Universality class: Difference between revisions
imported>Michael Hardy No edit summary |
imported>Sylvain Ribault Lead section: style |
||
| (One intermediate revision by one other user not shown) | |||
| Line 1: | Line 1: | ||
{{Short description|Collection of models with the same renormalization group flow limit}} | {{Short description|Collection of models with the same renormalization group flow limit}} | ||
{{More references|date=December 2017}} | {{More references|date=December 2017}} | ||
In [[statistical mechanics]], a '''universality class''' is a | In [[statistical mechanics]], a '''universality class''' is a set of [[mathematical model]]s which share a [[scale invariance|scale-invariant]] limit under [[renormalization group]] flow. While the models within a class may differ at finite scales, their behavior become increasingly similar as the limit scale is approached. In particular, [[asymptotic]] phenomena such as [[critical exponent]]s are the same for all models in the class. | ||
Well-studied examples include the universality classes of the [[Ising model]] or the [[percolation theory]] at their respective [[phase transition]] points; these are both families of classes, one for each lattice dimension. Typically, a family of universality classes has a lower and upper [[critical dimension]]: below the lower critical dimension, the universality class becomes degenerate (this dimension is 2 for the Ising model, or for directed percolation, but 1 for undirected percolation), and above the upper critical dimension the critical exponents stabilize and can be calculated by an analog of [[mean-field theory]] (this dimension is 4 for Ising or for directed percolation, and 6 for undirected percolation). | |||
==List of critical exponents== | ==List of critical exponents== | ||
| Line 13: | Line 13: | ||
*The exponent <math>\delta</math> relates the order parameter to the source field at the critical temperature, where this relationship becomes nonlinear. We have <math>J = \Psi^\delta</math> (hence <math>\Psi = J^{1/\delta}</math>), with the same meanings as before. | *The exponent <math>\delta</math> relates the order parameter to the source field at the critical temperature, where this relationship becomes nonlinear. We have <math>J = \Psi^\delta</math> (hence <math>\Psi = J^{1/\delta}</math>), with the same meanings as before. | ||
*The exponent <math>\nu</math> relates the size of correlations (i.e. patches of the ordered phase) to the temperature; away from the critical point these are characterized by a [[correlation length]] <math>\xi</math>. We have <math>\xi = \tau^{-\nu}</math>. | *The exponent <math>\nu</math> relates the size of correlations (i.e. patches of the ordered phase) to the temperature; away from the critical point these are characterized by a [[correlation length]] <math>\xi</math>. We have <math>\xi = \tau^{-\nu}</math>. | ||
*The exponent <math>\eta</math> measures the size of correlations at the critical temperature. It is defined so that the [[correlation function]] scales as <math>r^{-d+2-\eta}</math>. | *The exponent <math>\eta</math> measures the size of correlations at the critical temperature. It is defined so that the [[correlation function]] of the [[order parameter]] scales as <math>r^{-d+2-\eta}</math>. | ||
