Fréchet manifold
In mathematics, in particular in nonlinear analysis, a Fréchet manifold is a topological space modeled on a Fréchet space in much the same way as a manifold is modeled on a Euclidean space.
More precisely, a Fréchet manifold consists of a Hausdorff space with an atlas of coordinate charts over Fréchet spaces whose transitions are smooth mappings. Thus has an open cover and a collection of homeomorphisms onto their images, where are Fréchet spaces, such that is smooth for all pairs of indices
Classification up to homeomorphism
It is by no means true that a finite-dimensional manifold of dimension is Template:Em homeomorphic to or even an open subset of However, in an infinite-dimensional setting, it is possible to classify "well-behaved" Fréchet manifolds up to homeomorphism quite nicely. A 1969 theorem of David Henderson states that every infinite-dimensional, separable, metric Fréchet manifold can be embedded as an open subset of the infinite-dimensional, separable Hilbert space, (up to linear isomorphism, there is only one such space).
The embedding homeomorphism can be used as a global chart for Thus, in the infinite-dimensional, separable, metric case, up to homeomorphism, the "only" topological Fréchet manifolds are the open subsets of the separable infinite-dimensional Hilbert space. But in the case of Template:Em or Template:Em Fréchet manifolds (up to the appropriate notion of diffeomorphism) this failsScript error: No such module "Unsubst"..
See also
- Template:Annotated link, of which a Fréchet manifold is a generalization
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
References
Template:Reflist Template:Reflist
- Script error: No such module "Citation/CS1". Template:MathSciNet
- Script error: No such module "Citation/CS1". Template:MathSciNet
Template:Manifolds Template:Analysis in topological vector spaces Template:Topological vector spaces Template:Functional Analysis