frederick A. |last2=Buchwald |first2=Stephen L. |date=1996-01-01 |title=Highly Enantioselective Catalytic Pauson−Khand Type Formation of Bicyclic Cyclopentenones |url=http://dx.doi.org/10.1021/ja9630452 |journal=Journal of the American Chemical Society |volume=118 |issue=46 |pages=11688–11689 |doi=10.1021/ja9630452 |bibcode=1996JAChS.11811688H |issn=0002-7863|url-access=subscription }} | ||
* {{Cite journal |last1=Hicks |first1=Frederick A. |last2=Kablaoui |first2=Natasha M. |last3=Buchwald |first3=Stephen L. |date=January 1996 |title=Titanocene-Catalyzed Cyclocarbonylation of Enynes to Cyclopentenones |url=http://dx.doi.org/10.1021/ja9621509 |journal=Journal of the American Chemical Society |volume=118 |issue=39 |pages=9450–9451 |doi=10.1021/ja9621509 |issn=0002-7863|url-access=subscription }} | * {{Cite journal |last1=Hicks |first1=Frederick A. |last2=Kablaoui |first2=Natasha M. |last3=Buchwald |first3=Stephen L. |date=January 1996 |title=Titanocene-Catalyzed Cyclocarbonylation of Enynes to Cyclopentenones |url=http://dx.doi.org/10.1021/ja9621509 |journal=Journal of the American Chemical Society |volume=118 |issue=39 |pages=9450–9451 |doi=10.1021/ja9621509 |bibcode=1996JAChS.118.9450H |issn=0002-7863|url-access=subscription }} | ||
Nickel: | Nickel: | ||
* {{Cite journal |last1=Zhang |first1=Minghui |last2=Buchwald |first2=Stephen L. |date=January 1996 |title=A Nickel(0)-Catalyzed Process for the Transformation of Enynes to Bicyclic Cyclopentenones |url=http://dx.doi.org/10.1021/jo960410z |journal=The Journal of Organic Chemistry |volume=61 |issue=14 |pages=4498–4499 |doi=10.1021/jo960410z |issn=0022-3263 |pmid=11667365|url-access=subscription }}</ref> and zirconium<ref> | * {{Cite journal |last1=Zhang |first1=Minghui |last2=Buchwald |first2=Stephen L. |date=January 1996 |title=A Nickel(0)-Catalyzed Process for the Transformation of Enynes to Bicyclic Cyclopentenones |url=http://dx.doi.org/10.1021/jo960410z |journal=The Journal of Organic Chemistry |volume=61 |issue=14 |pages=4498–4499 |doi=10.1021/jo960410z |issn=0022-3263 |pmid=11667365|url-access=subscription }}</ref> and zirconium<ref> | ||
* {{Cite journal |last1=Negishi |first1=Eiichi |last2=Holmes |first2=Steven J. |last3=Tour |first3=James M. |last4=Miller |first4=Joseph A. |date=1985-04-01 |title=Metal promoted cyclization. 7. Zirconium-promoted bicyclization of enynes |url=https://doi.org/10.1021/ja00294a071 |journal=Journal of the American Chemical Society |volume=107 |issue=8 |pages=2568–2569 |doi=10.1021/ja00294a071 |issn=0002-7863|url-access=subscription }} | * {{Cite journal |last1=Negishi |first1=Eiichi |last2=Holmes |first2=Steven J. |last3=Tour |first3=James M. |last4=Miller |first4=Joseph A. |date=1985-04-01 |title=Metal promoted cyclization. 7. Zirconium-promoted bicyclization of enynes |url=https://doi.org/10.1021/ja00294a071 |journal=Journal of the American Chemical Society |volume=107 |issue=8 |pages=2568–2569 |doi=10.1021/ja00294a071 |bibcode=1985JAChS.107.2568N |issn=0002-7863|url-access=subscription }} | ||
* {{Cite journal |last1=Negishi |first1=Eiichi |last2=Holmes |first2=Steven J. |last3=Tour |first3=James M. |last4=Miller |first4=Joseph A. |last5=Cederbaum |first5=Fredrik E. |last6=Swanson |first6=Douglas R. |last7=Takahashi |first7=Tamotsu |date=April 1989 |title=Metal-promoted cyclization. 19. Novel bicyclization of enynes and diynes promoted by zirconocene derivatives and conversion of zirconabicycles into bicyclic enones via carbonylation |url=http://dx.doi.org/10.1021/ja00191a035 |journal=Journal of the American Chemical Society |volume=111 |issue=9 |pages=3336–3346 |doi=10.1021/ja00191a035 |issn=0002-7863|url-access=subscription }}</ref> complexes admit the reaction. Other metals can also be employed in these transformations.