*The exponent <math>\sigma</math>, used in [[percolation theory]], measures the size of the largest clusters (roughly, the largest ordered blocks) at 'temperatures' (connection probabilities) below the critical point. So <math>s_{\max} \sim (p_c - p)^{-1/\sigma}</math>. | *The exponent <math>\sigma</math>, used in [[percolation theory]], measures the size of the largest clusters (roughly, the largest ordered blocks) at 'temperatures' (connection probabilities) below the critical point. So <math>s_{\max} \sim (p_c - p)^{-1/\sigma}</math>. | ||
*The exponent <math>\tau</math>, also from [[percolation theory]], measures the number of size ''s'' clusters far from <math>s_{\max}</math> (or the number of clusters at criticality): <math>n_s \sim s^{-\tau} f(s/s_{\max})</math>, with the <math>f</math> factor removed at critical probability. | *The exponent <math>\tau</math>, also from [[percolation theory]], measures the number of size ''s'' clusters far from <math>s_{\max}</math> (or the number of clusters at criticality): <math>n_s \sim s^{-\tau} f(s/s_{\max})</math>, with the <math>f</math> factor removed at critical probability. | ||
===Ising model=== | |||
This section lists the critical exponents of the ferromagnetic transition in the Ising model. In statistical physics, the Ising model is the simplest system exhibiting a continuous phase transition with a scalar [[order parameter]] and <math>\mathbb{Z}_2</math> symmetry. The critical exponents of the transition are universal values and characterize the singular properties of physical quantities. The ferromagnetic transition of the Ising model establishes an important universality class, which contains a variety of phase transitions as different as [[ferromagnetism]] close to the [[Curie temperature|Curie point]] and [[critical opalescence]] of liquid near its [[critical point (thermodynamics)|critical point]]. | |||
{| class="wikitable" | |||
|- | |||
! | |||
! {{math|1=d=2}} | |||
! {{math|1=d=3}} | |||
! {{math|1=d=4}} | |||
!general expression | |||
|- | |||
| {{math|<var>α</var>}} | |||
| 0 | |||
| 0.11008708(35) | |||
| 0 | |||
|<math>2-d/(d-\Delta_\epsilon)</math> | |||
|- | |||
| {{math|<var>β</var>}} | |||
| 1/8 | |||
| 0.32641871(75) | |||
| 1/2 | |||
|<math> \Delta_\sigma/(d-\Delta_\epsilon)</math> | |||
|- | |||
| {{math|<var>γ</var>}} | |||
| 7/4 | |||
| 1.23707551(26) | |||
| 1 | |||
|<math>(d-2\Delta_\sigma)/(d-\Delta_\epsilon) </math> | |||
|- | |||
| {{math|<var>δ</var>}} | |||
| 15 | |||
| 4.78984254(27) | |||
| 3 | |||
|<math> (d-\Delta_\sigma)/\Delta_\sigma</math> | |||
|- | |||
| {{math|<var>η</var>}} | |||
| 1/4 | |||
| 0.036297612(48) | |||
|0 | |||
|<math>2\Delta_\sigma - d+2</math> | |||
|- | |||
| {{math|<var>ν</var>}} | |||
| 1 | |||
| 0.62997097(12) | |||
| 1/2 | |||
|<math>1/(d-\Delta_\epsilon)</math> | |||
|- | |||
| {{math|<var>ω</var>}} | |||
| 2 | |||
| 0.82966(9) | |||
| 0 | |||
|<math>\Delta_{\epsilon'}-d</math> | |||
|} | |||
From the [[quantum field theory]] point of view, the critical exponents can be expressed in terms of [[scaling dimension]]s of the local operators <math>\sigma,\epsilon,\epsilon'</math> of the [[conformal field theory]] describing the [[phase transition]]<ref name="Cardy1996">{{cite book|first=John |last=Cardy |author-link=John Cardy |title=Scaling and Renormalization in Statistical Physics|url=https://books.google.com/books?id=Wt804S9FjyAC|date=1996|publisher=Cambridge University Press|isbn=978-0-521-49959-0}}</ref> (In the [[Ginzburg–Landau theory|Ginzburg–Landau]] description, these are the operators normally called <math>\phi,\phi^2,\phi^4</math>.) These expressions are given in the last column of the above table, and were used to calculate the values of the critical exponents using the operator dimensions values from the following table: | |||
