Grammar-based code

From Wikipedia, the free encyclopedia
Revision as of 03:19, 18 May 2025 by imported>Ringo62 (ce)
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description

File:IndpGrm.gif
Straight-line grammar (with start symbol ß) for the second sentence of the United States Declaration of Independence. Each blue character denotes a nonterminal symbol; they were obtained from a gzip-compression of the sentence.

Grammar-based codes or grammar-based compression are compression algorithms based on the idea of constructing a context-free grammar (CFG) for the string to be compressed. Examples include universal lossless data compression algorithms.[1] To compress a data sequence x=x1xn, a grammar-based code transforms x into a context-free grammar G. The problem of finding a smallest grammar for an input sequence (smallest grammar problem) is known to be NP-hard,[2] so many grammar-transform algorithms are proposed from theoretical and practical viewpoints. Generally, the produced grammar G is further compressed by statistical encoders like arithmetic coding.

Examples and characteristics

The class of grammar-based codes is very broad. It includes block codes, the multilevel pattern matching (MPM) algorithm,[3] variations of the incremental parsing Lempel-Ziv code,[4] and many other new universal lossless compression algorithms. Grammar-based codes are universal in the sense that they can achieve asymptotically the entropy rate of any stationary, ergodic source with a finite alphabet.

Practical algorithms

The compression programs of the following are available from external links.

  • Sequitur[5] is a classical grammar compression algorithm that sequentially translates an input text into a CFG, and then the produced CFG is encoded by an arithmetic coder.
  • Re-Pair[6] is a greedy algorithm using the strategy of most-frequent-first substitution. The compressive performance is powerful, although the main memory space requirement is very large.
  • GLZA,[7] which constructs a grammar that may be reducible, i.e., contain repeats, where the entropy-coding cost of "spelling out" the repeats is less than the cost creating and entropy-coding a rule to capture them. (In general, the compression-optimal SLG is not irreducible, and the Smallest Grammar Problem is different from the actual SLG compression problem.)

See also

References

Template:Reflist

External links

Template:Compression methods

  1. Script error: No such module "citation/CS1".
  2. Script error: No such module "citation/CS1".
  3. Script error: No such module "citation/CS1".
  4. Script error: No such module "citation/CS1".
  5. Script error: No such module "citation/CS1".
  6. Script error: No such module "citation/CS1".
  7. Script error: No such module "citation/CS1".