<ref name="Ligands2">{{Cite journal |last1=Jeong |first1=Nakcheol |last2=Hwang |first2=Sung Hee |last3=Lee |first3=Youngshin |last4=Chung |first4=Young Keun |date=April 1994 |title=Catalytic version of the Intramolecular Pauson-Khand Reaction |url=http://dx.doi.org/10.1021/ja00086a070 |journal=Journal of the American Chemical Society |volume=116 |issue=7 |pages=3159–3160 |doi=10.1021/ja00086a070 |issn=0002-7863|url-access=subscription }}</ref>{{sfn|Ríos Torres|2012}} | * {{Cite journal |last1=Negishi |first1=Eiichi |last2=Holmes |first2=Steven J. |last3=Tour |first3=James M. |last4=Miller |first4=Joseph A. |last5=Cederbaum |first5=Fredrik E. |last6=Swanson |first6=Douglas R. |last7=Takahashi |first7=Tamotsu |date=April 1989 |title=Metal-promoted cyclization. 19. Novel bicyclization of enynes and diynes promoted by zirconocene derivatives and conversion of zirconabicycles into bicyclic enones via carbonylation |url=http://dx.doi.org/10.1021/ja00191a035 |journal=Journal of the American Chemical Society |volume=111 |issue=9 |pages=3336–3346 |doi=10.1021/ja00191a035 |bibcode=1989JAChS.111.3336N |issn=0002-7863|url-access=subscription }}</ref> complexes admit the reaction. Other metals can also be employed in these transformations.<ref name="Ligands2">{{Cite journal |last1=Jeong |first1=Nakcheol |last2=Hwang |first2=Sung Hee |last3=Lee |first3=Youngshin |last4=Chung |first4=Young Keun |date=April 1994 |title=Catalytic version of the Intramolecular Pauson-Khand Reaction |url=http://dx.doi.org/10.1021/ja00086a070 |journal=Journal of the American Chemical Society |volume=116 |issue=7 |pages=3159–3160 |doi=10.1021/ja00086a070 |bibcode=1994JAChS.116.3159J |issn=0002-7863|url-access=subscription }}</ref>{{sfn|Ríos Torres|2012}} | ||
== Substrate tolerance == | == Substrate tolerance == | ||
| Line 80: | Line 80: | ||
=== Carbon monoxide generation ''in situ'' === | === Carbon monoxide generation ''in situ'' === | ||
The cyclopentenone motif can be prepared from aldehydes, carboxylic acids, and formates. These examples typically employ rhodium as the catalyst, as it is commonly used in [[decarbonylation]] reactions. The decarbonylation and PK reaction occur in the same reaction vessel.<ref>{{Cite journal |last1=Morimoto |first1=Tsumoru |last2=Fuji |first2=Koji |last3=Tsutsumi |first3=Ken |last4=Kakiuchi |first4=Kiyomi |date=2002 |title=CO-Transfer Carbonylation Reactions. A Catalytic Pauson−Khand-Type Reaction of Enynes with Aldehydes as a Source of Carbon Monoxide |journal=[[Journal of the American Chemical Society]] |volume=124 |issue=15 |pages=3806–3807 |doi=10.1021/ja0126881|pmid=11942798 }}</ref><ref>{{Cite journal |last1=Shibata |first1=Takanori |last2=Toshida |first2=Natsuko |last3=Takagi |first3=Kentaro |date=2002 |title= Catalytic Pauson−Khand-Type Reaction Using Aldehydes as a CO Source |journal=[[Organic Letters]] |volume=4 |issue=9 |pages= 1619–1621 |doi=10.1021/ol025836g|pmid=11975643 }}</ref> | The cyclopentenone motif can be prepared from aldehydes, carboxylic acids, and formates. These examples typically employ rhodium as the catalyst, as it is commonly used in [[decarbonylation]] reactions. The decarbonylation and PK reaction occur in the same reaction vessel.<ref>{{Cite journal |last1=Morimoto |first1=Tsumoru |last2=Fuji |first2=Koji |last3=Tsutsumi |first3=Ken |last4=Kakiuchi |first4=Kiyomi |date=2002 |title=CO-Transfer Carbonylation Reactions. A Catalytic Pauson−Khand-Type Reaction of Enynes with Aldehydes as a Source of Carbon Monoxide |journal=[[Journal of the American Chemical Society]] |volume=124 |issue=15 |pages=3806–3807 |doi=10.1021/ja0126881|pmid=11942798 |bibcode=2002JAChS.124.3806M }}</ref><ref>{{Cite journal |last1=Shibata |first1=Takanori |last2=Toshida |first2=Natsuko |last3=Takagi |first3=Kentaro |date=2002 |title= Catalytic Pauson−Khand-Type Reaction Using Aldehydes as a CO Source |journal=[[Organic Letters]] |volume=4 |issue=9 |pages= 1619–1621 |doi=10.1021/ol025836g|pmid=11975643 }}</ref> | ||
== See also == | == See also == | ||
Latest revision as of 14:12, 24 June 2025