{| class="wikitable" | |||
! | |||
!d=2 | |||
!d=3 | |||
!d=4 | |||
|- | |||
|<math>\Delta_\sigma</math> | |||
|1/8 | |||
|0.518148806(24) <ref name="bootstrap2024">{{cite journal|title=Bootstrapping the 3d Ising stress tensor|first1=Cyuan-Han|last1=Chang|first2=Vasiliy|last2=Dommes|first3=Rajeev|last3=Erramilli|first4=Alexandre|last4=Homrich|first5=Petr|last5=Kravchuk|first6=Aike|last6=Liu|first7=Matthew|last7=Mitchell|first8=David|last8=Poland|first9=David|last9=Simmons-Duffin|journal=Journal of High Energy Physics |date=2025|issue=3 |page=136 |doi=10.1007/JHEP03(2025)136 |arxiv=2411.15300 |bibcode=2025JHEP...03..136C }}</ref> | |||
|1 | |||
|- | |||
|<math>\Delta_\epsilon</math> | |||
|1 | |||
|1.41262528(29) <ref name="bootstrap2024" /> | |||
|2 | |||
|- | |||
|<math>\Delta_{\epsilon'}</math> | |||
|4 | |||
|3.82966(9) <ref name=":1">{{Cite journal|last1=Komargodski|first1=Zohar|last2=Simmons-Duffin|first2=David|date=14 March 2016|title=The Random-Bond Ising Model in 2.01 and 3 Dimensions|arxiv=1603.04444|doi=10.1088/1751-8121/aa6087|volume=50|issue=15|journal=Journal of Physics A: Mathematical and Theoretical|page=154001|bibcode=2017JPhA...50o4001K|s2cid=34925106 }}</ref><ref name=":2">{{Cite journal |last=Reehorst |first=Marten |date=2022-09-21 |title=Rigorous bounds on irrelevant operators in the 3d Ising model CFT |journal=Journal of High Energy Physics |volume=2022 |issue=9 |pages=177 |doi=10.1007/JHEP09(2022)177 |arxiv=2111.12093 |bibcode=2022JHEP...09..177R |s2cid=244527272 |issn=1029-8479}}</ref> | |||
|4 | |||
|} | |||
In d=2, the [[two-dimensional critical Ising model]]'s critical exponents can be computed exactly using the [[Minimal model (physics)|minimal model]] <math>M_{3,4}</math>. In d=4, it is the [[scalar field theory|free massless scalar theory]] (also referred to as [[mean field theory]]). These two theories are exactly solved, and the exact solutions give values reported in the table. | |||
The d=3 theory is not yet exactly solved. The most accurate results come from the [[conformal bootstrap]].<ref name="bootstrap2024" /><ref name=":1" /><ref name=":2" /><ref name="Kos">{{Cite journal |last1=Kos |first1=Filip |last2=Poland |first2=David |last3=Simmons-Duffin |first3=David |last4=Vichi |first4=Alessandro |date=14 March 2016 |title=Precision Islands in the Ising and O(N) Models |journal=Journal of High Energy Physics |volume=2016 |issue=8 |pages=36 |arxiv=1603.04436 |bibcode=2016JHEP...08..036K |doi=10.1007/JHEP08(2016)036 |s2cid=119230765}}</ref><ref name="cmin">{{Cite journal|last2=Paulos|first2=Miguel F.|last3=Poland|first3=David|last4=Rychkov|first4=Slava|last5=Simmons-Duffin|first5=David|last6=Vichi|first6=Alessandro|date=2014|title=Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents|journal=Journal of Statistical Physics|volume=157|issue=4–5|pages=869–914|doi=10.1007/s10955-014-1042-7|last1=El-Showk|first1=Sheer|arxiv = 1403.4545 |bibcode = 2014JSP...157..869E |s2cid=39692193 }}</ref><ref name="SDPB">{{Cite journal|last=Simmons-Duffin|first=David|date=2015|title=A semidefinite program solver for the conformal bootstrap|journal=Journal of High Energy Physics|volume=2015|issue=6|page=174 |doi=10.1007/JHEP06(2015)174|issn=1029-8479|arxiv = 1502.02033 |bibcode = 2015JHEP...06..174S |s2cid=35625559 }}</ref><ref name="Kadanovv">{{cite web | |||