The Pauson–Khand (PK) reaction is a chemical reaction, described as a [2+2+1] cycloaddition. In it, an alkyne, an alkene, and carbon monoxide combine into a α,β-cyclopentenone in the presence of a metal-carbonyl catalyst[1] [2] Ihsan Ullah Khand (1935–1980) discovered the reaction around 1970, while working as a postdoctoral associate with Peter Ludwig Pauson (1925–2013) at the University of Strathclyde in Glasgow.[3]Template:SfnTemplate:Sfn Pauson and Khand's initial findings were intermolecular in nature, but the reaction has poor selectivity. Some modern applications instead apply the reaction for intramolecular ends.[4]
The traditional reaction requires a stoichiometric amounts of dicobalt octacarbonyl, stabilized by a carbon monoxide atmosphere.Template:Sfn Catalytic metal quantities, enhanced reactivity and yield, or stereoinduction are all possible with the right chiral auxiliaries, choice of transition metal (Ti, Mo, W, Fe, Co, Ni, Ru, Rh, Ir and Pd), and additives.Template:SfnTemplate:Sfn[5]Template:Sfn
Mechanism
While the mechanism has not yet been fully elucidated, Magnus' 1985 explanation[6] is widely accepted for both mono- and dinuclear catalysts, and was corroborated by computational studies published by Nakamura and Yamanaka in 2001.[7] The reaction starts with dicobalt hexacarbonyl acetylene complex. Binding of an alkene gives a metallacyclopentene complex. CO then migratorily inserts into an M-C bond. Reductive elimination delivers the cyclopentenone. Typically, the dissociation of carbon monoxide from the organometallic complex is rate limiting.Template:Sfn
- 1:
- Alkyne coordination, insertion and ligand dissociation to form an 18-electron complex;
- 2:
- Ligand dissociation to form a 16-electron complex;
- 3:
- Alkene coordination to form an 18-electron complex;
- 4:
- Alkene insertion and ligand association (synperiplanar, still 18 electrons);
- 5:
- CO migratory insertion;
- 6, 7:
- Reductive elimination of metal (loss of [Co2(CO)6]);
- 8:
- CO association, to regenerate the active organometallic complex.[8]
Selectivity
The reaction works with both terminal and internal alkynes, although internal alkynes tend to give lower yields. The order of reactivity for the alkene is
(strained cyclic) > (terminal) > (disubstituted) > (trisubstituted).
Tetrasubstituted alkenes and alkenes with strongly electron-withdrawing groups are unsuitable.
With unsymmetrical alkenes or alkynes, the reaction is rarely regioselective, although some patterns can be observed.
For mono-substituted alkenes, alkyne substituents typically direct: larger groups prefer the C2 position, and electron-withdrawing groups prefer the C3 position.
But the alkene itself struggles to discriminate between the C4 and C5 position, unless the C2 position is sterically congested or the alkene has a chelating heteroatom.
The reaction's poor selectivity is ameliorated in intramolecular reactions. For this reason, the intramolecular Pauson-Khand is common in total synthesis, particularly the formation of 5,5- and 6,5-membered fused bicycles.
Generally, the reaction is highly syn-selective about the bridgehead hydrogen and substituents on the cyclopentane.
Appropriate chiral ligands or auxiliaries can make the reaction enantioselective (see Template:Slink). BINAP is commonly employed.
Additives
Typical Pauson-Khand conditions are elevated temperatures and pressures in aromatic hydrocarbon (benzene, toluene) or ethereal (tetrahydrofuran, 1,2-dichloroethane) solvents. These harsh conditions may be attenuated with the addition of various additives.
Absorbent surfaces
Adsorbing the metallic complex onto silica or alumina can enhance the rate of decarbonylative ligand exchange as exhibited in the image below.[9][10] This is because the donor posits itself on a solid surface (i.e. silica).Template:Clarify Additionally using a solid support restricts conformational movement (rotamer effect).[11][12][13]
Lewis bases
Traditional catalytic aids such as phosphine ligands make the cobalt complex too stable, but bulky phosphite ligands are operable.
Lewis basic additives, such as n-BuSMe, are also believed to accelerate the decarbonylative ligand exchange process. However, an alternative view holds that the additives make olefin insertion irreversible instead.[14] Sulfur compounds are typically hard to handle and smelly, but n-dodecyl methyl sulfide[15] and tetramethylthiourea[16] do not suffer from those problems and can improve reaction performance.
Amine N-oxides
The two most common amine N-oxides are N-methylmorpholine N-oxide (NMO) and trimethylamine N-oxide (TMANO). It is believed that these additives remove carbon monoxide ligands via nucleophilic attack of the N-oxide onto the CO carbonyl, oxidizing the CO into CO2, and generating an unsaturated organometallic complex.[17][18] This renders the first step of the mechanism irreversible, and allows for more mild conditions. Hydrates of the aforementioned amine N-oxides have similar effect.[19][20][21] [[File:Additives.png|center|thumb|391x391px|NMO = [[N-Methylmorpholine N-oxide|NTemplate:Nbhmethylmorpholine NTemplate:Nbhoxide]], DCM = dichloromethane]] N-oxide additives can also improve enantio- and diastereoselectivity, although the mechanism thereby is not clear.[22][23][24] [[File:Screiber_example.png|center|thumb|430x430px|(NMO = [[N-Methylmorpholine N-oxide|NTemplate:Nbhmethylmorpholine NTemplate:Nbhoxide]], DCM = dichloromethane)
A step in the total synthesis of epoxydictymene: temperature and ultrasound failed to improve the d.r. for the desired diastereomer (the red hydrogen). But the N-oxide additive, while lower yielding, gave a d.r. of 11:1.[22] ]]
Alternative catalysts
(Co)4(CO)12 and Co3(CO)9(μ3-CH) also catalyze the PK reaction[25][26] although Takayama et al detail a reaction catalyzed by dicobalt octacarbonyl.[27]
One stabilization method is to generate the catalyst in situ. Chung reports that Co(acac)2 can serve as a precatalyst, activated by sodium borohydride.[29]
Other metals
catalyst requires a silver triflate co-catalyst to effect the Pauson–Khand reaction:[30]
Molybdenum hexacarbonyl is a carbon monoxide donor in PK-type reactions between allenes and alkynes with dimethyl sulfoxide in toluene.[31] Titanium, nickel,[32] and zirconium[33] complexes admit the reaction. Other metals can also be employed in these transformations.[34]Template:Sfn
Substrate tolerance
In general allenes, support the Pauson–Khand reaction; regioselectivity is determined by the choice of metal catalyst. Density functional investigations show the variation arises from different transition state metal geometries.[35]
Heteroatoms are also acceptable: Mukai et al's total synthesis of physostigmine applied the Pauson–Khand reaction to a carbodiimide.[36]
Cyclobutadiene also lends itself to a [2+2+1] cycloaddition, although this reactant is too active to store in bulk. Instead, ceric ammonium nitrate cyclobutadiene is generated in situ from decomplexation of stable cyclobutadiene iron tricarbonyl with (CAN).
An example of a newer version is the use of the chlorodicarbonylrhodium(I) dimer, [(CO)2RhCl]2, in the synthesis of (+)-phorbol by Phil Baran. In addition to using a rhodium catalyst, this synthesis features an intramolecular cyclization that results in the normal 5-membered α,β-cyclopentenone as well as 7-membered ring.[37]
Carbon monoxide generation in situ
The cyclopentenone motif can be prepared from aldehydes, carboxylic acids, and formates. These examples typically employ rhodium as the catalyst, as it is commonly used in decarbonylation reactions. The decarbonylation and PK reaction occur in the same reaction vessel.[38][39]
See also
Further reading
For Khand and Pauson's perspective on the reaction:
- Script error: No such module "Citation/CS1".
- Script error: No such module "Citation/CS1".
- Script error: No such module "Citation/CS1".
For a modern perspective:
- Script error: No such module "citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "Citation/CS1".
- Script error: No such module "citation/CS1".
References
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1"., later expanded to Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b c Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Nakcheol Jeong, Byung Ki Sung, Jin Sung Kim, Soon Bong Park,Sung Deok Seo, Jin Young Shin, Kyu Yeol In, Yoon Kyung Choi Pauson–Khand-type reaction mediated by Rh(I) catalysts Pure Appl. Chem., Vol. 74, No. 1, pp. 85–91, 2002. (Online article)
- ↑ Script error: No such module "Citation/CS1".
- ↑ Titanium:
- Script error: No such module "Citation/CS1".
- Script error: No such module "Citation/CS1".
- Script error: No such module "Citation/CS1".
- ↑
- Script error: No such module "Citation/CS1".
- Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".