| last = Kadanoff | |||
| first = Leo P. | |||
| author-link = Leo Kadanoff | |||
| title = Deep Understanding Achieved on the 3d Ising Model | |||
| website = Journal Club for Condensed Matter Physics | |||
| date = April 30, 2014 | |||
| url = http://www.condmatjournalclub.org/?p=2384 | |||
| access-date = July 18, 2015 | |||
| archive-url = https://web.archive.org/web/20150722062827/http://www.condmatjournalclub.org/?p=2384 | |||
| archive-date = July 22, 2015 | |||
| url-status = usurped | |||
}}</ref> These are the values reported in the tables. [[Renormalization group]] methods,<ref name="Pelissetto02">{{cite journal |last=Pelissetto |first=Andrea |author2=Vicari, Ettore |year=2002 |title=Critical phenomena and renormalization-group theory |journal=Physics Reports |volume=368 |pages=549–727 |arxiv=cond-mat/0012164 |bibcode=2002PhR...368..549P |doi=10.1016/S0370-1573(02)00219-3 |s2cid=119081563 |number=6}}</ref><ref>[[Hagen Kleinert|Kleinert, H.]], [http://www.physik.fu-berlin.de/~kleinert/279/279.pdf "Critical exponents from seven-loop strong-coupling φ4 theory in three dimensions".] ''[[Physical Review]]''<span> D 60, 085001 (1999)</span></ref><ref name="balog">{{cite journal |last=Balog |first=Ivan |author2=Chate, Hugues |author3=Delamotte, Bertrand |author4=Marohnic, Maroje |author5=Wschebor, Nicolas |year=2019 |title=Convergence of Non-Perturbative Approximations to the Renormalization Group |journal=Phys. Rev. Lett. |volume=123 |issue=24 |pages=240604 |doi=10.1103/PhysRevLett.123.240604 |pmid=31922817 |arxiv=1907.01829 |bibcode= 2019PhRvL.123x0604B|s2cid=}}</ref><ref name="DePolsi">{{cite journal |last=De Polsi |first=Gonzalo |author2=Balog, Ivan |author3=Tissier, Matthieu |author4=Wschebor, Nicolas |year=2020 |title=Precision calculation of critical exponents in the O(N) universality classes with the nonperturbative renormalization group |journal=Phys. Rev. E |volume=101 |issue=24 |pages=042113 |doi=10.1103/PhysRevLett.123.240604 |pmid=31922817 |arxiv=1907.01829 |bibcode= 2019PhRvL.123x0604B|s2cid=}}</ref> [[Metropolis–Hastings algorithm|Monte-Carlo simulations]],<ref>{{Cite journal |last=Hasenbusch |first=Martin |date=2010 |title=Finite size scaling study of lattice models in the three-dimensional Ising universality class |url=https://journals.aps.org/prb/abstract/10.1103/PhysRevB.82.174433 |journal=Physical Review B |volume=82 |issue=17 |page=174433 |doi=10.1103/PhysRevB.82.174433|arxiv=1004.4486 |bibcode=2010PhRvB..82q4433H }}</ref> and the fuzzy sphere regulator<ref>{{Cite journal |last=Zhu |first=Wei |date=2023 |title=Uncovering Conformal Symmetry in the 3D Ising Transition: State-Operator Correspondence from a Quantum Fuzzy Sphere Regularization |url=https://journals.aps.org/prx/abstract/10.1103/PhysRevX.13.021009 |journal=Physical Review X |volume=13 |issue=2 |page=021009 |doi=10.1103/PhysRevX.13.021009|arxiv=2210.13482 |bibcode=2023PhRvX..13b1009Z }}</ref> give results in agreement with the conformal bootstrap, but are several orders of magnitude less accurate. | |||
===Others=== | |||
For symmetries, the group listed gives the symmetry of the order parameter. The group <math>\mathrm{Dih}_n</math> is the [[dihedral group]], the symmetry group of the ''n''-gon, <math>S_n</math> is the ''n''-element [[symmetric group]], <math>\mathrm{Oct}</math> is the [[octahedral group]], and <math>O(n)</math> is the [[orthogonal group]] in ''n'' dimensions. '''1''' is the [[trivial group]]. | For symmetries, the group listed gives the symmetry of the order parameter. The group <math>\mathrm{Dih}_n</math> is the [[dihedral group]], the symmetry group of the ''n''-gon, <math>S_n</math> is the ''n''-element [[symmetric group]], <math>\mathrm{Oct}</math> is the [[octahedral group]], and <math>O(n)</math> is the [[orthogonal group]] in ''n'' dimensions. '''1''' is the [[trivial group]]. | ||
| Line 66: | Line 159: | ||
|- align="center" | |- align="center" | ||
| 3 || 1 || || 0.28871(15)<ref name=":0" />|| 1.3066(19)<ref name=":0" />|| || || | | 3 || 1 || || 0.28871(15)<ref name=":0" />|| 1.3066(19)<ref name=":0" />|| || || | ||
|- align="center" | |- align="center" | ||
|[[XY model|XY]] | |[[XY model|XY]] | ||
| Line 91: | Line 179: | ||
{{Reflist}} | {{Reflist}} | ||
== | ==Further reading== | ||
* [http://www.sklogwiki.org/SklogWiki/index.php/Universality_classes Universality classes] from Sklogwiki | * [http://www.sklogwiki.org/SklogWiki/index.php/Universality_classes Universality classes] from Sklogwiki | ||
* {{cite journal|arxiv=cond-mat/9701018|doi=10.1088/0305-4470/30/24/036|title=Critical Exponents of the Four-State Potts Model|year=1997|last1=Creswick|first1=Richard J.|last2=Kim|first2=Seung-Yeon|journal=Journal of Physics A: Mathematical and General|volume=30|issue=24|pages=8785–8786|s2cid=16687747}} | * {{cite journal|arxiv=cond-mat/9701018|doi=10.1088/0305-4470/30/24/036|title=Critical Exponents of the Four-State Potts Model|year=1997|last1=Creswick|first1=Richard J.|last2=Kim|first2=Seung-Yeon|journal=Journal of Physics A: Mathematical and General|volume=30|issue=24|pages=8785–8786|s2cid=16687747}} | ||
* {{cite book|first1=M. |last1=Henkel |first2=H. |last2=Hinrichsen |first3=S. |last3=Lübeck |title=Non-Equilibrium Phase Transitions, Volume 1: Absorbing Phase Transitions |publisher=Springer |year=2008 |isbn=978-1-4020-8765-3}} | |||
* {{Cite journal|arxiv=cond-mat/0205644|doi=10.1103/RevModPhys.76.663|title=Universality classes in nonequilibrium lattice systems|year=2004|last1=Ódor|first1=Géza|journal=Reviews of Modern Physics|volume=76|issue=3|pages=663–724|bibcode=2004RvMP...76..663O}} | |||
* {{cite book|last=Zinn-Justin |first=Jean |author-link=Jean Zinn-Justin |year=2002 |title=Quantum field theory and critical phenomena |location=Oxford |publisher=Clarendon Press |isbn=0-19-850923-5}} | |||
[[Category:Critical phenomena]] | [[Category:Critical phenomena]] | ||
[[Category:Renormalization group]] | [[Category:Renormalization group]] | ||
[[Category:Scale-invariant systems]] | [[Category:Scale-invariant systems]] | ||
Latest revision as of 11:24, 23 June 2025
Template:Short description Template:More references In statistical mechanics, a universality class is a set of mathematical models which share a scale-invariant limit under renormalization group flow. While the models within a class may differ at finite scales, their behavior become increasingly similar as the limit scale is approached. In particular, asymptotic phenomena such as critical exponents are the same for all models in the class.
Well-studied examples include the universality classes of the Ising model or the percolation theory at their respective phase transition points; these are both families of classes, one for each lattice dimension. Typically, a family of universality classes has a lower and upper critical dimension: below the lower critical dimension, the universality class becomes degenerate (this dimension is 2 for the Ising model, or for directed percolation, but 1 for undirected percolation), and above the upper critical dimension the critical exponents stabilize and can be calculated by an analog of mean-field theory (this dimension is 4 for Ising or for directed percolation, and 6 for undirected percolation).
List of critical exponents
Critical exponents are defined in terms of the variation of certain physical properties of the system near its phase transition point. These physical properties will include its reduced temperature , its order parameter measuring how much of the system is in the "ordered" phase, the specific heat, and so on.
- The exponent is the exponent relating the specific heat C to the reduced temperature: we have . The specific heat will usually be singular at the critical point, but the minus sign in the definition of allows it to remain positive.
- The exponent relates the order parameter to the temperature. Unlike most critical exponents it is assumed positive, since the order parameter will usually be zero at the critical point. So we have .
- The exponent relates the temperature with the system's response to an external driving force, or source field. We have , with J the driving force.
- The exponent relates the order parameter to the source field at the critical temperature, where this relationship becomes nonlinear. We have (hence ), with the same meanings as before.
- The exponent relates the size of correlations (i.e. patches of the ordered phase) to the temperature; away from the critical point these are characterized by a correlation length . We have .
- The exponent measures the size of correlations at the critical temperature. It is defined so that the correlation function of the order parameter scales as .
- The exponent , used in percolation theory, measures the size of the largest clusters (roughly, the largest ordered blocks) at 'temperatures' (connection probabilities) below the critical point. So .
- The exponent , also from percolation theory, measures the number of size s clusters far from (or the number of clusters at criticality): , with the factor removed at critical probability.
Ising model
This section lists the critical exponents of the ferromagnetic transition in the Ising model. In statistical physics, the Ising model is the simplest system exhibiting a continuous phase transition with a scalar order parameter and symmetry. The critical exponents of the transition are universal values and characterize the singular properties of physical quantities. The ferromagnetic transition of the Ising model establishes an important universality class, which contains a variety of phase transitions as different as ferromagnetism close to the Curie point and critical opalescence of liquid near its critical point.
| Template:Math | Template:Math | Template:Math | general expression | |
|---|---|---|---|---|
| Template:Math | 0 | 0.11008708(35) | 0 | |
| Template:Math | 1/8 | 0.32641871(75) | 1/2 | |
| Template:Math | 7/4 | 1.23707551(26) | 1 | |
| Template:Math | 15 | 4.78984254(27) | 3 | |
| Template:Math | 1/4 | 0.036297612(48) | 0 | |
| Template:Math | 1 | 0.62997097(12) | 1/2 | |
| Template:Math | 2 | 0.82966(9) | 0 |
From the quantum field theory point of view, the critical exponents can be expressed in terms of scaling dimensions of the local operators of the conformal field theory describing the phase transition[1] (In the Ginzburg–Landau description, these are the operators normally called .) These expressions are given in the last column of the above table, and were used to calculate the values of the critical exponents using the operator dimensions values from the following table:
| d=2 | d=3 | d=4 | |
|---|---|---|---|
| 1/8 | 0.518148806(24) [2] | 1 | |
| 1 | 1.41262528(29) [2] | 2 | |
| 4 | 3.82966(9) [3][4] | 4 |
In d=2, the two-dimensional critical Ising model's critical exponents can be computed exactly using the minimal model . In d=4, it is the free massless scalar theory (also referred to as mean field theory). These two theories are exactly solved, and the exact solutions give values reported in the table.
The d=3 theory is not yet exactly solved. The most accurate results come from the conformal bootstrap.[2][3][4][5][6][7][8] These are the values reported in the tables. Renormalization group methods,[9][10][11][12] Monte-Carlo simulations,[13] and the fuzzy sphere regulator[14] give results in agreement with the conformal bootstrap, but are several orders of magnitude less accurate.
Others
For symmetries, the group listed gives the symmetry of the order parameter. The group is the dihedral group, the symmetry group of the n-gon, is the n-element symmetric group, is the octahedral group, and is the orthogonal group in n dimensions. 1 is the trivial group.
| class | dimension | Symmetry | ||||||
|---|---|---|---|---|---|---|---|---|
| 3-state Potts | 2 | Template:Sfrac | Template:Sfrac | Template:Sfrac | 14 | Template:Sfrac | Template:Sfrac | |
| Ashkin–Teller (4-state Potts) | 2 | Template:Sfrac | Template:Sfrac | Template:Sfrac | 15 | Template:Sfrac | Template:Sfrac | |
| Ordinary percolation | 1 | 1 | 1 | 0 | 1 | 1 | 1 | |
| 2 | 1 | −Template:Sfrac | Template:Sfrac | Template:Sfrac | Template:Sfrac | Template:Sfrac | Template:Sfrac | |
| 3 | 1 | −0.625(3) | 0.4181(8) | 1.793(3) | 5.29(6) | 0.87619(12) | 0.46(8) or 0.59(9) | |
| 4 | 1 | −0.756(40) | 0.657(9) | 1.422(16) | 3.9 or 3.198(6) | 0.689(10) | −0.0944(28) | |
| 5 | 1 | ≈ −0.85 | 0.830(10) | 1.185(5) | 3.0 | 0.569(5) | −0.075(20) or −0.0565 | |
| 6+ | 1 | −1 | 1 | 1 | 2 | Template:Sfrac | 0 | |
| Directed percolation | 1 | 1 | 0.159464(6) | 0.276486(8) | 2.277730(5) | 0.159464(6) | 1.096854(4) | 0.313686(8) |
| 2 | 1 | 0.451 | 0.536(3) | 1.60 | 0.451 | 0.733(8) | 0.230 | |
| 3 | 1 | 0.73 | 0.813(9) | 1.25 | 0.73 | 0.584(5) | 0.12 | |
| 4+ | 1 | −1 | 1 | 1 | 2 | Template:Sfrac | 0 | |
| Conserved directed percolation (Manna, or "local linear interface") | 1 | 1 | 0.28(1) | 0.14(1) | 1.11(2)[15] | 0.34(2)[15] | ||
| 2 | 1 | 0.64(1) | 1.59(3) | 0.50(5) | 1.29(8) | 0.29(5) | ||
| 3 | 1 | 0.84(2) | 1.23(4) | 0.90(3) | 1.12(8) | 0.16(5) | ||
| 4+ | 1 | 1 | 1 | 1 | 1 | 0 | ||
| Protected percolation | 2 | 1 | 5/41[16] | 86/41[16] | ||||
| 3 | 1 | 0.28871(15)[16] | 1.3066(19)[16] | |||||
| XY | 3 | -0.01526(30) | 0.34869(7) | 1.3179(2) | 4.77937(25) | 0.67175(10) | 0.038176(44) | |
| Heisenberg | 3 | −0.12(1) | 0.366(2) | 1.395(5) | 0.707(3) | 0.035(2) | ||
| Mean field | all | any | 0 | Template:Sfrac | 1 | 3 | Template:Sfrac | 0 |
| Molecular beam epitaxy[17] | ||||||||
| Gaussian free field |
References
Further reading
- Universality classes from Sklogwiki
- Script error: No such module "Citation/CS1".
- Script error: No such module "citation/CS1".
- Script error: No such module "Citation/CS1".
- Script error: No such module "citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ a b c Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Kleinert, H., "Critical exponents from seven-loop strong-coupling φ4 theory in three dimensions". Physical Review D 60, 085001 (1999)
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".
- ↑ a b Script error: No such module "citation/CS1".
- ↑ a b c d Script error: No such module "Citation/CS1".
- ↑ Script error: No such module "Citation/CS1".